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Abstract—Previous research has demonstrated that the test
coverage of libraries can be expanded by using existing test
inputs from their dependent projects. In this paper, we propose
an algorithm for test transplantation based on test slicing. The
algorithm extracts test inputs, isolates them by creating mocks,
and then transplants the test code onto the test suite of the
libraries. To achieve test slicing, we dynamically execute the tests
in the dependent project and create its graph of histories. Then,
we traverse back from the interesting object state and collect
the corresponding edges. Finally, we reverse the collected edges
and create a sequence of method calls to reconstruct the same
object state. We have implemented a proof-of-concept in Pharo-
Smalltalk, in this paper we discuss the lessons learned so far.

Index Terms—test amplification, program slicing, Pharo, Soft-
ware ecosystems

I. INTRODUCTION

Modern software repositories contain a test suite covering

some of its code. In a software ecosystem, projects usually

import modules from other libraries and invoke their public

interfaces to fulfill their tasks. A recent study by Schittekat

et al. [1] illustrated that the tests in the user projects (source)

indirectly cover some new parts in libraries (destination). This

shows the opportunity of exploiting these test suites to amplify

libraries’ test coverage.

One easy solution to generate new unit tests is taking

snapshots of the interesting object states during test execution

and restoring them in test methods. However, these tests may

not comply with the unit testing pattern in object-oriented pro-

gramming languages and be less readable. In object-oriented

programming languages, a unit test typically is initializing

an instance of the class-under-test, updating it to the desired

state, and finally, asserting the expected states. In addition to

readability, the snapshots may depend on some classes from

the source project that do not exist in the target project.

This paper introduces a method to synthesize valid se-

quences of method calls to reconstruct the state of the object-

under-test and other necessary objects based on tests in the

source project. The method-call sequence will be installed

as a unit test in the destination project. We call this process

dependency-base test transplantation. In this paper, we adopt

the terminology from the original paper positioning the idea

of code transplantation [2]. Hence, we refer to the dependent

project (source) as donor project, the library (destination) as

host project, and the object state to be transplanted as organ.

We also refer to the test method containing the organ in the

donor project as donor test.

We propose an algorithm to slice the donor test dynamically.

First, we execute it and collect execution traces, including

method calls. We form a graph of histories using these traces.

Then, we spot the interesting object state (organ) in the graph

and extract a subgraph. In extracting this subgraph, we traverse

the graph backward, starting from the organ, and collect the list

of edges. Finally, we reverse the collected edges and synthesize

a sliced test method. In this process, we isolate the slices

by mocking those classes not belonging to the host project.

Once we obtain a precise slice containing the organ, we can

transplant the test into the host project.

To conclude, we reduce the test transplantation problem into

a test slicing problem and consequently a test slicing problem

into a graph traversal problem. We also write about our learned

lessons from implementing (work in progress) this approach in

a proof-of-concept tool called SMALL-MINCE in Section IV.

II. BACKGROUND

a) Test amplification: Software repositories contain a

considerable amount of test code written by developers to

prevent regression in software evolution. Exploiting this source

of knowledge to improve software testing is called test am-

plification [3]. SMALL-AMP [4] is a test amplifier in Pharo

that synthesizes new unit tests that increase the mutation

coverage. SMALL-AMP is based on four main components:

(1) a profiler which captures variables’ type information, (2)

an input amplifier which transforms existing test methods and

generates new test inputs, (3) an assertion amplifier which

regenerates the assertion statements, and (4) a selector that

runs mutation testing and identifies the tests introducing new

coverage.

b) Program slicing: Program slicing is finding a smaller

set of statements from a program based on a slicing criteria [5].

A slicing criterion is defined as a target statement and a

variable. So, the goal is to find a program slice in which

the value of the target variable in the specified statement is

identical to the same variable value in the same statement in

the original program. The slicing algorithm uses the statements

dependency graph and computes a slice by a backward graph

traversing.

Static slicing of the program considers all possible inputs

in a program and may produce slices with unnecessary state-

ments. Dynamic program slicing [6] uses a specific input and



state := primitive | history | self | special

primitive := int | str | null | ...

history := uid, event*

event := <message,

state:= version,

state′:= version,

args:= state*,

args′:= state*,

returns:= state>

version := A set of var_name 7→ state pairs

special := uid, predefined representations (lists, streams,...)

Fig. 1: A model for object representation

performs the slicing based on the executed statements. As a

result, it produces more precise slices, which help debug the

program based on specified inputs.

c) Pharo: Pharo1 is a pure object-oriented, dynamically

typed language. In Pharo, all actions are done by sending

messages to objects which is the equivalent to method invoca-

tion in other languages. The instance variables are private and

can only be updated by the methods. The Pharo environment

offers several facilities for dynamically inspecting the internal

state of execution, making it well suited for dynamic program

analysis.

III. DYNAMIC TEST SLICING

The traditional program slicing technique models the pro-

gram as a set of statements and their relations. In this paper, we

model a program as a set of object states and their relations

and create a graph of histories. The result of the slicing is

a sequence of method calls that produces the same state of

objects in the defined location. In this section, we introduce

the object representation and the graph representation methods

inspired by related work on the subject [7], [8], [9].

A. Model

a) Language Model: We use an object-oriented language

model, similar to what Pharo provides: Everything in the

language are objects, all objects have a default constructor

(new), and the instance variables in it are private and can be

updated only by its methods. All objects are passed by their

reference as arguments.

b) Object representation: Values in this language are

either primitive values (integers, strings, ...) or objects. Each

object is initiated by its constructor (new), and its state is

updated by sending different messages. We refer to sending

messages as events that create a new version of the receiver

object. The set of all object’s versions is its history. We adopt

two representations for object values: (1) as a history which

is a unique identifier uid and a list of events (2) as versions

which are concrete state of objects: it includes a mapping of

instance variables to their values; if the value is not a primitive,

we represent it as an object history (Figure 1).

An event shows that the message with the args has been

sent to the receiver object (identified by uid in history) when

1https://pharo.org/

it had the internal state of state. This call has led it to the

internal state state’, produced the return value of returns, and

the states of arguments are changed to args’ after the method

call.

B. The Graph of histories

Each event on an object creates a new version. We

create an acyclic graph using the versions of all ob-

jects as nodes, and their relations as edges (G =<
V,Eevents, Eargs, Erets, Eargrets >). For simplicity, we skip

showing the primitive values in the graph. The nodes are

connected with four types of edges in this graph:

1) Event edges: The messages sent to the object which have

updated its version. We use solid arrows to represent

these edges and annotate them with the message name

in Figure 2.

2) Argument edges: Shows that an object version is used

as an argument in an event. Figure 2 uses hollow arrows

to represent these edges.

3) Return edges: Shows that an object version is returned

from a method call. We use dashed arrows to represent

these edges in Figure 2. We also use the node after the

method call as the source of these edges. For example,

the event md1 on the object d version 1 leads it to its

version 2 and meanwhile returns the object o version 2.

We draw a dashed edge from d version 2 to o version 2.

4) Argument return edges: Shows the state of arguments

after a method call. We use dotted arrows to represent

these edges. We also omit these edges when the state of

the argument is not updated within an event. Similar to

return edges, we use the node after the method call as

the source of these edges.

Listing 1: Example code for dynamic test slicing

1 DriverTest >> test1
2 d := Driver new.
3 o := d md1: #ClassO.
4 o mo2.
5 o mo3.
6 d md2.
7 d md3: o
8

9 Driver >> md1: aSymbol
10 "..."
11 aSymbol = #ClassO ifTrue: [
12 retVal := ClassO new.
13 a := ClassA new.
14 x := ClassX new.
15 retVal mo1A: a X: x
16 ^ retVal ]
17 "..."

18

19 ClassO >> mo1A: aObj X: xObj
20 xObj mx1.
21 y := ClassY new.
22 xObj mx2Y: y.
23

24 ClassO >> mo2
25 r := ClassR new.
26 r mr1.
27 ^ r
28

29 ClassX >> mx2Y: yObj
30 z := ClassZ.
31 z mz1.
32 yObj my1Z: z.
33 ^ 1

Figure 2 shows the graph related to the code in Listing 1.

As an example, we focus on the history of the object o: We see

it at line 3, but looking deeper, this object is initialized at line

12 as the variable name retV al. Both variables o (line 3) and

retV al (line 12) refer to the same object in execution time.

The message #mo1A:X: is sent to it using the arguments a
version 1 and x version 1 (lines 15). This message brings this

object to its second version. From the outcoming dotted edge



Fig. 2: An example of versions graph

(argument return), we understand that the state of the object

x is updated from version 1 to 3 inside #mo1A:X: (lines 19

to 22). The incoming dashed edge shows that version 2 of the

object o is returned when the message #md1: is sent to the

object d (line 3). The event edge of #mo2 is the transition

to version 3 for object o (line 4). The outgoing dashed edge

shows that an object r version 2 is returned from this event

(line 27). The object o is updated to version 4 by accepting

#mo3 (line 5). We also understand that the version 4 of o is

used in calling #md3 on the object d.

C. Slicing tests

A unit test in an object-oriented language typically consists

of initializing an instance of class-under-test, updating it to the

desired state, and finally, asserting the expected states. In other

words, a unit test is the history of the object-under-test. For

example, the method #test1 in Listing 1 is the history of the

object d (the assertion statements are removed for simplicity).

If we recognize that a version of an object is interesting

from the testing point of view, we can synthesize a unit test

to regenerate the same state based on the graph of histories.

We start from the target node, traverse the graph backward,

and collect all events in order to reconstruct the same order.

In this method, we use a mapping V to store the list of

objects to be traversed and their latest visited version. We

also use the list of S including visited edges. Because of the

space considerations, we only use an example to describe the

algorithm. Our example graph considers version 3 of the object

o as the slicing criteria. We start traversing from this node

(V = {o 7→ 3}, S = []):

There is only one node to be traversed in V . We pick it and

see that it has only one incoming event edge and does not have

any other incoming or outgoing edges to other visited objects,

so it is safe to visit (There is an outgoing dashed edge to r
version 2, but r is not in the list of nodes to be traversed:

r /∈ V ). We update the version of o in V and also add the

visited edge to S: V = {o 7→ 2}, S = [call o.mo2].

Again, we have one node in V . We see that it has two

incoming edges: an event edge and a return edge. A version

of the object can be obtained either by sending a message to

its previous version or being returned from another event as a

return value or argument. So we can take either of them. We

explore both scenarios, which will create two different slices.

• We take the return edge. It says that the current state is the

return value from calling #md1 on the object d version 1.

We discard o from V and add d: V = {d 7→ 1}, S = [call

o.mo2, return of d.md1]. Traversing the remaining of this

path is straightforward (V = {d 7→ 0}, S = [call o.mo2,

return of d.md1, call d.new]). When all objects in V are

reached their version 0, the algorithm finishes.

• We consider the event edge (calling #mo1A:X:). This

edge will require two other objects a and x with version

1 as arguments. We check V to check if these objects are

in the list of nodes to be traversed. If we found them in

V , we check that their version is 1. If they exist in V
and have a version higher than 1, we postpone traversing

the current edge (#mo1A:X:) and continue traversing

argument objects to bring their version to 1. Finally, if

they do not exist in V , we add them to the list. In our

case, we take the event edge and add a version 1 and x
version 1 to V : V = {o 7→ 1, a 7→ 1, x 7→ 1}, S = [call

o.mo2, call o.mo1A:X:].
In the next step, we select one of the nodes from V .

Let us take a and traverse its edge: V = {o 7→ 1, a 7→
0, x 7→ 1}, S = [call o.mo2, call o.mo1A:X:, call

a.new]. Traversing nodes x and o is also straightforward:

V = {o 7→ 0, a 7→ 0, x 7→ 0}, S = [call o.mo2, call

o.mo1A:X:, call a.new, call o.new, call x.new]).



We synthesize a test by reversing the traversed edges and

synthesizing each event. Listing 2 shows the two sliced tests

from this example.

Listing 2: Example of sliced tests

1 testSlice1
2 d := Driver new.
3 o := d md1: #ClassO.
4 o mo2.
5

6

7

8 testSlice2
9 x := ClassX new.

10 o := ClassO new.
11 a := ClassA new.
12 o mo1A: a X: x.
13 o mo2.

a) Method call sequence minimizing: In real traces, the

number of events on the objects is considerable, and synthe-

sizing all events may result in a lengthy unreadable test. We

can analyze the state changes in objects to reduce some extra

events.

As an example, consider state preserving methods (getter)

are called inside a loop. In the generated test slice, we will

see plenty of unnecessary calls to these getter methods. We

can minimize the slice length by detecting and removing these

invocations. They can be detected by evaluating the difference

between the state after the event and the state before each

event: state′ − state == ∅.

b) Assert generation: Generating the assertion state-

ments to assert the primitive types is straightforward be-

cause the actual value of the primitive can be found in the

event traces. However, there are opportunities for generating

advanced assertions, such as asserting the expected objects.

In the example graph in Figure 2, the object r is returned

from sending mo2 to o. Listing 3 shows a sliced test that

reconstructs the expected object r_expected and asserts it is

equal to the returned value.

Listing 3: Asserting expected objects

1 testSlice2_withAsserts
2 o := ClassO new.
3 x := ClassX new.
4 a := ClassA new.
5 o mo1A: a X: x.
6 r_expected := ClassR new.
7 r_expected mr1.
8 r_actual := o mo2.
9 self assert: r_actual equalsTo: r_expected

D. Test isolation

In test isolation, our goal is to exclude some classes from

the sliced tests. We replace the excluded classes with mock

objects.

In our example in Listing 1, we deduce that the class

ClassX needs to be excluded. This exclusion will invalidate

the sliced test testSlice2 because it depends on ClassX .

We can see from the graph that the object x, which is an

instance of this class, is passed as an argument to the method

mo1A:X:. We also see that two other messages mx1 and

mx2 are sent to x when it was being processed in the method

mo1A:X: (the version of x is updated from 1 to 3 when it is

returned). We create the mock object xMocked that simulates

the required behaviors. Listing 4 illustrates a test method with

the mocked ClassX based on Mocketry mocking library2.

Listing 4: Isolated sliced test

1 testSlice2_mocked
2 o := ClassO new.
3 xMocked := Mock new.
4 xMocked stub mx1 willReturn: nil.
5 (xMocked stub messageWith: (Instance of: ClassY)) willReturn: 1.
6 a := ClassA new.
7 o mo1A: a X: xMocked.
8 o mo2

IV. PROOF-OF-CONCEPT

We implemented our algorithm in a proof-of-concept tool

called SMALL-MINCE3 in the Pharo language (work still in

progress). The tool consists of three main components: (1)

tracer, (2) slicer, and (3) synthesizer.

The tracer component manipulates the classes in the project

to enable them to log the details of message invocations.

We employed method proxies to capture the receiver and

arguments state before and after an invocation. We use an

integer instance variable as the object’s version (increases by

each event), and also a stack to reject the internal method

invocations. After the manipulation, the donor test is executed,

and traces are collected.

The slicer component creates the graph and extracts some

subgraphs based on the identified target organ (as the program

input). The graph does not need to be entirely loaded in the

memory at this stage, and we can mine the logs to traverse it.

After traversing the graph and obtaining the list of events, we

minimize it by skipping the state-preserving events.

The synthesizer module converts the traversed paths to

test methods, installs them in the system, and verifies that

they are runnable. At the current proof-of-concept, we do not

generate assertion statements, and we will use the assertion-

amplification component from another project (SMALL-AMP)

in the host project after transplantation.

The main lessons we have learned so far from this proof-

of-concept are:

• Tracer needs to manipulate the classes in advance. How-

ever, it is difficult to find a list of classes to be manipu-

lated. We use all defined classes in the project as default.

• Manipulating the system classes like Array, Stream

and Dictoriary is challenging. It is why we skip

manipulating these classes and use some predefined rep-

resentation for them. However, the number of system

classes is considerable, and language-specific knowledge

bases are required beforehand.

• When all methods in a project are proxied, the program’s

execution gets dramatically slow. This shows that it is

important to keep the instructions in the method proxies

as minimized as possible.

2https://github.com/dionisiydk/Mocketry
3https://github.com/mabdi/small-mince



V. RELATED WORK

The works by Artzi et al. [10], and Zhang et al. [8] use a

similar graph representation to extract a model from the class-

under-test and guide a random-based test generator. However,

we use this graph to reconstruct a call sequence as a test slice.

Staff et al. [11] use a capture and replay technique to replace

the environment part of the program with mocks and create

unit tests from slower system tests.

GENTHAT is a unit test extraction tool for R language [14].

It analyses execution traces from running in example code and

reverse-dependency projects and synthesizes new unit tests.

However, they only work with primitive data types.

Messaoudi et al. introduce DS3, an approach to slice system

level test by a static analysis enhanced with log analysis [15].

In their work, it is considered that the system test is huge, and

the dynamic slicing is not possible, so they use the software-

under-test as a black-box and do not analyze it. They only

consider the code in the test method and the log produced in

the execution. Therefore, they only generate smaller tests with

the same statements from the original test method.

Generating differential unit tests by carving [12], [13] repre-

sents related work that captures the state of the program before

and after of execution of the unit. When the unit evolves,

the recorded (carved) pre-state is loaded to memory and the

unit is executed, and the state after is compared to the carved

post-state. Tiwari et al. [16] also introduce PANKTI which

observes the program execution in production and generates

a set of differential tests that expands the test coverage. It

manipulates the methods under test and serializes the state

of receiving object, arguments, and the return value. Then

it generates a test method by deserializing the states from

trace files and reconstructing the execution state. We see our

proposed approach as a complement to this work, whereas we

can use objects’ history to create a sequence of method calls

to reconstruct the same state instead of deserializing the states

from files.

VI. CONCLUSION

This paper addressed the problem of test transplantation

from a dependent project to the imported libraries. We choose

a test in the dependent project that amplifies the coverage in

the library, then we slice it, isolate it if necessary, and move it

to the library’s test suite. We reduced the test slicing problem

to a subgraph finding and backward traversing problem. We

illustrated the proposed traversing algorithm using an example

and also mentioned our learned lessons from the implementa-

tion of a proof-of-concept.

In the future, we will evaluate the algorithm for the test

transplantation problem on real projects. In addition, we

will explore different use-cases for test slicing: (1) Slicing

amplified tests can improve their readability by removing un-

necessary statements. (2) Amplifying sliced tests can increase

the input amplification surface and, consequently, the test

amplification performance. (3) By slicing tests in code clones,

similarity-based test transplantation can be possible where we

can cover untested clones.
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