
Fex: Assisted Identification of Domain Features
from C Programs

Patrick Müller∗, Krishna Narasimhan∗, and Mira Mezini∗
mueller, kri.nara and mezini (@cs.tu-darmstadt.de)

∗ TU Darmstadt, Germany

Abstract—Modern software typically performs more than one
functionality. These functionalities or features are not always
organized in a way for modules representing these features to
be used individually. Many software engineering approaches like
programming language constructs, or product line visualization
techniques have been proposed to organize projects as modules.
Unfortunately, much legacy software suffer from years or decades
of improper coding practices that leave the modules in the code
almost undetectable. In such scenarios, a desirable requirement
is to identify modules representing different features to be
extracted. In this paper, we propose a novel approach that
combines information retrieval and program analysis approaches
to allow domain experts to identify slices of the program that
represent modules using natural language search terms. We
evaluate our approach by building a proof of concept tool in
C, and extract modules from open source projects.

I. INTRODUCTION

Large-scale software projects typically consist of a compo-
sition of domain features, which often also come in different
variants. For instance, an embedded software system that man-
ages a modern automobile is typically composed of features
such as the multimedia system, tyre pressure monitors, etc. To
manage the complexity of development and evolution of such
software, it is desirable that domain features are modularized
in well-defined code modules and their dependencies and
variants are systematically modelled in product-lines [1].

Unfortunately, when the need to manage or restructure
existing software into a product line arises, it is often very
challenging to do so, due to one of the following reasons:
(a) the system has been developed without a product line in
mind, or (b) inappropriate language constructs are used to
structure the program into modules. In case (a), we need to
identify code that pertains to the implementation of individual
domain features. Code that implements a single feature can
be spread across multiple files inside the project.1 Berger et
al. [2] conducted an industrial study on the significance and
difficulties of identifying features in large-scale projects. In
case (b), we refer to preprocessor directives like #ifdef that
the C programming language offers to modularize software
along the domain features. The C preprocessor has been
found to be notoriously harmful owing to obtrusive syntax
and hindrance to comprehension and maintainability [3]. Some
approaches have been proposed to improve comprehension of
projects organized using preprocessors, most notably the work

1In the rest of the paper, we will sometimes use the word module to refer
to code scattered throughout the project that represent a feature.

from Le et al. [4] or PEoPL [5]. But, they require the code to
be well-structured using ifdefs in the first place. Moreover,
given that most modern languages have done away with the
preprocessor pragmas, we need a better solution that avoids
preprocessors altogether.

In this paper, we propose a novel approach to identifying
code that pertains to the implementation of a domain feature
of interest, as a prerequisite to re-engineering legacy software
into first-class feature modules and compositions thereof.
Program slicing is a common static program analysis technique
to extract sections of code that depend on a particular piece
of data (variables in code). But, domain experts may not
be able to determine variables to serve as starting points
for extracting a module. To bridge this gap, we develop
a program analysis technique that synergistically combines
information retrieval (IR) with control- and data-flow analyses,
thus yielding what we call a natural code analysis approach.
Based on this analysis infrastructure, we implement a slicing
technique that takes natural language terms as input. We
use the term slicing criteria to represent the input
provided by the user, which in our approach is comprised
of the feature anchor and a similarity threshold. The former
serves as input search criteria which the user provides as a
natural language term. The latter is a value between 0 and 1
that determines how close the terms in the program should be
to the input term. One can think of the similarity threshold
as a slider that the domain expert can control to arrive at the
desired module.

More specifically, our information retrieval creates a pro-
gram Corpus - an index that maps terms to locations in the
program - and internally maintains a map of the corpus to the
control flow graph (CFG) of the program. We slice the corpus
based on the slicing criteria and use the map to identify nodes
in the CFG that correspond to this corpus slice. Given the
identified CFG nodes, we apply data-flow analysis to gather
their control and data dependencies. The result is a module
that contains the code that corresponds to the input term –
representing a domain feature. Our approach is not intended
to replace manual effort, i.e., to be fully automatic. On the
contrary, we believe that iterative input from domain experts
is a crucial aspect to the module extraction process. The goal
is to assist the process by relieving the human expert from the
heavy lifting.

Program analysis and slicing techniques are generally driven
by data or program variables. To the best of our knowl-

ar
X

iv
:2

10
8.

09
24

5v
1

 [
cs

.S
E

]
 2

0
A

ug
 2

02
1

edge, this is the first approach that performs feature-anchored
program analysis by embedding information retrieval into
domain-driven program slicing.

To understand better where such an feature identification
approach could be useful as a first step to re-engineer modules,
consider the following scenarios:

• Grbl: 2 is a high-performance controller for CNC milling,
a cutting tool that is mounted on a rotating spindle to
selectively remove material from a dedicated workpiece.
The axis module, that is concerned with the control of
motors inside the mill are currently deeply tied into an
ocean of C-code making it hard to re-use or analyse
independently. Our running example in this paper is
a simplified snippet of the grbl code illustrating how
our approach can identify the subset of the controller
concerned with axis-related tasks.

• Language transpiling: is the task of transforming
sections of a software from one language into another.
Such transpilations are useful with the advent of safe
languages like Rust which serve as an alternative to
unsafe languages like C. Companies like Mozilla are
currently transpiling their C-based projects into Rust. But
they do this incrementally on a feature-level to avoid a
big-bang transpiling that could consume too much time
and human resources. An approach such as ours could
help alleviate the pain of identifying the pieces of code
concerned with the feature that needs to be transpiled. As
part of our evaluation, we have extracted a module from
a popular grep alternative called Silver-Searcher, which is
equivalent to a module transpiled into Rust and available
as a pull request in the project upstream.

• Linux GKI: or the Generic Kernel Image is a proposal
from the Linux core team to create a single kernel image
that will be used in all devices and providers to encourage
re-use. Currently, there exist multiple provider-specific
kernels. In order for such a project to manifest, providers
will have to identify and extract code specific to their
unique features that have been now merged into their
provider-specific kernels. An approach such as ours could
alleviate the pain involved in such laborious identification
of features.

We evaluated our approach on six open source C projects:
Parson, inotify, fping, silver-searcher, redis and mem-
cached, ranging from 3k to 165k lines of code, from which
we extracted eight different modules in total. We apply the
tool that implements our approach, Fex to these benchmarks
to extract modules that represent significant features, e.g., the
module that parses json files in the Parson project. We compare
the results against a set of modules that we extracted manually
based on detailed analysis and understanding of the code-base
to serve as a ground truth.

We put several measures in place to make sure that manually
extracted modules represent meaningful program features.

2https://github.com/gnea/grbl

To start with, the extracted modules do not break existing
functionality – existing test-cases pass.

Second,
two of the authors with three respectively four years of

experience independently agreed that the manually extracted
modules represent program features. Third, one of our ex-
tracted modules is externally validated because it corresponds
to a module for which there is an ongoing pull request for
transpiling it from C into Rust. We compare the results of
Fex with an extraction using grep.

Our results show that the extracted modules
are close to the ground truth modules in terms of matching

lines of code.
For deviating lines of code, we perform a thorough manual

analysis to understand the root causes and to provide insights
on how the gap could be closed. As the application of our
tool on redis – the largest benchmark in our set (165k LoC) –
shows, the approach scales well to code written for real-world
software.
To sum up, the contributions in this paper are as follows:

• A novel information retrieval (IR) approach to work on C
files like text documents so that they can be queried using
natural language. Given a C program (a set of C files)
one can use the IR technique to create a corpus of the
project, which is persisted for subsequently performing
queries based on terms for re-engineering purposes.

• A novel program slicing technique for C that makes use
of natural language terms as slicing criteria and uses the
corpus built by the IR technique to identify the code
elements pertaining to a slice.

• A tool that implements our approach, Fex which we use
to extract modules from open-source C projects with very
encouraging results.

The remainder of the paper is organized as follows.
We present our methodology in Section II and our evalua-

tion experiments and results in Section III. We discuss threats
to validity and outline future work in Section IV, related work
in Section V and conclude in Section VI.

II. APPROACH

An overview of the workflow supported by our approach is
depicted in Figure 1. Given some legacy software, the extractor
creates the project corpus (cf. Section II-A), which is stored
in a database to ensure that the extractor is not required to
be re-run for every new query. Once the corpus is ready,
the user is prompted for a keyword representing the desired
feature in domain terms, which is used to filter the corpus
(Section II-B). Finally, the feature extractor maps the filtered
slice of the corpus to syntactically correct code that represents
the implementation of the desired feature (Section II-C).

A. Creating the corpus

The creation of the corpus is the responsibility of the
Corpus Extractor. Its input is a C project with a set of source
files - the output is the corpus for the input project.

https://github.com/gnea/grbl

Fig. 1: Approach Overview

The corpus is a matrix that maps terms occurring in code
to the following attributes of them extracted from the code:

• Locations where the term occurs (line, column)
• Program context in which the term occurs (comment,

preprocessor macro, identifier, function definition)
• Weight - determines how important a term is within each

function in code. There is one weight entry for each pair
of function and term. Hence, weight is in fact a matrix
itself - the Term Document Matrix (TDM). There are
different strategies to determine the weight of a term in
a function - the most simple one is to count the number
of occurrences a given term has in a function.

A Term document matrix (TDM) [6] is a matrix that
represents how frequently a term occurs in a document. The
rows of the matrix represent individual documents and the
columns represent the terms. There are various methods to
decide what values are represented in the matrix, the most
obvious one being to encode the number of occurrences of
each term. Consider the two documents:

1) D1 = "Time heals everything"
2) D2 = "Time cures everything"

The TDM for the above document would be:

Time heals cures everything
D1 1 1 0 1
D2 1 0 1 1

In natural language processing, a popular alternative to the
"number of occurrences" to describe the frequency is to use
the Term frequency–inverse document frequency3 or in
short TFIDF, which we use in our corpus as weight. This
is a statistic that represents the importance of a term in a
document. This value is directly proportional to the number
of times a term occurs in a document, and the number of
documents that contain this term. In order to query for a term
you have to create a query vector, which has 1 at the index

3https://nlp.stanford.edu/IR-book/html/htmledition/queries-as-vectors-1.
html

that corresponds to the input term and 0 in all other indices,
e.g.,

(
. . . 0 1 0 . . .

)
.

As one can imagine, the size of the TDM can get quite large
for a big project with lots of terms. For this purpose, Latent
Semantic Indexing (LSI) [7] is an indexing and retrieval
technique that groups terms that are semantically equivalent
into concepts, and finds the connections between these terms
and concepts. LSI then uses a matrix decomposition technique
called Single value decomposition (SVD) [8] to reduce the
size of the matrix based on the relationship between the terms
and the concepts.

To create the corpus for the given project, the extractor
performs the following steps:

1) Tokenize the source code: We use a lexer to tokenize
the source files. This will allow us to manage the
individual words in our project.

2) Produce the documents: We remind the reader that
our information retrieval process requires the source
files to be available as documents. To enable retrieving
information at a fine granularity level, we map source
files into several documents, rather than having one
document per file. Documents represent one of several
different constructs in the original source code, i.e., a
single function is a document, and all declarations in
one source file are a document on their own.

3) Normalize the tokens: We perform a post-processing
on the tokens to normalize them, which results in
terms. During the normalization we transform all
tokens to lower case and split them for differ-
ent naming styles, e.g., snake case or camel case,
while also retaining the original version. For exam-
ple, the token (parse_axisCommand) gets normalized
to the terms (parse, axis, command, axisCommand, and
parse_axiscommand). In addition, we retain the program
context for all term occurrence locations, i.e., whether
the term is an identifier, is guarded by a preprocessor
macro, or occurs within a comment.

4) Shorten the corpus: We then reduce the size of the
resulting corpus by filtering out C keywords.

5) Create the TDM: As already mentioned, the TDM maps
pairs of documents and terms, (d, t) to a number n.
What n represents depends on the chosen weighting
scheme. In our default case of TFIDF, n corresponds
to the relative importance of t inside the document d.
For the sake of simplicity, in Table I, we show the TDM
for a single function (i.e., the TDM is reduced to a single
column Weight)

6) Reducing the matrix: For big projects with many
functions, the corpus can become quite large. Latent
Semantic indexing 4

uses a matrix factorization technique called Single value
decomposition (SVD) to reduce the size of a matrix. The
resulting matrix exists in what is called the SVD space.

4https://nlp.stanford.edu/IR-book/html/htmledition/
latent-semantic-indexing-1.html

https://nlp.stanford.edu/IR-book/html/htmledition/queries-as-vectors-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/queries-as-vectors-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/latent-semantic-indexing-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/latent-semantic-indexing-1.html

1 void parse_command(char* input) {
2 axis_command = NULL;
3 if (input[0] == ’G’) {
4 // mm or inches
5 unit = parse_unit(input);
6 axis_command =
7 parse_axis_command(input);
8 mode = 0;
9 move_x(axis_command);

10 move_y(axis_command);
11 } else if (input[0] == ’H’){
12 coolant();
13 } else { FAIL(UNSUPPORTED_COMMAND); }
14 if (axis_command) {
15 do_command(mode);
16 }
17 return;
18 }

Fig. 2: Example Code

TABLE I: Corpus for running example, Locations are tuples
of (Line × Column × Context), where Context is
i for Identifier, c for Comment and m for preprocessor Macro

Term Locations Weight
parse_command

axis_command (2,3,i), (6,5,i), (7, 7,i),
(9,12,i), (10,12,i), (14,7,i) 0.78

move_y (10,5,i) 0.30
parse (1,6,i), (5,12,i), (7,7,i), 0.60
unsupported_command (13,17,m) 0.30
move_x (9,5,i) 0.30

input (1,26,i), (3,7,i), (5,23,i),
(7,26,i), (11,14,i) 0.78

fail (13,12,m) 0.30
coolant (12,5,i) 0.30

axis (2,3,i), (6,5,i), (7, 7,i),
(9,12,i), (10,12,i), (14,7,i) 0.85

command
(1,12,i), (2,3,i), (6,5,i),
(7,7,i), (9,12,i), (10,12,i),
(13,17,i), (14,7,i), (15,5,i)

1.00

parse_axis_command (7,7,i) 0.30
null (2,18,i) 0.30
do_command (15,5,i) 0.30
unsupported (13,17,i) 0.30
parse_unit (5,12,i) 0.30
move (9,5,i), (10,5,i) 0.48
mm (4,8,c) 0.30
inches (4,14,c) 0.30
unit (5,5,i), (5,12,i) 0.48
mode (8,5,i), (15,16,i) 0.48
parse_command (1,6,i) 0.30

LSI also takes care of mapping the input query on the
full TDM to the SVD space.

For illustration, consider the code in Figure 2 and its
corresponding corpus in Table I. In contrast to a TDM, this
shows the corpus information corresponding to a term in a
single row, i.e., a transposed TDM, and occupies only one
column, because our example code contains only one function
(i.e., there is only one document). In a typical case, the
TDM column will have multiple sub-columns, one for each
document, indicating whether it contains the term. The most
frequently occurring term in the example is command, which
has the highest TDM entry value and the least occurring terms
have a TDM entry value of 0.30.

TABLE II: Relevant TDM entries for query "axis"

axis_command (2,3), (4,49), (6,12), (7,12), (11,7)
axis (2,3), (4,49), (4,64), (6,12), (7,12), (11,7)
parse_axis_command (4,64)

The process of creating the corpus can be quite demanding
for a large project. Computing the SVD for a corpus is time
consuming, too. To avoid reoccurrence of these overheads,
we persist the Corpus in a serialized Java object, so that we
compute the corpus and its SVD only once for a program and
can re-use it for every new query.

B. Extracting a corpus slice

To query the corpus for slices representing some feature,
the user provides a tuple (term, similarity-threshold).

The term here corresponds to the string that likely represents
the feature of interest.

We envision that the domain expert will have to explore
different permutations of input terms and similarity thresholds
before arriving at his intended result. For every input query, a
similarity score is computed for each document. This
score measures how similar the input term is to the document;
how this value is calculated depends on the IR model in use.

We
filter out all documents with a similarity score less than

the threshold. In the resulting documents, we gather all terms
related to the input term, i.e., the terms where the input term
is a substring.

For illustration, assume that we query the corpus of the
example in Figure 2 for the term axis. We construct the initial
query vector, which has 21 entries - one for each term in
the corpus Table I, with a one in each position involving the
query term (axis) and zeros for the rest. This query vector is
then mapped to the SVD space of the corpus in this concrete
example, using LSI. The similarity score for axis in our case
for the only document (function parse_command) is 1.0, which
means that the document makes the cut for the next step. Next,
we gather all related terms, ending up with the slice of the
corpus in Table II.

Overall, the corpus extraction5 works in two phases. In the
first phase, we create the corpus as described in II-A. In the
second phase, we use a given term to retrieve the corpus slice
as described in II-B. This phase can be repeated several times
for one program, e.g., because several terms can be used to
describe a single feature. The way we construct and query the
corpus is modular, so that we can use different IR methods,
like LSI or VSM. We have implemented our corpus extractor
in a fashion that the same format can be extracted out of grep
or any other text search tool, so that results from other tools
can be used as input for feature extraction, as well.

C. Extracting the feature

The final step is to use the corpus slice from the previous
step to reconstruct a syntactically correct code slice comprising

5It is implemented in Kotlin.

Input: CS = Corpus Slice as List,
CFG = Control flow graph of program (LLVM representation)
Internal Variables: RELEVANT_STMTS

Procedure Main
1. for entry<TERM, LSTLOCATION> ∈ CS
2. for LOCATION ∈ LSTLOCATION
3. NODE_TERM ← node corresponding to TERM in LOCATION
4. STMT_TERM ← Statement surrounding NODE_TERM
5. RELEVANT_STMTS.add(STMT_TERM)
6. for STMT ∈ RELEVANT_STMTS
7. ProcessStatement(STMT)
8. IFDS
9. RETURN Program consisting of all Statements in RELEVANT_STMTS

Procedure ProcessStatement(STMT)
10. for VARREFEXPR ∈ STMT
11. DECLARATION ← Definition of VARREFEXPR in CFG
12. RELEVANT_STMTS.add(DECLARATION)
13. for FUNCCALLEXPR ∈ STMT
14. DEFINITION ← Definition of FUNCCALLEXPR in CFG
15. RELEVANT_STMTS.add(DEFINITION)
16. if STMT is a return statement
17. LSTASSIGNEDSTATEMENTS ← Statements that

consume the return value of STMT
18. RELEVANT_STMTS.add(DEFINITION)
19. if STMT ∈ BLOCK
20. RELEVANT_STMTS.add(CFG.start(BLOCK))
21. RELEVANT_STMTS.add(CFG.end(BLOCK))
22. STMT.processed ← true
23. for STMT_UNPROCESSED ∈ RELEVANT_STMTS
24. where STMT_UNPROCESSED.processed != true
25. ProcessStatement(STMT_UNPROCESSED)

Fig. 3: Outline of the code slicing algorithm

the implementation of the desired feature. The feature extractor
is responsible for the following:

1) Use locations from the terms in the filtered corpus as
initial input

2) Extract a slice of the program that contains the state-
ments in the locations from step 1 along with their
control and data-dependencies

The feature extractor algorithm is presented in Figure 3.
1) In Lines 1-5, we mark all statements that correspond to

retrieved locations as relevant.
2) In Line 7, we process each statement to find its depen-

dencies
3) In Lines 10-12, we mark definitions of every variable

reference inside the processed statement as relevant.
4) In Lines 13-18, we perform similar markings to handle

flows between function call sites and definitions.
5) In lines 19-21, we mark the start and end of blocks to

ensure syntactic completion of the sliced CFG.
6) Finally, we mark the statement as processed and con-

tinue till all relevant statements are processed.
We illustrate this process on the code of Figure 2, with the

search term Axis.
1) Mark the statements in lines 2, 6, 7, 9, 10, 14 since they

are contained in our locations retrieved from the corpus.
These line numbers are the first entry of each tuple of
the column Locations corresponding to the terms from
the sliced corpus.

Fig. 4: CFG of LLVM IR of parse_command

1 void parse_command(char* input) {
2 axis_command = NULL;
3 if (input[0] == ’G’) {
4 axis_command =
5 parse_axis_command(input);
6 int mode = 0;
7 move_x(axis_command);
8 move_y(axis_command);
9 } else if (input[0] == ’H’){

10 coolant();
11 } else { FAIL(UNSUPPORTED_COMMAND) }
12 if (axis_command) {
13 do_command(mode);
14 }
15 }

Fig. 5: Example Code- Sliced

2) We add line 15 since it is in the body of the if in line
14 and the if including its condition in line 8

3) We add line 3 since we add statements that are controlled
by the if.

4) We collect all block endings, where a statement is
marked, i.e., the closing braces in 11,16 and 18. In
addition add the function head i.e. Line 1.

The CFG of the function parse_comand in Figure 2 is
illustrated in Figure 4, where the relevant nodes are highlighted
in green. The feature extractor results in the code in Fig. 5.

The feature extractor is based on Phasar [9] and is im-
plemented in C++. Phasar implements the IFDS framework
to solve inter-procedural, finite, distributive subset (IFDS)
problems introduced by Reps, Horwitz and Sagiv [10]. Given
the IFDS framework, designers of data-flow program analyses
need only define a set of flow functions, which the framework
solves. In order to define a program analysis using Phasar, we
need to implement the following four functions 6.

1) The analysis developer uses the getNormalFlowFunc-
tion function to express what happens during intra-

6https://github.com/secure-software-engineering/phasar/wiki/
Writing-an-IFDS-analysis

https://github.com/secure-software-engineering/phasar/wiki/Writing-an-IFDS-analysis
https://github.com/secure-software-engineering/phasar/wiki/Writing-an-IFDS-analysis

procedural data flows. For our implementation, we mark
every intra-procedural data flow dependency of a rele-
vant node as relevant.

2) The analysis developer uses the getCallFlowFunction
function to express what happens when a call-site is
encountered, i.e., how to handle the relationship between
the actual parameters and the formal parameters of a
function. For our implementation, we mark every formal
parameter of an actual relevant parameter as relevant

3) The analysis designer uses the getRetFlowFunction
function to indicate how to handle the flow from a return
statement to the variable the return value is assigned to.
For our implementation, we mark the variable where
the value of a relevant return statement is assigned, as
relevant.

4) The analysis designer uses the getCallToRetFlowFunc-
tion the indicate how facts flow around a call site, e.g.
facts that are not modified by the callsite itself but
still have to be propagated. For our implementation, we
accordingly propagate all facts that still are relevant after
the call statement.

Our feature creator compiles the original source code to
an SSA-compliant LLVM-IR including debug information.
Single static assignment(SSA) [11] is a popular attribute
of any intermediate representation of code, that emphasizes
that each variable be assigned only once. The advantage is
that optimizations are simplified and analyzing properties of
variables are facilitated. Phasar provides an SSA representation
of the LLVM IR, which we use to make our analysis more
efficient. We mark the initial locations returned by our corpus
extractor as relevant and initiate the IFDS solver, which
uses the flow function to mark the relevant control and data
dependencies. We augment this with other necessary control
dependencies that are not included by our slicing algorithm
a.k.a unconditional jump instructions. We then use the LLVM
debug information to retrieve the original source code of
all marked instructions to produce the sliced version of the
original source code.

III. EXPERIMENTS

We validated Fex by applying it to extract modules from a
set of real C programs ranging between 5k and 165k lines of
code. We present the setup of the experiment and its results
in the following.

A. Methodology

We queried Github for C-projects. We consider a C-project
any project with a significant portion of the code written in C
(>80% lines of C-code).

We sorted all C-projects returned by the above query by the
number of stars and obtained a list of candidate projects. We
read descriptions from project websites searching candidates
with interesting modules and identified six such projects.
For each project, one of the authors with three years of C
experience manually identified modules; another author with
four years of C experience independently validated them. In

the case of a disagreement, both authors agreed on a solution.
The manually identified modules serve as our ground truth.
For each of them we defined representative search terms that
capture the intention. The projects and the extracted modules
are:

1) parson7: json library, 5439 lines of non-header code.
We identified two modules to extract from parson, one
module concerned with JSON parsing and one module
concerned with JSON serialization.

2) inotify-tools8: Collection of tools to watch for filesystem
events, 4741 lines of non-header code. We defined a
module concerned with handling of internal stats, e.g.,
the number of file access events.

3) fping9: A variant of ping, 2261 lines of non-header code.
For fping we identified a module concerned with han-
dling of internal stats, e.g., response times respectively.

4) silver searcher10: Code search, 5085 lines of non-header
code. The module we extracted is responsible for filter-
ing filenames using regular expressions.

5) memcached11: Key/value store mainly used for caching,
24262 lines of non-header code. For memcached we
defined a stats handling module, similar to fping and
inotify-tools, as well as a module for the handling of
commands that the webserver accepts.

6) redis12: In memory database with a web-api, 165159
lines of non-header code. In the case of redis we defined
a module that is concerned with the handling of the
cluster-manager mode of redis’ commandline interface.

We extracted each ground truth module into its own file and
added corresponding header files. Hence, in some cases we had
to remove or add the static modifier to reduce or increase the
visibility of functions and variables. The manually extracted
modules are "able to be merged", i.e., no conflicts with the
base repository and that the same unit tests (including any
CI checks from the repository) pass, as they did before our
refactoring.

The external validity of our ground truth for Silver searcher
is implicitly ensured, as it was defined equivalent to a code
module on which a transpilation to Rust was performed; there
has been a pull request for the transpiled Rust version of the
module (cf Section I)13.

To facilitate the extraction of code from larger modules, we
introduced the notion of an inter-procedural distance limit to
constraint how far through call edges our tool looks up. We
limited all of our experiments to two call edges, except for
redis where we deactivated the inter procedural analysis.

We applied Fex using the search terms (see Table III) of the
ground truth modules and compared automatically retrieved
modules with the ground truth ones. For comparison, we

7https://github.com/kgabis/parson
8https://github.com/inotify-tools/inotify-tools
9https://github.com/schweikert/fping
10https://github.com/ggreer/the_silver_searcher
11https://github.com/memcached/memcached
12https://github.com/redis/redis
13https://github.com/ggreer/the_silver_searcher/pull/1418

https://github.com/kgabis/parson
https://github.com/inotify-tools/inotify-tools
https://github.com/schweikert/fping
https://github.com/ggreer/the_silver_searcher
https://github.com/memcached/memcached
https://github.com/redis/redis
https://github.com/ggreer/the_silver_searcher/pull/1418

performed a set level difference between the lines from the
tool extracted output and from the ground truth. Intersecting
lines are considered to be correctly extracted; those in the
ground truth but not in the extracted modules are considered
missing lines; those in the extracted modules but not in the
ground truth are considered additional. We do not keep track
of comments and exclude those from our comparison.

We perform manual analysis on each of these differing sets
to gather insights on what sort of manual intervention, or future
support could be necessary. In addition we use grep to generate
a baseline extraction to which we can compare.

Table III summarizes the results.
Each line lists the project, the extracted module, and the

used search term in the first three columns.14 We used a
similarity threshold of 0.85 for all of the extractions. The
column lines shows the overall number of LoCs in the module
and - in parentheses - unique LoCs after excluding empty ones
and comments. The meaning of extracted correctly, missing,
and additional is self explanatory, we display these values for
both Fex and the tool grep. All extractions complete in less
than 3 minutes except for one outlier which took 34 minutes.
Our validation consists in (a) a comparison with grep, (b) an
analysis of lines that are missing from the extracted modules
in comparison to the ground truth, (c) an analysis of lines
that get extracted, but are not part of the ground truth, i.e.
additional lines, and (d) an discussion of the impact of chosen
search terms.

B. Comparison with grep

We compare the results of our slicing approach with the
regular expression search tool grep. To the best of our
knowledge, grep is the only other well known tool, with
which we can apply natural language search for sub-sets of C
code. Both INFOX [23] and CLUSTERCHANGES [12] are not
compareable, since they focus and rely on changes/changesets
e.g. from forks, whereas Fex takes only the current state of a
project/repository as input. For all the projects and modules we
used the exact same search terms, as with Fex. The results can
be seen in Figure III. In order to make the results comparable
we removed all comments from the grep results, since we are
mainly concerned with the executable/compilable source code.

While Fex achieved a recall for extracted module
between 62.67% and 99.37%, the alternative of using
grep as a starting point to identify modules from C-
programs achieved only a recall between 1.4% and
18.3%

C. Analysis of missing lines of code

Figure 7 elaborates on the missing lines for each of the
expected modules relative to the number of lines that were
correctly extracted and on the respective root causes.

First, we highlight that all but one (fping-statistics) ex-
tracted modules are close to the ground truth. The portion

14As it can be seen, the query is almost similar to the expected module.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

Precision

Recall

Fex grep

Parson - Parse

Parson - Serialize

Inotify - Statistics

Inotify - Statistics_NoStat

fping - Statistics

Silver Searcher - Statistics

memcached - Command

memcached - Statistics

redis - Cluster Manager

Fig. 6: Comparison of Precision & Recall for Fex(in blue) and
grep (in black)

Fig. 7: Missing lines relative to properly extracted ones

of the correctly extracted lines (blue) constitutes roughly
75%− 99% in the respective pies. Moreover, a lot of missing
lines are accounted for by preprocessor macros, which have
limited support with Phasar and LLVM as they are optimiza-
tion frameworks that do not intend to preserve behavior during
transformations (orange parts of the pies). The fping-statistics
module is an exception with 38% actually missing lines.

Next, we discuss reasons for actually missing lines (i.e., not
comments or preprocessor directives) and for additional lines.

In fping,
all missing lines (56) result from lines that are semantically

related to the module under investigation, but do not have a
data-dependence on any relevant variables. Consider e.g., line
1 in the snippet in Figure 8. It prints a new line and does
not refer to relevant variables (num_alive, num_hosts),
referred to Lines 2 and 3; thus is not included in the extracted
module, even if it is part of an overall code block that prints
statistics.

TABLE III: Modules and Extraction Results. †: We used different constraints for redis, see III-A

Project Module Search Term Lines Extracted correctly Missing Additional Runtime
Fex grep Fex grep Fex grep

Parson Parse parse 400(301) 273 22 28 289 115 18 9 seconds
Parson Serialize serialize 360(201) 182 23 19 183 38 4 34 minutes
inotify Statistics stats,stat 270(159) 158 28 1 162 30 88 <1 second
inotify Statistics stats 270(159) 110 7 49 183 10 7 <1 second
fping Statistics stats 240(140) 94 2 56 166 430 14 19 seconds

silver searcher File Filter ignore 260(240) 209 37 31 215 248 56 24 seconds
memcached Command command,cmd 3150(1370) 1023 141 347 1481 802 204 13 seconds
memcached Statistics stats 710(485) 365 8 120 512 2267 337 130 seconds

redis† Cluster Manager clustermanager 4490(2689) 2274 492 415 2501 10 39 11 seconds

Lines 5, 6 are not included in the extracted module either,
because the print statement in line 7 is also not included.

For silver searcher, our extraction misses 8 lines in the
filename filter - this is because our tool does not readily include
all lines in multi-line initializers, a feature that merely

needs a bit more engineering. For illustration, consider
Figure 10, where lines 2-6 are not included in the initialization.

For memcached-command, we miss 347 lines, which are
in a way or another due to

our limited macro handling.
The root cause for the 120 missing lines in the memcached-

stats module is the same, since 40 lines contain macro
invocations.

For redis-cluster manager, we miss 415 lines.
Of those, 50 are declarations of functions where we only

extract the definitions, 26 are macro usages, and the rest are
due

to the wrong handling of multiline lines and struct/array
declarations.

Overall, most missing lines are due to a few limitations
of the current prototype: (a) handling of function/struct
and array declarations and (b) handling of simple pre-
processor directives, e.g. #include With the exception
of the fping extraction, all of the other modules are
affected by this. All of these categories are solvable
with engineering effort and should not prevent the
principal applicability of Fex.

D. Analysis of additional lines of code

The extractor produces 140 additional lines for the parse
module of Parson, out of which 103 pertain to the in-
clusion of methods that represent the API for JSON
object modification, e.g., json_value_init_object,
json_object_resize, etc.

We did not include these methods in our ground truth since
to our opinion they represent a separate module. However,
during the parsing there is extensive use of functions that
create and modify JSON objects and thus our extraction
process includes these methods.

With code-bases containing multiple inter-dependent
modules (for parsing and modification of JSON ob-
jects), the domain expert could apply Fex repeatedly
on the extracted broader parsing module to arrive at
further splits, one for modification of the objects in
our example.

The extracted statistics module of fping has 430 additional
lines compared to the ground truth, 380 of which result from
the fact that the stat module is controlled by a flag called
stats_flag. Since the search term stats occurs in this flag,
our tool marks several occurrences of this flag as relevant code,
e.g., Figure 9 lines 2,5 and 6. The largest chunk of erroneously
extracted lines results from the snippet in lines 1-3 of Figure
9. Since these lines belong to the part of the code that does
the main commandline parsing, Fex transitively includes most
of this commandline parsing and its dependencies.

In the redis-cluster manager module all 10 additional
lines stem from the command line parsing that activates the
extracted module. A large source of additional lines in our
memcached stats module extraction stems from the way stats
are collected throughout the project. Figure 11 shows such an
example. Our stats module

writes the collected stats directly into one of two global
structs They are called stats or stats_state respectively. This
leads to a large number of relevant starting locations that do
not represent our module, but rather usages of the module.
This leads to the inclusion of a lot of lines that we do not
consider relevant for the module.

In scenarios where the code is organized with multiple
variables with similar names to the search terms, a
domain expert with a little bit of knowledge about
the code could rename one of the occurrences such as
stats_flag to break the chain and obtain a more
representative module.

E. Impact of the search terms

Our approach relies on carefully selected search terms -
thus, we opted for some empirical observations about the
impact that the term selection may have on the resulting code.
To this end, we experimented with two different sets of search
terms in the case of inotify. They are:

1 fprintf(stderr,"\n");
2 fprintf(stderr," %7d targets\n", num_hosts);
3 fprintf(stderr," %7d alive\n", num_alive);
4

5 update_current_time();
6 curr_tm = localtime((time_t*)¤t_time.tv_sec);
7 fprintf(stderr, "[%2.2d:%2.2d:%2.2d]\n", curr_tm->

tm_hour,curr_tm->tm_min, curr_tm->tm_sec);

Fig. 8: Example Code from fping, that shows constructs that
lead to non extracted code

1 ...
2 case ’s’:
3 stats_flag = 1;
4 break;
5 // Other commandline cases
6 ...
7 if (stats_flag)
8 print_global_stats();

Fig. 9: Additional lines in the stats module of fping

1) (stats, stat)
2) (stats)
In the context of files in a system, there are two concepts

that may be referred to by the term stat: The singular of the
word "stats" and the linux function stat that returns file
information. Removing the singular version (stat) reduced the
number of additional lines by 20 removing all calls to the
linux function stat. But, it also increased the missing lines by
48, since there is a function called stat_it which is relevant
for our module inside the ground truth.

In summary, the selection of the search term impacts the
results. This was also hinted at when we discussed additional
lines. But, in a sense this is a feature and not a bug.
Our tool is modular enough to accommodate for input from
more sophisticated forms of search terms, like declarative
queries or more sophisticated expressions as proposed in
literature [13][14][15].

The goal of Fex is not to replace the human in the
extraction process, rather to serve as a prequel step
to do much of the heavy lifting of identifying pieces
of code potentially representing a feature. It provides
the engineers with means to explore features in code.
Project code can at the end be cut into modules by
different criteria.

IV. THREATS TO VALIDITY AND FUTURE WORK

In this section, we discuss some threats to validity and
planned future work to address those concerns.

a) Scope of informational retrieval: Currently, we con-
sider each function to be a document, which could be prob-
lematic in poorly modularized code-bases with large functions
with many lines of code. This risk can potentially be mitigated
by choosing finer-grained definitions of documents. Another
aspect of informational retrieval that could be improved is

1 const char *ignore_pattern_files[] = {
2 ".ignore",
3 ".gitignore",
4 ".git/info/exclude",
5 ".hgignore",
6 NULL
7 };

Fig. 10: Array Declaration in Silver Searcher

1 STATS_LOCK();
2 stats_state.hash_power_level = hashpower;
3 stats_state.hash_bytes = hashsize(hashpower) * sizeof(

void *);
4 STATS_UNLOCK();

Fig. 11: Usage of stats struct in memcached

to apply other indexing techniques than LSI. Such a future
experiment could also serve to help us understand if additional
lines resulting out of similarly sounding variables can be
avoided, if more fine-grained weighting schemes to terms are
considered.

b) Choice of ground truth: Since our ground truth mod-
ules were defined by one of the authors, there could be an
element of bias involved in the selection. An ideal scenario
would have been to conduct a thorough survey using domain
experts, which is left for future work. However, we have tried
to mitigate this issue by having another author oversee the
defined ground truths and submitting pull requests to the main-
tainers. The status of the pull requests as of writing this paper
is as follows. Inotify-tools accepted the request with positive
feedback.15 Parson closed the request without explanation.16

This is presumably because our retrieved modules constitute
a new file each, while they explicitly want the code to be
within two files; this is stated in their "About page"17 as
"Lightweight (only 2 files)". The rest are still not
processed as of writing this paper.

c) Generality: Since our experiments required a lot of
manual effort, an evaluation with a representative set of large
projects was infeasible. We have attempted to mitigate this
concern by conducting a partial analysis on two large code-
bases. In addition we want to investigate the effects of the
introduced inter-procedural distance limit further.

d) C preprocessor macros: At the moment Fex does
not support the handling preprocessor macros, which leads
to imprecision in features that use those macros. Although
currently, our missing line numbers are not vastly affected by
this, we are aware that preprocessor macros support is vital to
our approach and We plan to add support for the handling of
macros to Fex, by extending SPLLIFT [16].

V. RELATED WORK

To the best of our knowledge our work is the first to combine
IR and slicing to extract features based on natural language

15https://github.com/inotify-tools/inotify-tools/pull/129
16https://github.com/kgabis/parson/pull/152
17https://github.com/kgabis/parson

https://github.com/inotify-tools/inotify-tools/pull/129
https://github.com/kgabis/parson/pull/152
https://github.com/kgabis/parson

input.

A. Identifying and extracting features

The desire to identifying features from legacy code is noth-
ing new. CodeCarbonCopy [17] allows developers to identify
functionality to be transferred into a another part of the project.
Automated Software Transplantation [18] is another technique
that identifies functionalities from a host based on an input
code location. Although both these approaches perform code
analysis to identify dependencies of the functionality, the input
is a code location, which would expect the user of the system
to be well-versed with the code. In contrast, our approach
allows developers to begin with a term in natural language and
only expects the user to fix potential missing and additional
lines later.

Another perspective to the same problem is to look at
software as a product line and manage the individual features.
Approaches have been proposed to extract product lines from
Software. ArgoUML-SPL [19] is an open source tool that
extracts Software product lines (SPL) from UML diagrams.
This may be useful for identifying potential features in a large
application, but in order to manifest the SPL in code, one
would have to use an approach such as ours to aid with extrac-
tion of these features. Another approach that helps to organize
requirements as product line requirements is CoreReq [20].

The above mentioned approaches expect that developers to
think about feature-based software development prior to the
coding phase, but we have established in Section I to be not
always the case in reality.

Perhaps the closest to our work from the perspective of
extraction of modules are the ones that attempt to reverse
engineer SPL from existing software. But4Reuse [21] is
a generic approach to extract software product lines from
artifacts ranging from images to source code. Although in
theory their approach should work with problems such as ours
especially since they have adapters for C and Java programs,
source level feature extraction requires careful implementation
of adapters, and these adapters cannot capture the specific
semantics of a particular software, but rather are written using
language-specific hints such as preprocessors. Shantnawi et
al. [22] recover SPL from already existing product variants in
object-oriented code, which also relies on language-specific
features to separate variants in code.

B. Managing features

Another school of thought to handling features in software
is to manage them without modifying the code. Zhou et al. [23]
have proposed a technique to use opportunities present in forks
of branches in repository to identify features. Their approach
also uses information retrieval to label commits into clusters,
which provides technical leads with a visual overview of in-
development features for a project. This approach and ours
complement each other.

The C-preprocessor is often used
to identify features in a code. Peopl [5] allows

to identify features, visualize and edit them. Typechef [24]
relies on existing variant information in preprocessor pragmas
to check for type errors in variants. Malaqueis et al. [3] har-
ness the information present in preprocessor based C-code to
provide visualization of existing variants. Leviathan [25] and
the approach by Stănciulescu et al. [26] provide projections
for single configurations and thus enable the evolution of only
one configuration. CIDE [27], [28] provides the basis for the
analysis of software product line features, for Java.

All of these approaches are helpful for abstracting, visualiz-
ing and managing existing features in source, but do not help
when users want to have a starting point to even identify, where
these features are inside the code-base, especially without
necessarily relying on preprocessor directives.

Copy-paste-redeemed [29] abstracts clones into modules
from C source code. Linked Editing [30] does not abstract
modules, but provides an opportunity to link code clones and
edit them together. These approaches are complementary to
ours.

C. Program slicing

Weiser [31] introduced a framework and a process to
extract program slices back in 1981, applications of which are
endless [32] including ours. The second phase of our approach
draws a lot of inspiration from the techniques proposed there.
Infoslicer [33] is one such closely related work that proposes
an algorithm to extract inter-procedural program slices. Since
we use the SSA form of the LLVM’s IR, it is envisionable that
we could employ state of the art pointer analysis provided by
SVF [34]. srcSlice [35] is a highly scalable program slicing
technique that is able to gather program slices for every
variable in a large code-base such as the linux kernel within
15 minutes. Although such a technique would be useless for
people who want to identify codes linked to a natural language
term, such techniques can be plugged into our program slicing
part for larger examples to avoid resource-overhead.

VI. CONCLUSION

Large software today are a collection of multiple function-
alities and organizing them as individual functionalities would
greatly benefit maintenance costs. Unfortunately, because
many large scale software are not built with this intention prior
to development phase, individual features or functionalities are
largely scattered throughout the code-base. Current techniques
to identify and extract such inter-dependent code bases rely on
program slicing techniques that require code locations as input,
something a non-expert in the code-base may not possess. To
this end, we propose a novel approach that takes a natural
language term as input and combines information retrieval and
static analysis techniques to extract modules representing these
terms. We built a prototype tool to implement this approach,
evaluate it on five fairly large open source code bases and
report insights based on this experiment. Our experience with
the tool reveals that even though such a subjective module
extraction cannot be fully automated, it can go a long way in
reducing the manual effort required for such an endeavour.

ACKNOWLEDGEMENTS

This work was funded by the Hessian LOEWE initiative
within the Software-Factory 4.0 project. This work has been
co-funded by the Crossing SFB 119 and through the support
of the National Research Center for Applied Cybersecurity
ATHENE.

REFERENCES

[1] P. C. Clements and L. Northrop, “Software product lines: Practices and
patterns,” ser. SEI Series in Software Engineering. Addison-Wesley,
August 2001.

[2] T. Berger, D. Lettner, J. Rubin, P. Grünbacher, A. Silva, M. Becker,
M. Chechik, and K. Czarnecki, “What is a feature? a qualitative study
of features in industrial software product lines,” in Proceedings of the
19th International Conference on Software Product Line, ser. SPLC ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p.
16–25. [Online]. Available: https://doi.org/10.1145/2791060.2791108

[3] R. Malaquias, M. Ribeiro, R. Bonifácio, E. Monteiro, F. Medeiros,
A. Garcia, and R. Gheyi, “The discipline of preprocessor-based an-
notations - does ifdef tag n’t endif matter,” in 2017 IEEE/ACM 25th
International Conference on Program Comprehension (ICPC), 2017, pp.
297–307.

[4] D. Le, E. Walkingshaw, and M. Erwig, “ifdef confirmed harmful:
Promoting understandable software variation,” in 2011 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC), 2011,
pp. 143–150.

[5] B. Behringer, J. Palz, and T. Berger, “Peopl: Projectional editing of
product lines,” in 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE), 2017, pp. 563–574.

[6] Y. Zhao, “Chapter 10 - text mining,” in R and Data Mining, Y. Zhao,
Ed. Academic Press, 2013, pp. 105 – 122. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/B9780123969637000106

[7] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman,
“Indexing by latent semantic analysis.” 1990, pp. 391–407.

[8] L. N. Trefethen and D. Bau, “Numerical linear algebra.” SIAM, 1997.
[9] P. D. Schubert, B. Hermann, and E. Bodden, “Phasar: An inter-

procedural static analysis framework for c/c++,” in Tools and Algorithms
for the Construction and Analysis of Systems, T. Vojnar and L. Zhang,
Eds. Cham: Springer International Publishing, 2019, pp. 393–410.

[10] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural
dataflow analysis via graph reachability,” in Proceedings of the 22nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’95. New York, NY, USA: Association
for Computing Machinery, 1995, p. 49–61. [Online]. Available:
https://doi.org/10.1145/199448.199462

[11] M. Braun, S. Buchwald, S. Hack, R. Leißa, C. Mallon, and A. Zwinkau,
“Simple and efficient construction of static single assignment form,” in
Compiler Construction, R. Jhala and K. De Bosschere, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 102–122.

[12] M. Barnett, C. Bird, J. Brunet, and S. K. Lahiri, “Helping developers
help themselves: Automatic decomposition of code review changesets,”
in 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 1, 2015, pp. 134–144.

[13] Z. Shang, E. Zgraggen, B. Buratti, F. Kossmann, P. Eichmann,
Y. Chung, C. Binnig, E. Upfal, and T. Kraska, “Democratizing
data science through interactive curation of ml pipelines,” in
Proceedings of the 2019 International Conference on Management
of Data, ser. SIGMOD ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 1171–1188. [Online]. Available:
https://doi.org/10.1145/3299869.3319863

[14] Z. Zhao, L. De Stefani, E. Zgraggen, C. Binnig, E. Upfal, and
T. Kraska, “Controlling false discoveries during interactive data
exploration,” in Proceedings of the 2017 ACM International Conference
on Management of Data, ser. SIGMOD ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 527–540. [Online].
Available: https://doi.org/10.1145/3035918.3064019

[15] C. Reichenbach, Y. Smaragdakis, and N. Immerman, “Pql: A purely-
declarative java extension for parallel programming,” in Proceedings
of the 26th European Conference on Object-Oriented Programming,
ser. ECOOP’12. Berlin, Heidelberg: Springer-Verlag, 2012, p. 53–78.
[Online]. Available: https://doi.org/10.1007/978-3-642-31057-7_4

[16] E. Bodden, T. Tolêdo, M. Ribeiro, C. Brabrand, P. Borba, and M. Mezini,
“Spl^{lift}: Statically analyzing software product lines in
minutes instead of years,” SIGPLAN Not., vol. 48, no. 6, p. 355–364,
Jun. 2013. [Online]. Available: https://doi.org/10.1145/2499370.2491976

[17] S. Sidiroglou-Douskos, E. Lahtinen, A. Eden, F. Long, and M. Rinard,
“Codecarboncopy,” in Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ser. ESEC/FSE 2017. New
York, NY, USA: Association for Computing Machinery, 2017, p.
95–105. [Online]. Available: https://doi.org/10.1145/3106237.3106269

[18] E. T. Barr, M. Harman, Y. Jia, A. Marginean, and J. Petke, “Automated
software transplantation,” in Proceedings of the 2015 International
Symposium on Software Testing and Analysis, ser. ISSTA 2015. New
York, NY, USA: Association for Computing Machinery, 2015, p.
257–269. [Online]. Available: https://doi.org/10.1145/2771783.2771796

[19] M. V. Couto, M. T. Valente, and E. Figueiredo, “Extracting software
product lines: A case study using conditional compilation,” in 2011
15th European Conference on Software Maintenance and Reengineering,
2011, pp. 191–200.

[20] I. Reinhartz-Berger and M. Kemelman, “Extracting core requirements
for software product lines,” Requirements Engineering, vol. 25, no. 1,
pp. 47–65, Mar 2020. [Online]. Available: https://doi.org/10.1007/
s00766-018-0307-0

[21] J. Martinez, T. Ziadi, T. F. Bissyandé, J. Klein, and Y. Le Traon,
“Bottom-up adoption of software product lines: A generic and extensible
approach,” in Proceedings of the 19th International Conference on
Software Product Line, ser. SPLC ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 101–110. [Online].
Available: https://doi.org/10.1145/2791060.2791086

[22] A. Shatnawi, A.-D. Seriai, and H. Sahraoui, “Recovering software
product line architecture of a family of object-oriented product
variants,” Journal of Systems and Software, vol. 131, pp. 325 – 346,
2017. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0164121216301327

[23] S. Zhou, S. Stănciulescu, O. Leßenich, Y. Xiong, A. Wąsowski, and
C. Kästner, “Identifying features in forks,” in Proceedings of the
40th International Conference on Software Engineering, ser. ICSE ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
105–116. [Online]. Available: https://doi.org/10.1145/3180155.3180205

[24] A. Kenner, C. Kästner, S. Haase, and T. Leich, “Typechef: Toward type
checking ifdef variability in c,” in Proceedings of the 2nd International
Workshop on Feature-Oriented Software Development, ser. FOSD ’10.
New York, NY, USA: Association for Computing Machinery, 2010, p.
25–32. [Online]. Available: https://doi.org/10.1145/1868688.1868693

[25] W. Hofer, C. Elsner, F. Blendinger, W. Schröder-Preikschat, and
D. Lohmann, “Toolchain-independent variant management with the
leviathan filesystem,” in Proceedings of the 2nd International Workshop
on Feature-Oriented Software Development, ser. FOSD ’10. New
York, NY, USA: Association for Computing Machinery, 2010, p.
18–24. [Online]. Available: https://doi.org/10.1145/1868688.1868692

[26] S. Stănciulescu, T. Berger, E. Walkingshaw, and A. Wąsowski, “Con-
cepts, operations, and feasibility of a projection-based variation control
system,” in 2016 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME), 2016, pp. 323–333.

[27] C. Kästner, S. Apel, T. Thüm, and G. Saake, “Type checking annotation-
based product lines,” ACM Trans. Softw. Eng. Methodol., vol. 21, no. 3,
Jul. 2012. [Online]. Available: https://doi.org/10.1145/2211616.2211617

[28] J. Feigenspan, C. Kästner, S. Apel, J. Liebig, M. Schulze, R. Dachselt,
M. Papendieck, T. Leich, and G. Saake, “Do background colors im-
prove program comprehension in the# ifdef hell?” Empirical Software
Engineering, vol. 18, no. 4, pp. 699–745, 2013.

[29] K. Narasimhan and C. Reichenbach, “Copy and paste redeemed (t),” in
2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2015, pp. 630–640.

[30] M. Toomim, A. Begel, and S. L. Graham, “Managing duplicated code
with linked editing,” in 2004 IEEE Symposium on Visual Languages -
Human Centric Computing, 2004, pp. 173–180.

[31] M. Weiser, “Program slicing,” in Proceedings of the 5th International
Conference on Software Engineering, ser. ICSE ’81. IEEE Press, 1981,
p. 439–449.

[32] L. Du and P. Cai, “A survey on applications of program slicing,” in
Soft Computing in Information Communication Technology, J. Luo, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 215–220.

[33] Y. Sun, Y. Zhang, and J. Qian, “Program slicing method of llvm ir
based on information-flow analysis,” in 2019 International Conference

https://doi.org/10.1145/2791060.2791108
http://www.sciencedirect.com/science/article/pii/B9780123969637000106
http://www.sciencedirect.com/science/article/pii/B9780123969637000106
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/3299869.3319863
https://doi.org/10.1145/3035918.3064019
https://doi.org/10.1007/978-3-642-31057-7_4
https://doi.org/10.1145/2499370.2491976
https://doi.org/10.1145/3106237.3106269
https://doi.org/10.1145/2771783.2771796
https://doi.org/10.1007/s00766-018-0307-0
https://doi.org/10.1007/s00766-018-0307-0
https://doi.org/10.1145/2791060.2791086
http://www.sciencedirect.com/science/article/pii/S0164121216301327
http://www.sciencedirect.com/science/article/pii/S0164121216301327
https://doi.org/10.1145/3180155.3180205
https://doi.org/10.1145/1868688.1868693
https://doi.org/10.1145/1868688.1868692
https://doi.org/10.1145/2211616.2211617

on Cyber-Enabled Distributed Computing and Knowledge Discovery
(CyberC), 2019, pp. 383–390.

[34] Y. Sui and J. Xue, “Svf: Interprocedural static value-flow analysis in
llvm,” in Proceedings of the 25th International Conference on Compiler
Construction, ser. CC 2016. New York, NY, USA: Association
for Computing Machinery, 2016, p. 265–266. [Online]. Available:
https://doi.org/10.1145/2892208.2892235

[35] C. D. Newman, T. Sage, M. L. Collard, H. W. Alomari, and J. I. Maletic,
“srcslice: A tool for efficient static forward slicing,” in 2016 IEEE/ACM
38th International Conference on Software Engineering Companion
(ICSE-C), 2016, pp. 621–624.

https://doi.org/10.1145/2892208.2892235

	I Introduction
	II Approach
	II-A Creating the corpus
	II-B Extracting a corpus slice
	II-C Extracting the feature

	III Experiments
	III-A Methodology
	III-B Comparison with grep
	III-C Analysis of missing lines of code
	III-D Analysis of additional lines of code
	III-E Impact of the search terms

	IV Threats to validity and future work
	V Related Work
	V-A Identifying and extracting features
	V-B Managing features
	V-C Program slicing

	VI Conclusion
	Acknowledgment
	References

