
Pr
ep

rin
t

Empirical Comparison of Black-box Test Case
Generation Tools for RESTful APIs

Davide Corradini∗, Amedeo Zampieri†, Michele Pasqua‡ and Mariano Ceccato§
Department of Computer Science

University of Verona – Verona, Italy
Email: ∗davide.corradini@univr.it, †amedeo.zampieri@studenti.univr.it, ‡michele.pasqua@univr.it, §mariano.ceccato@univr.it

Paper accepted for publication in the proceedings of:
21st IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM 2021)

The present document is the preliminary version of the work prior to peer-review. The final version can be found on the publisher website.

Abstract

In literature, we can find research tools to automatically generate test cases for RESTful APIs, addressing the specificity of
this particular programming domain. However, no direct comparison of these tools is available to guide developers in deciding
which tool best fits their REST API project.

In this paper, we present the results of an empirical comparison of automated black-box test case generation approaches for
REST APIs. We surveyed the available black-box testing tools that have been proposed in recent literature, finding four usable
prototypes: RestTestGen, RESTler, bBOXRT and RESTest. We used these tools to generate test cases for 14 real-world REST
services. Then, testing results have been analyzed and compared in terms of robustness (i.e., success rate) and test coverage.

Among the considered tools, RESTler appears to be the most solid, able to successfully test all case studies (the other tools
experienced crashes). Conversely, test cases generated by RestTestGen scored the highest coverage, suggesting that its testing
strategy is the most effective in testing REST APIs.

Index Terms

REST API, Test coverage, Black-box testing, Automated software testing, Experimental comparison

I. INTRODUCTION

RESTful APIs (or REST APIs for short) are the reference architectural style to design and develop Web APIs, using the
REpresentational State Transfer paradigm. They are largely adopted to integrate and interoperate information systems, especially
when connected to the cloud [1].

Despite testing being a cornerstone practice in software development to reveal implementation defects, manually writing all
test cases for a REST API can be tedious, time-consuming and expensive. Hence, automated test case generation emerged as
a way to ease and support developers in testing REST APIs.

Automated testing strategies have been proposed and implemented, based on different test case generation algorithms and
conceived with different designs to serve different testing purposes. Test interactions can be composed, for instance, based on
data dependencies among operations, or applying heuristics to elaborate promising request sequences. Moreover, several input
data generation techniques have been proposed: either based on documented examples, reusing previously observed values,
choosing values from dictionaries, applying mutations, or exploiting constraints among input parameters.

Despite several of them being available, to the best of our knowledge, no guideline is available to help developers in making
an informed decision on which tool is more suitable to automatically test a REST API. Indeed, the different testing algorithms
implemented by the tools have been designed with different fault model in mind, to expose possibly different faults (e.g., data
integrity Vs security issues). So, different tools might come with different and incompatible oracles to reveal defects. Thus, a
direct comparison on bug detection might be unfair.

Considering that automated REST API testing tools typically adopt a black-box approach and base the test case generation
process on API interface specifications, an alternative and more fair comparison perspective could be with respect to the
interface itself, i.e., what extent of the API interface is exercised when running the automatically generated test cases.

This paper defines and adopts a formal framework to empirically compare tools meant to automatically generate test cases
for REST APIs. The framework (fully available in our replication package [2]) contains 14 open source REST API case studies,
available as Docker images to facilitate deployment and replication.

Four state-of-the-art testing tools have been identified by surveying the relevant literature: RestTestGen, RESTler, bBOXRT
and RESTest. These tools have been deployed to test the REST APIs case studies under the same conditions, i.e., each tool

ar
X

iv
:2

10
8.

08
19

6v
1 

 [
cs

.S
E

] 
 1

8 
A

ug
 2

02
1



Pr
ep

rin
t

was run with same time budget and the database of each case study was reset before starting each testing session. Test cases
are compared using eight coverage metrics adopting a black-box viewpoint (proposed by Martin-Lopez et al. [3]).

Experimental results underline that available tools come at different levels of reliability, causing less mature implementations
(e.g., research prototypes) to crash on some case studies. Indeed, RESTler shown to be the most solid tool, since it is the
only one applicable to all the case studies. Conversely, RestTestGen and bBOXRT could work, respectively, on 14 and 8 case
studies. RESTest, as a research prototype, could be successfully applied only to 2 case studies.

Moreover, results point out that different testing strategies allow maximizing different coverage metrics. In fact, while
bBOXRT achieved the highest coverage of parameter values, RestTestGen achieved the highest coverage on almost all the
other metrics, including coverage of paths, parameters, request/response content-types and status codes.

The rest of the paper is organized as follows. Section II covers the background on REST APIs, while Section III describes
the four state-of-the-art tools for testing REST APIs we employed. In Section IV, we describe the theoretical measurement
framework that we adopted to assess the coverage of the REST APIs testing tools. In Section V, we describe the experimental
setting used to compare the testing tools taken into account. In Section VI, we have the results of the comparison. Finally,
after discussing related work in Section VII, Section VIII closes the paper.

II. BACKGROUND

A. RESTful APIs

A RESTful API (or REST API for short) is an API that respects the REST (REpresentational State Transfer) architectural
style [4]. REST APIs provide a uniform interface to create, read, update and delete (CRUD) a resource. A resource is generally
identified by an HTTP URI, and CRUD operations are usually mapped to the HTTP methods POST, GET, PUT and DELETE.

For example, consider a REST API PetStore managing a collection of pets. A possible HTTP URI pointing to the resource
could be /pets. In this case, the HTTP operation GET pets is used to retrieve the list of pets and POST /pets could be
used to add a new pet to the collection.

The API may accept input parameters to specify additional information for executing operations, such as the identifier of
the object to retrieve (e.g., /pets/{petId}) or a structured object to be added to the collection using the POST method.

B. The OpenAPI Specification

OpenAPI1 defines a standard to document REST APIs. According to OpenAPI, an API service is described using a structured
file (either YAML or JSON) that specifies how to reach the API using a URI, which authentication schema is adopted and
the details of all the operations available in the API: the input parameters (and their schema) to be used in requests and the
schema of responses.

After an initial header that specifies versions, licenses and the base URL of the API, an OpenAPI specification contains an
array of paths, namely the list of URL paths available in the API. In the PetStore example we have two paths: /pets and
/pets/{petId}. Each path supports one or more HTTP methods. Operations in the API are pairs of paths and methods,
and usually are identified by an operation ID. For instance, the method GET in /pets (getPets) is used to retrieve the list
of all the pets, while the method GET in /pets/{petId} refers to the operation getPetById, meant to retrieve the Pet
object that matches a specific petId. Path parameters are specified directly in the path URL using curly braces, such as the
petId input parameter in the previous example.

Request input and output are associated with a schema that specifies their type and, optionally, a set of constraints on
values (e.g., a min or max value for numeric parameters). Types can be atomic (e.g., integers and strings) or structured (i.e.,
compound objects). For instance, the parameter petId of /pets/{petId} could be of type string, while the response to
the corresponding GET operation is expected to be in JSON, according to the Pet schema (also defined in the specification).
A specification not only describes the response format in nominal cases (e.g., a response status code 200), but it also describes
the format expected when errors occur.

III. OBJECT TOOLS

In the last years, the research community proposed several approaches to automatic generation of test cases for REST APIs.
We surveyed the literature, selecting the available state-of-the-art tools. In particular, we carefully checked the works published
in the top testing and software engineering conferences2 (together with their satellite workshops) and journals3 appeared in the
last 4 years. Furthermore, we also used publications search engines (like IEEE Xplore4) with the following keywords: “REST”,
“RESTful API” and “black-box testing”. In our search, we looked for approaches complying with the following requirements:

1https://www.openapis.org/
2ICSE, ESEC/FSE, CCS, ISSTA, ICST, AST, EDOC, ICICT and ICCSDET.
3TOSEM, TSE, EMSE and TOSC.
4https://ieeexplore.ieee.org

https://www.openapis.org/
https://ieeexplore.ieee.org


Pr
ep

rin
t

TABLE I
OBJECT TOOLS STRATEGIES.

Tool Operations sequence(s) Input values

RestTestGen [5] Data dependencies

Random
Documented examples
Observed values
Dictionary
Mutations (3)

RESTler [6]
Data dependencies
Full enumeration of sequences

Observed values
Dictionary

bBOXRT [7] (not reported)
Random
Mutations (57)

RESTest [8] (not reported)

Random∗

Documented examples∗

Dictionary∗

Mutations∗ (4)
∗ exploiting inter-parameter dependencies

(i) approaches operating with a black-box perspective; (ii) approaches implemented into a software tool; (iii) approaches with
an open-source implementation or with publicly available binaries.

Eventually, we obtained our final set consisting of four tools: RestTestGen, RESTler, bBOXRT, and RESTest. All the selected
tools have a common characteristic: they use the information documented inside an OpenAPI specification to build a testing
strategy according to their own algorithm. Approaches differ in terms of operation sequence(s) assembly and input values
generation. Table I summarizes the strategies of the four object tools.

In the following, a brief overview of the peculiarities of the selected tools.

A. RestTestGen

RestTestGen is an automated black-box test case generation tool for REST APIs proposed by Viglianisi et. al [5]. It is
Java-based and the executable JARs are available on GitHub5.

The strategy of RestTestGen is based on the Operation Dependency Graph (ODG), a graph which encodes data dependencies
among the operations available in the API. For instance, the operation GET /pets/{petId} (from the example in Section II)
depends on the operation GET /pets, that returns a list of valid pet IDs, because the output of the latter can be used as the
input for the former. Dependencies in the ODG are inferred from the OpenAPI specification by matching parameters names and
schemas. The ODG is used to optimize the operations testing order, prioritizing operations with satisfied data dependencies. It
is updated at runtime according to the results of executed tests.

RestTestGen is composed by two modules, the Nominal Tester and the Error Tester, that are in charge of generating nominal
and error test cases, respectively.

Nominal test cases are meant to test nominal interactions with the API: they are generated to comply with the interface
documented in the OpenAPI specification. Previously observed values, if available, are re-used as input values. Alternatively,
RestTestGen uses a dictionary, examples or random values. An oracle, based on the status code of responses, evaluates the
outcome of each test case execution: 2XX and 4XX status codes are classified as successful executions (indeed, those status
codes represent correct executions or graceful errors in the HTTP protocol); 5XX status codes are instead classified as failures
(server errors in the HTTP protocol).

Error test cases are generated by mutating successful nominal test cases. RestTestGen applies three different mutations:
missing required, by removing parameters that are documented as mandatory; wrong input type, by modifying types of input
parameters; and constraint violation, by setting unsupported parameter values according to the documented constraints. An
oracle, based on the status code of responses, evaluates test cases executions: 4XX status codes are classified as successful,
meaning that the server correctly identified the malformed input; 2XX status codes are classified as failures, because the server
accepted a malformed input as valid; and 5XX status codes are once again classified as failures, meaning that the malformed
input caused a server-side error.

Both nominal and error test cases are also evaluated by a further oracle, which validates the response schema documented
in the OpenAPI specification against the one obtained in the test cases responses. A test case passes if the response matches
its schema definition.

5https://github.com/resttestgenicst2020/submission icst2020

https://github.com/resttestgenicst2020/submission_icst2020


Pr
ep

rin
t

B. RESTler

RESTler is a stateful REST API fuzzer presented by Atlidakis et al. [6] at Microsoft Research, written in Python and
available on GitHub6.

RESTler generates stateful sequences of requests by inferring producer-consumer relations between request types described
in the specification. It also dynamically analyzes responses to intelligently build request sequences and avoiding sequences
leading to errors.

RESTler relies on different test generation algorithms, and each one implements a different test space search logic. The BFS
algorithm appends every possible compatible request to every existing sequence, namely performing an exhaustive search. In
the BFS-Fast algorithm, every request is appended to at most one existing sequence. This results in a smaller set than the full
BFS approach, but it does not guarantee that every possible request sequence is generated. BFS-Cheap [9] implements the dual
trade-off of BFS-Fast: all the sequences are generated but only at most two sets of parameters values (one valid, one invalid)
are allowed for each request. Finally, the Random-walk algorithm randomly selects a valid request sequence to which append
a random request.

To fuzz input values, RESTler relies on a user-configurable dictionary. The user can manually extend this dictionary with
custom values that better fit the service, or that are known to be more effective in the testing phase. When RESTler detects
data dependencies among operations, also previously observed values are used as parameters. For error detection, RESTler
uses HTTP status codes: if a status belonging to the 5XX class is detected, then the test sequence could have discovered a
bug, so it is logged for further analysis.

C. bBOXRT

bBOXRT is a black-box robustness testing tool for RESTful APIs proposed by Laranjeiro et al. [7], written in Java and
available on the authors’ website7. The aim of bBOXRT is to assess the robustness of REST APIs observing the behavior of
services under test when providing invalid requests.

The peculiarity of bBOXRT is the large number of supported mutations. The provided fault model consists of 57 different
mutations applicable to input parameters of various types (numbers, strings, booleans, dates, times, arrays, etc.).

The bBOXRT execution starts with the analysis of the OpenAPI specification to collect information about the service under
test. Subsequently, the Workload generator component starts generating and executing valid requests with the aim to understand
the behavior of the service under test in absence of faulty workloads. Parameter values are randomly generated to comply with
the specification. Requests triggering a 2XX response are stored for future use, while interactions that triggered 4XX and 5XX
status codes are either retried with different values or discarded. Authors do not explain the strategy they adopted to order
operations.

The next component, the Faultload generator, creates faulty requests by mutating successful requests. It applies mutation
rules to parameters, one at a time. Faulty interactions are stored for further analysis by test engineers. According to the authors,
bBOXRT does not fully automate the analysis of the test cases outcome, so manual intervention is still required.

D. RESTest

RESTest is an automated black-box testing tool for RESTful APIs proposed by Martin-Lopez et al. [8]. It is written in Java
and the source code is available on a GitHub repository8.

The peculiarity of this tool is the inter-parameter dependencies support. Some REST APIs, in fact, impose constraints that
restrict not only input values, but also the way in which input values can be combined to fill valid requests. For example, the
YouTube API search operation requires the publishedAfter parameter to be greater or equal to publishedBefore.
Currently, the OpenAPI grammar does not support a formal documentation of such dependencies, so Martin-Lopez et al. [10],
[11] proposed a domain-specific language, called IDL (inter-parameter dependency language), to this aim. RESTest uses the
documented dependencies to code a constraint satisfaction problem and deploys a reasoner to generate test cases accordingly.
Since, at the moment, OpenAPI specifications do not support inter-parameter dependencies, no REST API comes with a
dependencies-enriched specification. For this reason, the IDL module of RESTest was not active in our experiment.

RESTest can generate both nominal and faulty test cases using two strategies: (i) random testing (RT), by generating random
input values; and (ii) constraint-based testing (CBT), by exploiting constraints of inter-parameter dependencies. Test cases are
generated in both settings from a test model derived from the OpenAPI specification. Nominal test cases aim to stress the
service with valid inputs to check its behavior against the specification. Faulty test cases derive from nominal test cases by
applying mutations (excluding mandatory parameters, using out-of-range values, and violating the JSON schema). Additionally,
RESTest can generate faulty test cases by violating inter-parameter dependencies. Authors do not explain the strategy adopted
to sort operations during testing.

6https://github.com/microsoft/restler-fuzzer (cloned on Dec. 27th, 2020).
7https://eden.dei.uc.pt/∼cnl/papers/2020-access.zip
8https://github.com/isa-group/RESTest/ (cloned on Dec. 27th, 2020).

https://github.com/microsoft/restler-fuzzer
https://eden.dei.uc.pt/~cnl/papers/2020-access.zip
https://github.com/isa-group/RESTest/


Pr
ep

rin
t

To classify test outcomes, 5 oracles are deployed: (i) status code must be lower than 500; (ii) a response must conform the
documented schema; (iii) if the request violates one or more parameter specifications, the status code must be different from
2XX; (iv) if a request violates inter-parameter dependencies, the status code must be different from 2XX; (v) if the request is
valid according to the specification and inter-parameter dependencies are met, the status code must be different from 4XX.

E. Other discarded tools

Initially, we considered other tools than RestTestGen, RESTler, bBOXRT, and RESTest, but, for various reasons, they have
been excluded from the object tools list. QuickREST, proposed by Karlsson et al. [12], is a proof-of-concept tool that has not
been released as a generic tool. It is, instead, available only as a customized build to work on the case studies of a replication
package, in a package-specific version. Hence, it is not possible to apply QuickREST to test APIs other than those from their
replication package. Another discarded tool was proposed by Ed-Douibi et al. [13]. In this case, the proof-of-concept tool
was developed as plug-in for Eclipse. This tool was discarded due to the presence of errors in the source code that prevented
it from installing properly. Finally, EvoMaster [14] has been excluded because, at the time of writing, it does not follow a
black-box approach: it requires the availability of the Java source code to perform static and dynamic analysis.

IV. TEST COVERAGE METRICS

When it comes to comparing REST API testing tools, there is not a standard fault model adopted by the state-of-the-art
approaches, which might come with different and incompatible oracles to reveal defects. In this scenario, a direct comparison
on bug detection might be unfair. Hence, to objectively compare automated test case generation tools, we need a methodology
to measure the coverage of their test cases.

The four black-box tools that we are comparing assume that the source code of REST APIs is not available. So, source
code coverage cannot be the metric for the comparison. An alternative approach is represented by interface coverage, which
measures the testing coverage with respect to the specification of the REST API rather than to its actual code. This is also
motivated by the fact that the REST API testing tools base the test case generation process on the OpenAPI specification of
the service under test.

In this respect, Martin-Lopez et al. [3] proposed a test coverage framework based on the API interface description available
within the OpenAPI specification. They introduced ten coverage metrics to measure the coverage of a test suite as the ratio of
the tested elements on to the total number of elements available in the API.

Although the available measurement framework provides a starting point for an empirical comparison, adaptations are
required to turn metrics operative. Indeed, during the empirical adoption of the framework, we realized that some metric
definitions were too abstract to be properly applied in practice.

In the following, we present an overview of the metrics proposed by Martin-Lopez et al. [3], along with our adaptations.
They are six metrics related to the generated inputs, and four metrics related to the triggered outputs.

A. Input coverage metrics

Six metrics, called input coverage metrics, are meant to measure the capabilities of a test suite requests to exercise different
parts of the REST API under test.

1) Path coverage: it measures the capability of a test suite to exercise the API paths. It is the ratio of the number of tested
paths to the total number of paths documented in the OpenAPI specification. A test suite reaches 100% path coverage if its
tests send at least one request directed to each path of the API.

2) Operation coverage: it measures the capability of a test suite to execute the available operations. It is the ratio of the
number of tested operations to the total number of operations described in the OpenAPI specification. A test suite reaches
100% operation coverage if there exists at least one request directed to each path with all the documented HTTP methods.

3) Parameter coverage: it measures the capability of a test suite to sample all the available parameters on operations. It is
the ratio of the number of input parameters used by test cases to the total number of parameters documented in the OpenAPI
specification. A test suite reaches 100% parameter coverage if all input parameters of all operations are included in requests
at least once.

4) Parameter value coverage: it measures the capability of a test suite to choose meaningful values for input parameters. It
is the ratio of the number of the exercised parameter values to the total number of possible values that parameters can assume
according to the OpenAPI specification. This metric only applies to domain-limited parameters, such as boolean and enum
types. A test suite reaches 100% parameter value coverage if requests contain all the possible values for each parameter of
each operation.



Pr
ep

rin
t

5) Request content-type coverage: it measures the capability of a test suite to feed endpoints with request bodies of different
content-type formats. It is the ratio of the number of tested content-types to the total number of accepted content-types as
documented in the OpenAPI specification. A test suite reaches 100% request content-type coverage if there exists at least a
test request for each accepted content-type. The original definition by Martin-Lopez et al. [3] does not consider scenarios of
content-types with wildcards (e.g., application/*). Such cases turn the number of accepted content-types unbounded. In
our adaptation, we assume that request content-type coverage can be computed only when operations content-types have no
wildcards, in order for the metric value to be meaningful.

6) Operation flow coverage: it measures the capability of a test suite to apply different sequences of operations. It is defined
as the ratio of the number of tested flows to the total number of meaningful flows, according to the application business logic.
However, as also acknowledged by Martin-Lopez at al. [3], there is no standard definition of what are the meaningful flows
for a REST API, and there is no way to document flows in the OpenAPI specification. Thus, considering that the definition
of this metric is not operative, we decided to not include it in our framework.

B. Output coverage metrics

Four metrics are meant to measure the coverage of a test suite according to responses received from the REST API under
test. These metrics are called output coverage metrics.

1) Status code class coverage: it measures the capability of a test suite to trigger responses with correct and erroneous
status code classes. The OpenAPI specification does not provide primitives to formally document correct or erroneous status
code classes. According to the metric definition by Martin-Lopez et al. [3], it is up to the test engineer to define which status
codes belong to the correct class, and those belonging to the erroneous class, based on the semantic of the target API. To
maintain a black-box point of view that assumes no knowledge about the semantic of the API under test, we consider the
standard semantic provided by the HTTP protocol, i.e., the 2XX class represents a correct execution and 4XX and 5XX classes
represent an erroneous execution. A test suite reaches 100% status code class coverage when it is able to trigger both correct
and erroneous status codes. Conversely, if it only triggers status codes belonging to the same class (either correct or erroneous),
the reached coverage is 50%.

2) Status code coverage: it measures the capability of a test suite to trigger responses with different status codes. It is the
ratio of the number of obtained status codes to the total number of status codes documented in the OpenAPI specification, for
each operation. A test suite reaches 100% status code coverage if, for each operation, it is able to test all the status codes.

3) Response body properties coverage: it measures the capability of a test suite to trigger responses containing all the
properties defined in their schema. A property is, for instance, a key-value pair of a JSON object. This metric is computed as
the ratio of the number of obtained properties to the total number of properties defined in the OpenAPI specification schemas. A
test suite reaches 100% response body properties coverage if it is able to trigger responses whose bodies contain all properties
for all response objects. Parsing the response header is not enough to compute this metric and, in addition, the response bodies
have to be parsed with different grammars according to the body content-type (e.g., JSON or XML). For this reason, we
decided to skip this metric in this work, and focus on the other metrics, whose computation is less complex. However, we
plan to implement also this metric as future work.

4) Response content-type coverage: it measures the capability of a test suite to trigger responses whose body covers different
formats. It is the ratio of the number of obtained content-types to the total number of response content-types documented in
the OpenAPI specification. A test suite reaches 100% response content-type coverage if there exists at least one test response
whose body matches each documented content-type, for each operation. Similarly to the request content-type coverage metric,
we will compute this metric only when specific content-types are defined with no wildcard.

C. Automatic metrics computation

To automatically compute the coverage metrics achieved by the object tools, we have developed Restats [15], a Python
tool that implements the aforementioned measurement framework. Our implementation is tool-agnostic: it does not employ
tool-specific log files to compute the coverage. Quite the opposite, it operates by reading a generic HTTP traffic log, composed
by request-response pairs. In our validation, to log requests and responses we have routed all the HTTP traffic through a proxy
before executing the object tools.

Restats reads the HTTP log and the OpenAPI specification of the target API, then it computes path, operation, parameter,
parameter value, and status code coverage as originally defined by Martin-Lopez et al. [3]. It computes input and output
content-type coverage, and status code class coverage according to our adaptation, as explained in the previous paragraphs.

V. EXPERIMENTAL SETTINGS

In this section, we provide an experimental evaluation of the performance of the state-of-the-art testing tools for REST APIs.
In particular, our aim is to assess the capability of a tool to test real-world case studies, and to measure how effective the
generated tests suites are. The complete package to replicate our experiment is available online [2].



Pr
ep

rin
t

TABLE II
LIST OF THE SELECTED CASE STUDIES.

Case Study Language Framework Endpoints Operations # of lines
01-Slim PHP Slim 9 18 8,566
02-Airline Java Spring Boot 12 30 3,859
03-Streaming Java Spring Boot 5 5 1,780
04-Petclinic Java Spring Boot 17 47 8,550
05-Toggle ASP.NET .NET Core 8 16 2,363
06-Problems Java Spring Boot 5 9 2,174
07-Products Java Spring Boot 6 14 3,451
08-Widgets Go - 4 14 1,370
09-Safrs Python Flask 6 18 2,787
10-Realworld PHP Laravel 11 19 5,278
11-Crud Node.js Express 1 4 5,106
12-Order PHP Laravel 2 3 3,359
13-Users TypeScript Express 2 5 805
14-Scheduler Node.js Express 26 40 24,044

A. Research Questions

Automated black-box RESTful APIs testing approaches are available as research prototypes and, thus, might not be as
robust as commercial tools. They might fail or crash with certain API implementations. Before deciding which tool to adopt,
a developer might be interested in knowing their maturity and solidity, so the first research question is meant to compare tools
with respect to their ability to manage many real-world case studies.

RQ1: How robust are automated RESTful APIs test-case generation tools?
The extent of a REST API that can be tested by automated tools is the other important consideration when deciding which

testing tool to adopt. So, the second research question is intended to compare tools with respect to the coverage that their test
cases can achieve.

RQ2: What is the coverage of the test suites emitted by automated RESTful APIs test-case generation tools?
Our empirical investigation will be designed to answer these research questions.

B. Metrics

Our empirical evaluation of the performance of REST APIs testing tools is based on two different dimensions. First, we
consider robustness, aiming at assessing to which extent a tool is ready to be effectively usable. This translates to checking
how many APIs a tool is able to test out-of-the-box without unexpected errors.

Second, we consider coverage, aiming at assessing the adequacy of the test cases generated by the tools. Considering that
all the tools start from the definition of the API interface (input, output and operations) and require no source code access,
coverage will be computed with the same viewpoint. In particular, interface coverage means how much of the behavior of an
API, as described in the specification, is tested by the tools. Coverage will be computed using the coverage metrics introduced
in Section IV.

C. REST APIs Case Studies

For the comparison to be fair, object tools should operate on the same REST APIs, with the same initial conditions. Many
publicly hosted APIs are available for free (such as those on APIs.guru9) and they have been used as case studies for assessing
automated testing tools [5]. However, they are not appropriate for a direct comparison among several tools, because the state
of these APIs can be changed by previous executions of testing tools or by other users accessing them. Hence, different testing
tools might work with APIs at different starting state and this might affect the tool performance and, consequently, threaten
the validity of our results.

To overcome this state interference problem, we opted for case studies that we can download and run in a controlled local
environment. To this aim, we searched for REST API implementations among the open-source projects on GitHub. With local
instances of REST APIs, we can set a common starting point for the underlying database and restore a common initial state
of the API before starting each testing iteration.

We started our search with the query strings “REST”, “RESTful API”, “OpenAPI” and “Swagger”, to have an initial list of
candidate case studies. Subsequently, we also added query strings that represent framework commonly used to implement REST
APIs, such as “swagger-ui”, “SpringFox”, “swagger-jsdoc”, “flask-swagger”. Among these APIs, we kept those containing an
OpenAPI specification, because black-box testing tools require it as input. Some services contain this specification directly in
the project sources; for some others, the specification is not in the source code, but it can be automatically generated when their

9https://apis.guru/browse-apis/

https://apis.guru/browse-apis/


Pr
ep

rin
t

underlying frameworks support this feature. This is the case for some services implemented, for instance, using Spring [16]
or Flask [17].

These potential case studies have been downloaded, compiled and run to discard those that failed either in compiling or in
running. After this last filtering, our final set of case studies consists of 14 REST APIs, for a total of 114 endpoints and 234
operations (more information in Table II). We consider these APIs as representative of real-world REST APIs because: (i) they
are written in different programming languages (PHP, Java, Go, ASP.NET, Python, JavaScript and TypeScript); (ii) they are
based on different frameworks and DBMSs; and (iii) they have different levels of complexity in terms of number of operations
and dependencies. Applications are mostly query-intensive: their goal is to manage, for instance, an airline, restaurant orders,
users, a library, a pet clinic, etc. Some APIs have many dependencies among operations (e.g., the airline management system
with airports, planes, flights and routes), while others are simpler.

Among the 14 selected working case studies, 7 of them contained small errors in the specification, resulting invalid according
to the official Swagger Editor [18]. Considering that all testing tools expect a valid specification, we manually fixed these
errors, paying attention to not alter the intended semantic. Indeed, we applied only minor changes for evident mistakes trivial
to solve, such as removing non RFC3986-compliant characters from URLs, changing wrong syntax when OpenAPI version 2
(Swagger) syntax was used in OpenAPI version 3 files, moving fields in the right position when they were misplaced, and
renaming operations with reused names when they were supposed to adopt unique naming.

D. Experimental Procedure

In order for the case studies to be testable, it might be necessary to initialize their state with some data. For instance, a “delete
item” feature can be tested only when the “item” data does exist. Most of the case studies already came with a pre-initialized
database, or with a procedure that fills it after installation. The initial database was completely empty only on few cases, so
we adopted the following procedure to fill it. We manually interacted with these APIs, executing each documented feature at
least once, thus providing some data. After the API has been moved to a testable state, we took a snapshot of the database,
representing the initial state to be set when cleaning side effects produced during testing.

Note that, very few REST APIs provide a sandbox for testing purposes and, even if provided, a sandbox usually does
not come with a full-reset mechanism. For this reason, we have created a custom sandbox for each REST API case study,
encapsulated into an independent Docker container. In this way, we could isolate every service environment, making each test
independent of the others. Furthermore, the use of containers allows us to easily restore the same starting point before running
each testing tool.

Each testing tool has been configured with its default settings or, when available, with the settings that their authors deem
the most effective in the corresponding paper. In particular, for RestTestGen and bBOXRT we used the default settings; for
RESTler we set BFS-Cheap as test generation algorithm because showed as the best performer with reduced time budgets;
for RESTest we used the CBT generator, although without providing any inter-parameter dependency constraint. Testing tools
have been run on each case study with a time budget of 10 minutes. After each run, the case study database has been reset, to
start each testing session from a clean baseline state. Test case generation has been repeated 10 times for each case study to
control random variation of non-deterministic algorithms integrated in testing strategies. The execution log has been captured
by a proxy and coverage metrics have been computed by Restats (see Section IV-C).

The experiment has been conducted on an Ubuntu 20.04 desktop computer equipped with an AMD® FXTM-6300 six core
CPU running at 3.5GHz and 16GB of primary memory.

E. Threats to Validity

We identified the following limitations as potential threats to the validity of our empirical results.
Conclusion validity. In order to draw correct conclusions, the measurements must be reliable. To limit this threat, we

adopted an existing measurement framework, originally proposed by Martin-Lopez et al. [3], with only minimal changes to
turn it operative.

Internal validity. To limit external factors that might influence our observations, case studies have been run locally, so
that only testing tools could access them. No other end-users could access the case studies during the experiment and alter
their state. Moreover, to give all the testing tools the same starting conditions, case studies databases have been reset before
each testing session, thus canceling the footprint of previous executions. To make sure that measurements did not influence
the testing results, testing tools have not been instrumented. Instead, coverage metrics have been computed by an external
measurement tool, that just monitors the network traffic between case studies and testing tools.

Despite each testing tool reporting some kind of coverage statistics, there could be differences among the way these statistics
are collected on different tools. To compare consistent data, coverage reported by testing tools have been ignored and coverage
has been computed by a measurement tool contributed by us.

Construct validity. Considering that testing tools contain non-deterministic components, by chance rare events may have
influenced our results. To limit this threat, we measured 10 independent runs and the average coverage has been reported.



Pr
ep

rin
t

TABLE III
ROBUSTNESS: CASE STUDIES SUCCESSFULLY TESTED BY EACH TOOL.

Case study RestTestGen RESTler bBOXRT RESTest
01-Slim 3 3 7 3
02-Airline 7 3 7 7
03-Streaming 7 3 7 7
04-Petclinic 3 3 7 7
05-Toggle 3 3 3 7
06-Problems 3 3 7 7
07-Products 3 3 3 7
08-Widgets 3 3 3 3
09-Safrs 3 3 3 7
10-Realworld 3 3 3 7
11-Crud 3 3 3 7
12-Order 3 3 3 7
13-Users 3 3 3 7
14-Scheduler 7 3 7 7

Total: 11 14 8 2

TABLE IV
COVERAGE: NUMBER OF “WINS” FOR THE TOOLS ON EACH METRIC.

Coverage metric RestTestGen RESTler bBOXRT Draw

Path 1 0 0 7
Operation 1 3 0 4
Parameter 1 0 0 4
Parameter value 1 0 2 0
Req. content-type 2 1 0 4
Status code class 4 4 0 0
Status code 5 3 0 0
Resp. content-type 3 2 0 2

External validity. Although we have sampled real REST APIs in our experimental validation, written in different program-
ming languages and with different frameworks, we cannot assume that our results hold for any other arbitrary REST API.
Additional experiments on new case studies are needed to corroborate our findings.

VI. EXPERIMENTAL RESULTS

This section presents the results of our experimental validation to compare REST APIs testing tools according to robustness
and coverage, respectively.

A. RQ1: Analysis of Robustness

All the tools have been run on the same 14 case studies, monitoring crashes and failures. We tried our best to make tools
work on all case studies, sometimes even contacting the authors in order to understand the possible reasons for the failures.
Table III reports successful executions with tick-marks (3) and failing executions with cross-marks (7). Eventually, in the last
line, the table reports the total number of successfully tested case studies for each automated testing tool.

RESTler resulted the most robust automated testing tool because it is the only one able to manage all case studies. Indeed,
all other tools fail (or crash) while testing some services.

RestTestGen was the second most robust tool, as it could run on 11 case studies out of 14. During the testing of case study
02, the tool got stuck in an endless loop while parsing a date. In case studies 03 and 14, instead, the tool crashed in its
initialization phase. RestTestGen makes use of the official Swagger Codegen [19] to build HTTP client classes starting from
the OpenAPI specification, and the failure is due to this module which is executed at the very beginning.

bBOXRT could run on approximately half of the APIs (8 out of 14). In case study 01, the tool crash is caused by an
unhandled Java Null Pointer Exception of the component responsible to write the Excel output file. In the other 5 non-working
cases, bBOXRT crashes while parsing the OpenAPI specification, especially when resolving the defined schemas.

RESTest seems to be the least robust testing tool because it failed on most of the case studies. Indeed it could only test two
of them: 01 and 08. The main limitation of the tool is its inability to test REST APIs that use body parameters (e.g., a JSON
data structure in the body) when no body parameter examples are provided within the specification. Nevertheless, this is a quite
common scenario in practice: in fact, this happens for 11 out of 14 case studies. In one other case (case study 09), the failure
is due to malformed requests containing two content-type fields in the header. When building requests, RESTest sets the default
content-type field in the header. A second content-type field is then appended, in case the specification explicitly documents it.
However, the component in RESTest responsible for checking the request correctness detects the duplicate content-type field
in the header and stops the program execution with an error message. Basically, the tool rejects the request generated by the
tool itself.

Based on these results, we can answer RQ1 as follows:

RESTler is the most robust automated testing tool for REST APIs, because it could test all the 14 case studies. RestTestGen
is the second most robust tool (11/14), followed by bBOXRT (8/14). RESTest is the least robust automated testing tool
(2/14).



Pr
ep

rin
t

●●●●●●●●●● ●●●●●●●●●●

●●●● ●●●● ●● ●● ●●●●●●● ● ●●●●●●●●●●

●● ●●●● ●●●●

Request content−type Status code class Status code Response content−type

Path Operation Parameter Parameter value

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

bBOXRT

RESTler

RestTestGen

bBOXRT

RESTler

RestTestGen

Fig. 1. Box-plots of coverage metrics on the 8 selected case studies.

B. RQ2: Analysis of Coverage

We now compare the automated testing tools with respect to the coverage metrics. We have excluded RESTest from the
comparison due to its very low robustness. Indeed, restricting the comparison on only the two case studies testable by RESTest
would have made the coverage analysis meaningless. Therefore, in order for the comparison to be as fair as possible, we
considered only the case studies that all the remaining tools (RestTestGen, RESTler and bBOXRT) could test successfully.
Thus, the coverage comparison focuses on 8 case studies, namely 05 and from 07 to 13.

Figure 1 shows the experimental data distributed over the 8 selected case studies, with a different box-plot for each metric. For
instance, in the second box-plot of the first row we can compare values of the Operation coverage metric. While RestTestGen
and RESTler score very high and similar values of Operation coverage, bBOXRT records lower values.

Overall, RestTestGen seems superior to the other tools with respect to Parameter, Request content-type, Response content-
type, Status code class and Status code coverage metrics. RestTestGen and RESTler achieve similar values of Path coverage
(they have the same median). Eventually, bBOXRT overcomes the other testing tools on Parameter value coverage. RESTler
does not perform better than the other tools with respect to any coverage metric.

After these qualitative considerations on graph trends, we mean to present more quantitative comparison results. We recorded
all the coverage metrics for all testing tools on all case studies, and we take the average value on 10 runs in order to avoid
bias due to the nondeterministic components of the tools. We say that a testing tool hits a “win” for a coverage metric on a
case study if the testing tool scores the highest value for that metric when testing that case study.

Table IV reports the number of “wins” for each testing tool on each coverage metric. For instance, the second line shows the
results for the Operation coverage metric. We can observe that RestTestGen reported higher Operation coverage than RESTler
and bBOXRT on 1 case study. Instead, RESTler reported the highest value of Operation coverage on 3 case studies. bBOXRT
never reported a higher value for this metric. For the remaining 4 case studies no testing tool is a clear winner, because at
least two other tools reported an equally high value (Draw column). Thus, we can claim that RESTler is preferable when
considering Operation coverage (the corresponding number of “win” is highlighted in the table).

Not all rows of Table IV add up to 8, since a metric may not be computable for a specific case study. For instance, Request
content-type coverage can be computed only when operations content-types have no wildcard (see Section IV for details).

According to these data, RestTestGen is preferable for Path, Parameter, Request content-type Status code and Response
content-type coverage. RESTler recorded the best results for Operation coverage, while bBOXRT for Parameter value coverage.
RestTestGen and RESTler achieved equally high results (4 case studies) for Status code class coverage.

With these results, we can answer RQ2 as follows:

RestTestGen is the automated testing tool producing test suites with higher coverage, because when generating test cases
for 8 case studies it overtakes the other testing tools on 5 coverage metrics, while RESTler and bBOXRT have been superior
to the other tools according to 1 coverage metric each.

C. Considerations

Based on the experimental results, we could formulate the following subjective considerations.



Pr
ep

rin
t

Research prototypes robustness. The four tools under analysis are all research prototypes, so, it is not surprising that they
may fail in testing some real-world case studies. Nevertheless, RESTler is the most mature tool, able to test without errors all
the considered APIs. The different robustness degrees among the tools poses a first obstacle to the comparison of coverages.
Indeed, while we were able to compare RESTler, RestTestGen and bBOXRT on a sufficiently large set of case studies, a
comparison between all four tools would have led to only 2 common case studies, resulting in a not effective comparison.

Enumeration affects testing budget. Each tool that we considered in our empirical comparison adopts a distinct approach
for assembling sequences of operations into test scenarios. An exhaustive enumeration of sequences (RESTler) seems to be
very time-consuming and less time-effective than a well-thought-out single sequence (RestTestGen). This highlights that when
a large amount of requests (and consequently a large amount of time) cannot be spent in testing, focused approaches (such as
the one adopted by RestTestGen) are preferable. Conversely, when a lot of resources can be allocated to testing, possibly in
the cloud, testing an exhaustive enumeration of interaction sequences is probably acceptable.

Input generation Vs sequence enumeration. When generating test cases, search budget might be optimized across different
dimensions, either to test with many different interaction sequences, or focusing on few sequences but with many different
input data. According to our empirical observations, both of these dimensions are important, but, especially when testing time
is limited, focusing on exploring new input data (RestTestGen) seems to achieve higher generic coverage than exploring new
interaction sequences (RESTler).

Multiple input generation algorithms. When generating test input data, some approaches focus on single strategies (such
as using random values, dictionaries, mutations, etc.) or a combination of these. However, rather than just adopting a few data
generation strategies, we observed that higher generic test coverage is achieved when more of those strategies are integrated
and combined, including also data that have been observed as output of previously executed tests. In fact, test outputs might
represent valid actual data from the database of the REST API under test. Investigating novel input data generation strategies
is a promising research direction to deliver more effective testing approaches.

Coverage according to input Vs output metrics. High coverage with respect to input metrics seems to be easier to obtain,
rather than high coverage with respect to output metrics. In fact, each tool scored very high values of Operation, Path and
Parameter coverage, which are all input metrics. Indeed, obtaining 100% coverage for these input metrics is relatively easy:
it just requires a tool to exercise once those operations, paths and input parameters that are documented in the OpenAPI
specification.

Conversely, obtaining 100% coverage for output metrics is more challenging. While requests and input data are selected by
testing tools, responses and output data are not directly under control of testing tools. For instance, a tool can not simply decide
to cause a response with either a correct status code (e.g., 2XX) or an error status code (e.g., 5XX). To obtain distinct status
codes, a testing tool has to guess both valid and invalid input data, which is challenging, and it might require several attempts.
Hence, output coverage metrics can be considered harder to satisfy, because they require out-of-specification knowledge about
the service under test, and they can be considered a more reliable indicator of deeper testing than input coverage metrics.

VII. RELATED WORK

Existing commercial test authoring tools, like [20]–[25], help developers to manually write tests that can be then automatically
run by the tool. These approaches are not fully automatic, as the tools we have considered in the present work.

Concerning automatic tests generation for REST APIs, the research community proposes some interesting solutions, following
mainly two different lines of work. One consists in white-box approaches, that rely on the availability of APIs source code to
perform static analysis, or to instrument it to collect execution traces and metric values. In this context, Arcuri [14] proposes
a fully automated solution to generate test cases with evolutionary algorithms, that requires the OpenAPI specification and
the access to the Java bytecode of the REST API to test. This approach has been implemented as a tool prototype called
EvoMaster, extended with the introduction of a series of novel testability transformations aimed at providing guidance in the
context of commonly used API calls [26].

On a complementary direction, black-box approaches do not require any source code, which is often the case when using
closed-source components and libraries. Fuzzers [27]–[31] are black-box testing tools that generate new tests starting from
previously recorded API traffic: they fuzz and replay new traffic in order to find bugs. Some of these also exploit the OpenAPI
specification of the service under test [28]–[30]. Godefroid et al. [32] propose a methodology to fuzz body payloads intelligently
using JSON body schemas and advanced fuzzing rules (as done in RESTler [6]). Although they are automatic black-box tools,
their goal is to generate input values to tests, so they cannot be used as standalone testing tools (except for the approach
of Godefroid et al. [32] that has been implemented in RESTler). Ed-douibi et al. [13] propose a model-based approach for
black-box automatic test case generation of REST APIs. A model is extracted from the OpenAPI specification of a REST
API, to generate both nominal test cases (with input values that match the model) and faulty test cases (with input values
that violate the model). However, we did not manage to install their proof-of-concept implementation (due to some errors
in the source code), hence we had to exclude the work from our comparison. Karlsson et al. [12] propose QuickREST, a



Pr
ep

rin
t

tool for property-based testing of RESTful APIs. Starting from the OpenAPI specification, they generate test cases with the
aim of verifying whether the API under test complies with some properties (i.e., definitions) documented in the specification
(e.g., status codes or schemas). Unfortunately, we had to exclude QuickREST from our work because the version we found
online was incompatible with the case studies we randomly selected for our comparison (it did not manage to test any of
our case studies). Segura et al. [33] propose another black-box approach, where the oracle is based on metamorphic relations
among requests and responses. For instance, they send two queries to the same REST API, where the second query has stricter
conditions than the first one (e.g., by adding a constraint). The result of the second query should be a proper subset of entries in
the result of the first query. When the result is not a sub-set, the oracle reveals a defect. However, this approach only works for
search-oriented APIs. Moreover, this technique is only partially automatic, because the user is supposed to manually identify
the metamorphic relation to exploit and what input parameters to test.

To the best of our knowledge, the only black-box testing approaches for REST APIs which provide an implementation, i.e.,
a usable testing tool, are the one we have taken into account in our comparison (RestTestGen [5], RESTler [6], bBOXRT [7]
and RESTest [8], presented in Section III). Regarding test coverage, the only work proposing a systematic approach to assess
the coverage of REST APIs testing tools is the framework of Martin-Lopez et al. [3], that we have taken as basis for our
comparison.

VIII. CONCLUSION

Despite several approaches and automated tools are available to test cases generation for REST APIs, the literature is still
missing an explicit comparison of them. In this paper, we defined an experimental framework that includes a benchmark of
REST APIs case studies and a coverage measurement infrastructure. We adopted this framework to carry out a comparison of
four state-of-the-art automated black-box REST APIs testing tools (RestTestGen, RESTler, bBOXRT, and RESTest) in terms
of robustness and coverage.

RESTler appears to be the most robust tool, being able to test all the case studies without incurring in crashes or failures.
Instead, the strategy of RestTestGen, based on data dependencies among operations, appears to be the most effective, as it
overtakes the other approaches in several coverage metrics.

Based on our experimental results, we formulated some considerations that might guide developers in making an informed
decision on which tool to adopt.

As a future work, we plan to evolve the comparison with new testing tools, along with the updated versions of the already
considered tools. Another interesting aspect we plan to investigate is how the specification-based coverage we adopted correlates
with code coverage. Indeed, even if code coverage is inevitably more accurate, sometimes a “black-box coverage” is the only
viable option. With a study correlating the two approaches we can asses in which situations, or under which assumptions,
the specification-based coverage is still an acceptable solution. Finally, we intend to extend our experimental framework, that
currently just focuses on test coverage, to also measure defect detection capabilities.

ACKNOWLEDGMENT

This paper has been partially supported by project MIUR 2018-2022 “Dipartimenti di Eccellenza”.

REFERENCES

[1] F. Petrillo, P. Merle, N. Moha, and Y.-G. Guéhéneuc, “Are rest apis for cloud computing well-designed? an exploratory study,” in Service-Oriented
Computing, Q. Z. Sheng, E. Stroulia, S. Tata, and S. Bhiri, Eds. Cham: Springer International Publishing, 2016, pp. 157–170.

[2] Anonymous, “Replication package: An empirical comparison of state-of-the-art black-box test case generation tools for restful apis,” in to be disclosed
after acceptance.

[3] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “Test coverage criteria for restful web apis,” in Proceedings of the 10th ACM SIGSOFT International
Workshop on Automating TEST Case Design, Selection, and Evaluation, ser. A-TEST 2019. New York, NY, USA: Association for Computing
Machinery, 2019, pp. 15–21. [Online]. Available: https://doi.org/10.1145/3340433.3342822

[4] R. T. Fielding, Architectural styles and the design of network-based software architectures. University of California, Irvine Doctoral dissertation, 2000,
vol. 7.

[5] E. Viglianisi, M. Dallago, and M. Ceccato, “RESTTESTGEN: Automated black-box testing of RESTful APIs,” in 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST), 2020, pp. 142–152.

[6] V. Atlidakis, P. Godefroid, and M. Polishchuk, “RESTler: Stateful REST API fuzzing,” in Proceedings of the 41st International Conference on Software
Engineering, ser. ICSE ’19. Piscataway, NJ, USA: IEEE Press, 2019, pp. 748–758. [Online]. Available: https://doi.org/10.1109/ICSE.2019.00083

[7] N. Laranjeiro, J. Agnelo, and J. Bernardino, “A black box tool for robustness testing of REST services,” IEEE Access, vol. 9, pp. 24 738–24 754, 2021.
[Online]. Available: https://doi.org/10.1109/ACCESS.2021.3056505

[8] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “RESTest: Black-box constraint-based testing of RESTful web APIs,” in Service-Oriented Computing
- 18th International Conference, ICSOC 2020, Dubai, United Arab Emirates, December 14-17, 2020, Proceedings, ser. Lecture Notes in Computer
Science, E. Kafeza, B. Benatallah, F. Martinelli, H. Hacid, A. Bouguettaya, and H. Motahari, Eds., vol. 12571. Springer, 2020, pp. 459–475. [Online].
Available: https://doi.org/10.1007/978-3-030-65310-1 33

[9] V. Atlidakis, P. Godefroid, and M. Polishchuk, “Checking security properties of cloud service REST APIs,” in 13th IEEE International Conference
on Software Testing, Validation and Verification, ICST 2020, Porto, Portugal, October 24-28, 2020. IEEE, 2020, pp. 387–397. [Online]. Available:
https://doi.org/10.1109/ICST46399.2020.00046

[10] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “A catalogue of inter-parameter dependencies in restful web apis,” 10 2019, pp. 399–414.

https://doi.org/10.1145/3340433.3342822
https://doi.org/10.1109/ICSE.2019.00083
https://doi.org/10.1109/ACCESS.2021.3056505
https://doi.org/10.1007/978-3-030-65310-1_33
https://doi.org/10.1109/ICST46399.2020.00046


Pr
ep

rin
t

[11] A. Martin-Lopez, S. Segura, C. Muller, and A. Ruiz-Cortes, “Specification and automated analysis of inter-parameter dependencies in web APIs,” IEEE
Transactions on Services Computing, pp. 1–1, 2021.

[12] S. Karlsson, A. Causevic, and D. Sundmark, “QuickREST: Property-based test generation of OpenAPI-described RESTful APIs,” in 2020 IEEE 13th
International Conference on Software Testing, Validation and Verification (ICST), 2020, pp. 131–141.

[13] H. Ed-Douibi, J. L. C. Izquierdo, and J. Cabot, “Automatic generation of test cases for REST APIs: A specification-based approach,” 2018 IEEE 22nd
International Enterprise Distributed Object Computing Conference (EDOC), pp. 181–190, 2018.

[14] A. Arcuri, “RESTful API automated test case generation with Evomaster,” ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 28, no. 1, p. 3, 2019.

[15] D. Corradini, A. Zampieri, M. Pasqua, and M. Ceccato, “Restats: A test coverage tool for RESTful APIs,” in 37th IEEE International Conference on
Software Maintenance and Evolution, ICSME 2021, Luxembourg City, Luxembourg, September 27 - October 1, 2021.

[16] Spring.io, “Sring,” https://spring.io/web-applications.
[17] The Pallet Projects, “Flask,” https://palletsprojects.com/p/flask.
[18] Swagger.io, “Swagger-editor,” https://editor.swagger.io/.
[19] ——, “Swagger-codegen,” https://github.com/swagger-api/swagger-codegen.
[20] Postman, Inc., “Postman,” https://www.getpostman.com/.
[21] SmartBear Software, “SoapUI,” https://www.soapui.org/.
[22] Optimizory Technologies Pvt. Ltd., “vREST,” https://vrest.io/.
[23] Borvid, “HttpMaster,” http://www.httpmaster.net.
[24] A. Fortress, “API Fortress,” http://apifortress.com.
[25] J. Haleby, “REST Assured,” http://rest-assured.io/.
[26] A. Arcuri and J. P. Galeotti, “Testability transformations for existing APIs,” in 13th IEEE International Conference on Software

Testing, Validation and Verification, ICST 2020, Porto, Portugal, October 24-28, 2020. IEEE, 2020, pp. 153–163. [Online]. Available:
https://doi.org/10.1109/ICST46399.2020.00025

[27] API Fuzzer, “API Fuzzer,” https://github.com/KissPeter/APIFuzzer.
[28] Fuzz-Lightyear, “Fuzz-Lightyear,” https://github.com/Yelp/fuzz-lightyear.
[29] Fuzzy-Swagger, “Fuzzy-Swagger,” https://github.com/namuan/fuzzy-swagger.
[30] Swagger-Fuzzer, “Swagger-Fuzzer,” https://github.com/Lothiraldan/swagger-fuzzer.
[31] TnT-Fuzzer, “TnT-Fuzzer,” https://github.com/Teebytes/TnT-Fuzzer.
[32] P. Godefroid, B. Huang, and M. Polishchuk, “Intelligent REST API data fuzzing,” in ESEC/FSE ’20: 28th ACM Joint European Software Engineering

Conference and Symposium on the Foundations of Software Engineering, Virtual Event, USA, November 8-13, 2020, P. Devanbu, M. B. Cohen, and
T. Zimmermann, Eds. ACM, 2020, pp. 725–736. [Online]. Available: https://doi.org/10.1145/3368089.3409719

[33] S. Segura, J. Parejo, J. Troya, and A. Ruiz-Cortés, “Metamorphic testing of RESTful web APIs,” IEEE Transactions on Software Engineering, vol. 44,
no. 11, pp. 1083–1099, 2018.

https://spring.io/web-applications
https://palletsprojects.com/p/flask
https://editor.swagger.io/
https://github.com/swagger-api/swagger-codegen
https://www.getpostman.com/
https://www.soapui.org/
https://vrest.io/
http://www.httpmaster.net
http://apifortress.com
http://rest-assured.io/
https://doi.org/10.1109/ICST46399.2020.00025
https://github.com/KissPeter/APIFuzzer
https://github.com/Yelp/fuzz-lightyear
https://github.com/namuan/fuzzy-swagger
https://github.com/Lothiraldan/swagger-fuzzer.
https://github.com/Teebytes/TnT-Fuzzer
https://doi.org/10.1145/3368089.3409719

	I Introduction
	II Background
	II-A RESTful APIs
	II-B The OpenAPI Specification

	III Object Tools
	III-A RestTestGen
	III-B RESTler
	III-C bBOXRT
	III-D RESTest
	III-E Other discarded tools

	IV Test Coverage Metrics
	IV-A Input coverage metrics
	IV-A1 Path coverage
	IV-A2 Operation coverage
	IV-A3 Parameter coverage
	IV-A4 Parameter value coverage
	IV-A5 Request content-type coverage
	IV-A6 Operation flow coverage

	IV-B Output coverage metrics
	IV-B1 Status code class coverage
	IV-B2 Status code coverage
	IV-B3 Response body properties coverage
	IV-B4 Response content-type coverage

	IV-C Automatic metrics computation

	V Experimental Settings
	V-A Research Questions
	V-B Metrics
	V-C REST APIs Case Studies
	V-D Experimental Procedure
	V-E Threats to Validity

	VI Experimental Results
	VI-A RQ1: Analysis of Robustness
	VI-B RQ2: Analysis of Coverage
	VI-C Considerations

	VII Related Work
	VIII Conclusion
	References

