

Vrije Universiteit Brussel

Summary-Based Compositional Analysis for Soft Contract Verification
Vandenbogaerde, Bram; Stiévenart, Quentin; De Roover, Coen

Published in:
Proceedings - 2022 IEEE 22nd International Working Conference on Source Code Analysis and Manipulation,
SCAM 2022

DOI:
10.1109/SCAM55253.2022.00028

Publication date:
2022

Document Version:
Accepted author manuscript

Link to publication

Citation for published version (APA):
Vandenbogaerde, B., Stiévenart, Q., & De Roover, C. (2022). Summary-Based Compositional Analysis for Soft
Contract Verification. In Proceedings - 2022 IEEE 22nd International Working Conference on Source Code
Analysis and Manipulation, SCAM 2022: 2022 IEEE 22nd International Working Conference on Source Code
Analysis and Manipulation (SCAM) (22 ed., pp. 186-196). (Proceedings - 2022 IEEE 22nd International Working
Conference on Source Code Analysis and Manipulation, SCAM 2022). IEEE.
https://doi.org/10.1109/SCAM55253.2022.00028

Copyright
No part of this publication may be reproduced or transmitted in any form, without the prior written permission of the author(s) or other rights
holders to whom publication rights have been transferred, unless permitted by a license attached to the publication (a Creative Commons
license or other), or unless exceptions to copyright law apply.

Take down policy
If you believe that this document infringes your copyright or other rights, please contact openaccess@vub.be, with details of the nature of the
infringement. We will investigate the claim and if justified, we will take the appropriate steps.

Download date: 25. Apr. 2024

https://doi.org/10.1109/SCAM55253.2022.00028
https://cris.vub.be/en/publications/summarybased-compositional-analysis-for-soft-contract-verification(add71260-a9ba-4fb4-a778-ba018e8a0ca9).html
https://doi.org/10.1109/SCAM55253.2022.00028

Summary-Based Compositional Analysis for Soft
Contract Verification

Bram Vandenbogaerde, Quentin Stiévenart, Coen De Roover
Vrije Universiteit Brussel

{bram.vandenbogaerde, quentin.stievenart, coen.de.roover}@vub.be

Abstract—Design-by-contract is a development best practice
that requires the interactions between software components to
be governed by precise specifications, called contracts. Contracts
often take the form of pre- and post-conditions on function
definitions, and are usually translated to (frequently redundant)
run-time checks. So-called soft contract verifiers have been
proposed to reduce the run-time overhead introduced by such
contract checks by verifying parts of the contracts ahead of
time, while leaving those that cannot be verified as residual run-
time checks. In the state of the art, static analyses based on
the Abstracting Abstract Machines (AAM) approach to abstract
interpretation have been proposed for implementing such soft
verifiers. However, these approaches result in whole-program
analyses which are difficult to scale.

In this paper, we propose a scalable summary-based compo-
sitional analysis for soft contract verification, which summarises
both the correct behaviour and erroneous behaviour of all
functions in the program using symbolic path conditions. In-
formation from these summaries propagates backwards through
the call graph, reducing the amount of redundant analysis
states and improving the overall performance of the analysis.
This backwards flow enables path constraints associated with
erroneous program states to flow to call sites where they can be
refuted, whereas in the state of the art they can only be refuted
using the information available at the original location of the
error.

To demonstrate our improvements in both precision and per-
formance compared to the state-of-the-art, we implemented our
analysis in a framework called MAF (short for Modular Analysis
Framework) — a framework for the analysis of higher-order
dynamic programming languages. We conducted an empirical
study and found an average performance improvement of 21%,
and an average precision improvement of 38.15%.

Index Terms—Static Program Analysis, Design-by-contract

I. INTRODUCTION

Design-by-contract, first proposed by Meyer et al. for Eif-
fel [1], is a development best practice that aims to render
programs more robust by annotating their components with
contracts that govern the component interactions. These con-
tracts are typically enforced at function boundaries, where they
take the form of pre- and post-condition constraints.

Contract languages have been an active area of research. In
particular Findler et al. [2] have proposed contract languages
for higher-order programming languages such as Scheme.
Higher-order programs pose an additional challenge. Next to
regular values (such as booleans, strings, lists, ...), functions
can also be provided to other functions as an argument. These

Partially funded by Research Foundation Flanders (FWO) (grant number
1187122N).

functional values can also be described by a contract, meaning
that not all contracts can be checked upon function application,
but need to be delayed until the functional value is used.

Racket, a dialect of Scheme, features an expressive contract
language in which contracts can be combined using contract
combinators. Because contracts are first-class values in Racket,
these contract combinators can be implemented using ordinary
functions. For example, in the listing below a function named
or/c is depicted, which takes two contracts and returns a new
flat contract whose satisfiability is described using a boolean
predicate by checking the input contracts and combining
their boolean results using an or.
1 (define (or/c contract1 contract2)
2 (flat (lambda (v)
3 (or (check contract1 v) (check contract2 v)))))

The read-eval-print-loop interaction depicted below defines
a function with an or/c contract specifying that its argument
x should be either a number or a string (line 3-5). Calling
the function with the boolean value #f (false), which does
not satisfy the contract, results in a contract violation (line 6).
Associated with a contract violation is a blame object, which
captures the parties involved in the contract violation.
1 ; Accept a number or a string as argument
2 ; and can return anything.
3 > (define/contract (number-or-string x)
4 (-> (or/c number? string?) any/c)
5 '...)
6 > (number-or-string #f)
7 number-or-string: contract violation
8 expected: (or/c number? string?)
9 given: #f

10 in: the 1st argument of
11 (-> (or/c number? string?) any/c)
12 contract from: (function number-or-string)
13 blaming: anonymous-module
14 (assuming the contract is correct)
15 at: 3-unsaved-editor:3:18

The standard library of Racket has contracts annotated on all
of its functions, making their usage robust against programmer
errors. Dimoulas et al. [3] demonstrate the expressiveness of
Racket’s contract system outside of its standard library by
extending it with support for specifying protocols, restrictions
on (in)direct method calls, etc.

Unfortunately, enforcing such expressive contracts at run
time introduces an additional overhead [4]. Static analyses
have therefore been proposed, called soft contract verifiers [5],
[6], to verify the program against these contracts ahead of
time in order to elliminate its run-time contract checks. The
emphasis is on the soft verifier part, meaning that it tries

to verify as many contract checks as possible. However, to
ensure program correctness, the contract checks that cannot
be verified are left as residual checks in the program, to be
verified at run time. In the remainder of the paper, we will refer
to ‘veryifying the program against its contracts’ as ‘veryifying
the contract checks’.

Soft contract verification in the state of the art [6] is based
on abstracting abstract machines [7] (or AAM), which is
a systematic approach to transforming the abstract machine
describing the concrete semantics of a programming language
into a static analysis. Classical AAM-style analyses can be
classified as whole-program and top-down, which renders them
difficult to scale because of the large number of program
paths to be considered (i.e., due to their whole-program
nature), and few opportunities for re-using earlier analysis
states (i.e., due to their top-down nature). Therefore, real-world
implementations often attempt to modularise the AAM-style
analysis to improve its scalability.

The state-of-the-art soft contract verification analysis [6] is
modular in the sense that contract-annotated functions can be
analysed independently, but the the analysis of those functions
continues in a whole-program fashion.

A static analysis is modular if it splits the program into
multiple components (e.g., functions) and analyses them in-
dependently. Whereas an analysis is compositional [8] if the
analysis results of these components can be combined without
requiring a re-analysis of these components.

In this paper we propose a soft contract verification analysis
that is both modular and compositional. The analysis consists
of two phases: a modular call graph generation phase, and
a compositional blame and path propagation phase. The first
phase computes a call graph and summarises the behaviour of
each function by performing an effect-driven modular analysis
of the program with limited precision. The second phase sub-
sequently performs a bottom-up compositional analysis that
propagates contract violations (blames) and paths backwards
from the callees to the callers. The use of function summaries
results in a reduction of the number of analysis states and
enables re-use of analysis results. We evaluate our approach
on a set of benchmark programs and observe that our approach
improves the precision by 38.15% and performance by 21%
on average compared to a base analysis similar to the state-
of-the-art in its characteristics (see Section V). In summary,
our contributions are as follows:

1) We reformulate the state-of-the-art soft contract verifi-
cation in the setting of a modular effect-driven analysis
called ModF.

2) Then, we render this analysis compositional using func-
tion summaries, which summarise functions using its
paths and erroneous behaviour. These function summaries
are then propagated backwards from callee to caller to
propagate paths and refute erroneous program states on
function call-sites.

3) We implement our approach in an open source static

analysis framework1, and evaluate it against a set of
benchmark programs for which we observe an improve-
ment in precision by 38.15% and in performance by 21%
on average.

II. BACKGROUND AND MOTIVATION

A. Symbolic Verification using Abstraction

In symbolic execution [9], as opposed to concrete execu-
tion, the program under analysis is executed using symbolic
inputs. For example a symbolic execution of the function
(lambda (x) (+ x 1)) yields X + 1 with X being a
symbolic variable corresponding to the function argument, as
opposed to a concrete numerical value. Programs typically
contain a set of branching points (e.g, if statements). These
statements require the introduction of a path condition that
captures the constraints that need to be satisfied in order to
reach a particular program state. The path condition typically
consists of a series of conjoined predicates on symbolic
variables and arithmetic expressions. A symbolic executor ex-
haustively explores all possible program paths, while keeping
track of this path condition for each explored state. If, at any
time, the path condition becomes unsatisfiable (i.e., there is no
assignment of symbolic variables that satisfies the predicates
in the path condition), the exploration of that path is aborted.

Symbolic execution has been shown to be a good fit
for soft contract verification; contracts encode a set of
constraints on unknown symbolic inputs. For example, the
(or/c string? number?) contract encodes three paths
(for all X): (a) string?(X) (b) ¬string?(X) ∧ number?(X)
and (c) ¬string?(X) ∧ ¬number?(X). These paths can then
be used to verify whether other contracts can be violated
by the values satisfying the constraints on this path. For
example, when using X as part of an arithmetic expression on
path (b), it would be impossible to violate the requirements
of the arithmetic operation, since X is guaranteed to be a
number. Unfortunately, it quickly becomes apparent that the
number of program paths grows exponentially. A full symbolic
execution of a program is therefore unpractical, and would take
a significant amount of time.

Finally, it is well known that symbolic execution is not guar-
anteed to terminate. In fact, it explores all possible program
paths, of which there can be infinitely many.

In this paper, we address the exponential explosion problem
by using function summaries with accompanying composition
rules, as well as the termination problem by using abstractions
in cyclic function calls.

B. Bottom-Up Two-Phase Compositional Analysis

A compositional analysis usually proceeds in a bottom-
up manner. This means that it analyses components (i.e.,
functions) completely independently, without taking their in-
vocation context (i.e., call-site) into account. The behaviour
of each component is then summarised in terms of its input,
output and its effects.

1The implementation of the approach presented in this paper is also open
source and available at https://github.com/softwarelanguageslab/maf.

The behaviour of a single function often depends on the
functions that it calls. The summaries of two functions there-
fore need to be composed together. This composition needs to
happen in the correct order for the semantics of the program to
be captured properly. A call graph is typically used to obtain
this order by topologically sorting its nodes (i.e., functions).
As topological sorting requires a directed acyclic graph, cycles
in the call graph must be collapsed first. The resulting order
takes the calling relation between functions into account, such
that callees are analysed before their callers.

Unfortunately, in dynamic higher-order programming lan-
guages such as Racket or Scheme, no call graph is available
before the analysis is ran. We therefore propose an analysis
that consists of two phases. The first phase performs an effect-
driven abstract interpretation [10] to build an approximation
of the call graph. Then, the second phase (also called propa-
gation phase), propagates blames and path conditions (where
applicable) based on a topological order of the call graph.

C. Function Summaries using Symbolic Execution

Contracts are often reused across a program’s source code.
Listing 1 depicts a contract on a struct. The struct/c
contract combinator can be defined as an and/c contract that
combines constraints on the type of the value (i.e., a struct of
type block) and on the fields of the struct. The constraints on a
symbolic value introduced by such a contract only need to be
generated once, after which they can be reused and integrated
with constraints on contract check-sites.

1 ; Represents a block in 3D-space
2 (struct block (x y z))
3 ; A value satisfying this contract is a struct of type
4 ; "block" that has three real numbers as its fields
5 (define block/c (struct/c block real? real? real?))

Listing 1: An example of a reusable struct contract

The aim of a function summary is to describe a sound
and reusable approximation of a function’s possible behaviour.
Symbolic execution can be used to construct such a summary,
by calling the function with symbolic variables (e.g., Xi)
for its arguments and exhaustively exploring all execution
paths within. For the above block/c contract, the constraints
resulting from such a symbolic execution are struct?(X) ∧
real?(X.0) ∧ real?(X.1) ∧ real?(X.2), where X.i indicates
the ith field of the structure represented by X .

D. Backwards Blame and Path Propagation

During symbolic execution, paths are typically propagated
forward, meaning that previously-encountered paths form a
part of the abstract program state that is under analysis.
Unfortunately, this may result in the exploration of redundant
program states. Consider the factorial function depicted
in Listing 2. Its argument has to be a number, so that contracts
on primitive arithmetic operators within its body (e.g., +, -, ...)
can be satisfied. The definition of the factorial function
has been annotated with the (-> number? number?)
contract to this end, stipulating that its argument and return
value should be a number.

1 (define/contract (factorial n)
2 (-> number? number?)
3 (if (= n 0)
4 1
5 (* n (factorial (- n 1)))))

Listing 2: Example contract for factorial function.

A forward propagating analysis would include the path
condition number?(X) in the initial abstract program state
for the factorial function, rendering the analysis path
sensitive. Unfortunately, path-sensitive analyses tend to suffer
from an exponential growth in the number of components.
However, for soft contract verification, the interesting property
is whether contract violations (which result in blames) can
occur. The factorial function can therefore be summarised
using the paths through the function, and importantly, using
its possible contract violations paired with the paths on which
they occur.

For example, for the factorial function in Listing 2,
a contract violation summary for the * operator would be
generated that has the following constraints: ¬number?(X)∧
¬(X = 0). The first part of the conjunction stems from the
number? constraint introduced by the * expression, while the
second is introduced by negation of the condition in the if -
expression. Essentially, this summary denotes that a contract
violation would occur if X is neither a number, nor equal
to zero. If any of these constraints can be refuted, then the
contract violation cannot occur.

Unfortunately, these constraints cannot be refuted at the call
site of *. Therefore the blame must be propagated backwards
along the call stack of the factorial function. In this
example, the propagation ends at the entry point of the analysis
(called main), where the constraints of the (-> number?
number?) contract result in an unsatisfiable set of constraints
(i.e., number?(X) ∧ ¬number?(X)).

III. THE λSCV LANGUAGE

Without loss of generality, we will present our composi-
tional approach to soft contract verification for λSCV, a didactic
higher-order language featuring Racket-style contracts. We
formally define its syntax and concrete semantics in this sec-
tion. Section IV continues with our soft verification approach
for the λSCV contracts.

A. Syntax

The syntax of λSCV is depicted in Fig. 1. The language fea-
tures literals, such as strings, numbers and symbols. λSCV fol-
lows the λ-calculus in terms of λ-abstraction and λ-application
(i.e., second line of the figure). For simplicity, λSCV’s functions
only support a single argument. However, this restriction can
easily be lifted, and its syntax and semantics generalised.
λSCV also features support for conditionals in the form of if
expressions.

For specifying contracts, λSCV supports the flat, and →
special forms. The former wraps a boolean-valued function
that determines contract conformance or violation into a flat
contract (cf. or/c contract in Section I). The latter describes a

e ∈ Expr ::= l

| λx.e | e e
| if e then e else e

| flat e |mon e e | e→ e

l ∈ Literal ::= N | R | String | Symbol | Boolean

Fig. 1. Syntax of the λSCV language

higher-order contract, specifying a contract on the domain (the
arguments), and the range (the return value) of the function.

The purpose of mon is two-fold: it can be used to check
a flat contract against a value, or to install a monitor on a
function. A monitored function (as depicted in Listing 2, is
a function that checks, upon its application, whether its call-
site arguments satisfy its domain contract (d), and whether
its return value satisfies its range contract (r). A monitored
function is therefore described by a value (arr given below)
that wraps a function with its contract (described by a grd
value).

B. Semantics

We define the semantics of λSCV using a so-called CESK
state machine [11], the states of which consist of four
components: a Control, Environment, Store and Kontinuation.
The control component denotes whether the machine should
evaluate an expression, apply a continuation, or throw
an error. We omitted the definition of continuations for
brevity. The environment consists of a mapping from
variables to addresses, while the store is a mapping from
these addresses to actual values. Finally, the continuation
component corresponds to a stack of continuations, used in
the evaluation of compound expressions. A transition relation
a → b determines which steps from machine state a to b are
valid.

ζ ∈ State ::= 〈c, s, κ〉
k ∈ Continuation ::= ifk | monk1 | . . .
c ∈ Control ::= ev(e, ρ) | ap(v) | error(blame)

s ∈ Store ::= Address→ V alue

v ∈ Value ::= Closure | ContractValue | Int | Boolean
Closure ::= clo(λx.e, ρ)

ContractValue ::= grd(d→ r) | arr(d→ r, vf)

ρ ∈ Environment ::= Identifier → Address

κ ::= k :: κ | hlt

Halting States The machine reaches a halting state when
an error occurs, or when the hlt continuation is applied. In
λSCV, errors only occur when a contract violation is detected.
These kind of errors are called blames. A blame includes two
pieces of information: the party that is to blame for the contract
violation, and the party that causes the blame to be registered.
The former party usually points to the location of a call site
in case a contract on the arguments of a function is violated,

or to a function body in case the range contract is violated.
The latter party usually points to the violated contract itself.

Atomic Evaluation Lambda expressions and literals
can be evaluated in a single step. We call this atomic
evaluation. As described by the ABS rule given below,
a lambda expression evaluates to a closure that captures
its definition environment, and keeps track of its parameter
and body. The evaluation of literals is depicted in the LIT rule.

ABS 〈ev(λx.e, ρ), s, κ〉 → 〈ap(clo(λx.e, ρ)), s, κ〉
LIT 〈ev(l, ρ), s, κ〉 → 〈ap(l), s, κ〉

Conditionals For evaluating if expressions, we introduce
three transition rules: IFCND, IFCSQ, and IFALT. The former
evaluates the condition of the if expression to a boolean, and
the latter two evaluate either the consequent or the alternative
based on the value of the evaluated condition.

IFCND

〈ev(if e1 then e2 else e3, ρ), s, κ〉 → 〈ev(e1, ρ), s, ifk e2 e3 ρ :: κ〉
IFCSQ

〈ap(true), s, ifk e2 e3 ρ :: κ〉 → 〈ev(e2, ρ), s, κ〉
IFALT

〈ap(false), s, ifk e2 e3 ρ :: κ〉 → 〈ev(e3, ρ), s, κ〉

Function Application Rules APP, APP1 and APP2 define
the semantics for function application. Function application
proceeds as usual by first evaluating the operator and operands,
followed by an application of the resulting closure to the
resulting operand values.

APP1 〈ev(e1e2, ρ), s, κ〉 → 〈ev(e1, ρ), s, appk1(e2, ρ) :: κ〉
APP2 〈ap(v), s, appk1(e2, ρ) :: κ〉 → 〈ev(e2, ρ), s, appk(v) :: κ〉
APP

α = alloc ρ′′ = ρ′[x 7→ α] s′ = s[α 7→ va]

〈ap(va), s, appk(clo(λx.e, ρ′) :: κ〉 → 〈ev(e, ρ′′), s′, κ〉

Contract Monitoring λSCV features two types of contracts:
flat contracts which serve as wrappers around a boolean-valued
function, and guard contracts which can be used to guard the
execution of a function. Rules MONFLAT, MONFLATTRUE
and MONFLATBLAME cover the evaluation and checking of
flat contracts. When a flat contract is violated (i.e., it evaluates
to false), an error error(blm) is produced, containing a blame
object (blame) that is computed as usual [14].

MON 〈ev(mon e1 e2, ρ), s, κ〉 → 〈ev(e1), s,monk1(e2, ρ) :: κ〉
MONVAL 〈ap(vc), s,monk1(e2, ρ) :: κ〉 → 〈ev(e2), s,monk2(vc) :: κ〉
MONFLAT

〈ap(v), s,monk2(flat(p)) :: κ〉 → 〈ap(v), s, appk(p) :: monk3(v) :: κ〉
MONFLATTRUE

〈ap(true), s,monk3(v) :: κ〉 → 〈ap(v), s, κ〉
MONFLATBLAME

〈ap(false), s,monk3(v) :: κ〉 → 〈error(blm), s, κ〉

MONARR describes the evaluation of a contract-monitored
function, which evaluates to an arr value that wraps the func-
tion with a guard (grd) contract. Rules ARRAPP, ARRDOM

and ARRRET govern the application of monitored functions.
First, the domain contract is checked against the argument of
the function. Next, the body of the function is executed, and
finally the return contract is checked against the return value
of the function.

MONARR

〈ap(vf), s,monk2(grd(d→ r)) :: κ〉 → 〈ap(arr(d→ r, vf)), s, κ〉

ARRAPP

κ′ = s,monk2(d) :: arr1(r, vf) :: κ

〈ap(va), s, appk(arr(d→ r), vf) :: κ〉 → 〈ap(va), κ′〉

ARRDOM

〈ap(va), s, arr1(r, vf) :: κ〉 → 〈ap(va), s, appk(vf) :: arr2(r) :: κ〉

ARRRET

〈ap(vr), s, arr2(r) :: κ〉 → 〈ap(vr), s,monk2(r) :: arr3(vr) :: κ〉

IV. A STATIC ANALYSIS FOR λSCV

We now propose a modular and compositional static anal-
ysis for soft verification of λSCV contracts. The proposed
analysis consists of two phases, both of which are constructed
as a MODF-style analysis [10]:
• Collection Phase: constructs function summaries for each

function in the analysed program. A function summary con-
sists of a path summary and a blame summary. All of a func-
tion’s execution paths are summarised as path conditions
computed through symbolic execution (cf. Section II-A).
The potential blames during the function’s executions are
summarised by recording the program paths on which they
might occur. Additionally, the collection phase constructs a
call graph which is used during the propagation phase to
compute an efficient propagation schedule.

• Propagation Phase: the propagation phase propagates func-
tion summary information from callee to callers. Blames
and path conditions therefore propagate backwards which
enables the analysis to re-evaluate the necessary conditions
for a blame at each call site in the approximated call stack.
The remainder of this section is structured as follows. We

first describe our base analysis SCVMODF. Then we formally
describe the collection phase in terms of this base analysis.
We conclude by formally describing the propagation phase.

A. Base Analysis: SCVMODF

Approach Our analysis derives from MODF [10], an effect-
driven modular analysis. MODF derivatives target programs
written in higher-order dynamically-typed languages. There-
fore, no static call graph is available before running the
analysis. Consequently, MODF is only modular in the sense
that it analyses each component separately (i.e., function calls),
but discovers these components and the dependencies between
them during the analysis itself. MODF reifies dependencies
between components, and between components and addresses
in the store using effects (i.e., call effects and read/write

effects). A MODF analysis consists of two interleaving anal-
yses: an intra-analysis, which analyses a single component,
and an inter-analysis which schedules components for (re-)
analysis based on the effects discovered during the previous
intra-analysis. The result of a MODF analysis is a call and
dependency graph. In the remainder of this section, we de-
scribe the changes required to convert the concrete small-step
λSCV semantics presented in Section III-B into a sound and
terminating MODF-based static analysis. We will highlight
these changes in gray.

Abstract Values A sound static analysis is necessarily
imprecise. Abstract values instead of concrete values are used
to account for unknown inputs and non-determinism. For
the purpose of soft contract verification, we use a product
lattice [12] as abstract value domain. Its factors correspond to a
constant propagation domain CP(Int) for integers, a constant
propagation CP(Boolean) for booleans and two powerset
lattices: one for closures and one for contract values.

v ∈ Value ::= CP (Int)× CP (Boolean)

× P(Closure)× P(ContractValue)

Components A MODF analysis runs an intra-analysis on
a single component at a time. In MODF, a component corre-
sponds to a function with an additional context parameter (e.g.,
one of the function’s call sites). For simplicity, we omit this
context from the formalisation, but it can be used to render
the analysis context-sensitive and thus improve its precision.

cmp ∈ K ::= (λx.e, env)

Global Store Instead of keeping track of a local store in
each analysis state ζ̂, each analysis state points to a single
global store ŝ. At each analysis step, the next reachable stores
are joined with the previous global store (see intra-analysis
function F below). The transition relation → is updated
accordingly, and now includes the effects produced by a single
step of the intra-analysis.

(→) ∈ (Ŝtate× Ŝtore× P(Effect))× (Ŝtate× Ŝtore× P(Effect))

E ∈ Effect ::= read(α) | write(α) | call(cmp)

Symbolic Store and Path Condition We augment the
evaluation state with an additional component Γ which consists
of a path condition ϕ (cf. Section II-A) which collects the
constraints on the path leading to this state, and a symbolic
store m that contains mappings from global store addresses to
their corresponding symbolic representations.

ζ̂ ∈ Ŝtate ::= 〈c, Γ , κ〉
Γ ∈ SymbolicState ::= (ϕ,m)

ϕ ∈ PathCondition ::=

n∧
i=0

pi(x1, x2, . . . , xm)

m ∈ SymbolicStore ::= Address→ Expr

A path condition ϕ is represented by a conjunction of pred-
icates p1, p2, . . . , pn on symbolic expressions x1, x2, . . . , xn.

Post-Values In a soft contract verification analysis [6], a
limited form of symbolic execution is used to obtain con-
straints on the input of the program. To enable this, we aug-
ment the ap control component with a symbolic representation
of its returned value. Formally: c ∈ Control ::= ev(e, ρ) |
ap(v, e) | error

In practice, symbolic representations can be produced by
applications of primitive procedures on values with symbolic
representations. For instance, (+ x 1) might result in the
symbolic expression (+ X 1) if αx 7→ X is in the symbolic
store.

Collecting constraints Constraints are added to the path
condition when an if -expression is evaluated, and when an
expression monitored by a flat contract is evaluated. De-
pending on the branch to evaluate, the path condition is
either augmented with the symbolic representation of the if-
expression predicate, or with its negation. Similarly, the path
condition is extended with the symbolic representation of the
flat contract whenever a mon expression applies it to a value.
Note that transition rule MONFFLATBLAME produces an error
state, but still extends the state’s path condition so it can be
included in the blame summary.

IFCSQ

〈ap(true, e), Γ , ifk e1 e2 ρ :: κ〉, s, E → 〈ev(e1, ρ), Γ′ , κ〉, s, E
where (ϕ,m) = Γ,Γ′ = ((ϕ ∧ e),m)

IFALT

〈ap(false, e), Γ , ifk e1 e2 ρ :: κ〉, s, E → 〈ev(e2, ρ), Γ′ , κ〉, s, E
where (ϕ,m) = Γ,Γ′ = ((ϕ ∧ ¬e),m)

MONFLATTRUE

〈ap(true, e),Γ,monk3(v) :: κ〉 → 〈ap(v, e),Γ′κ〉
where (ϕ,m) = Γ,Γ′ = ((ϕ ∧ e),m)

MONFLATBLAME

〈ap(false, e),Γ,monk3(v) :: κ〉 → 〈error(blm),Γ′κ〉
where (ϕ,m) = Γ,Γ′ = ((ϕ ∧ ¬e),m)

Intra-Analysis The intra-analysis computes all states reach-
able from a given initial state. To this end, a transfer function
F (parameterized by a component cmp and the initial global
store s0) can be defined that given a set of reachable states,
a global store, and a set of effects, computes a new set of
reachable states. This triple consisting of a set of states, a
global store and a set of effects form a lattice too, where
the join operator is defined component-wise. The global store
is treated as a map lattice: values with corresponding keys
are joined together. The path condition ϕ is used after each
analysis step → to determine whether the path leading up to
that analysis state is feasible. The intra-analysis can then be
defined as a least fixed point of the transfer function. The
transfer function is guaranteed to reach a fixed point since
a state is only reachable from itself for recursive function
applications which are handled by the inter-analysis. The intra-
analysis uses the return value of the called function that was
computed during its early intra-analysis (if any, otherwise ⊥).

Fs0cmp(S, s, E) = 〈{ζ̂0}, ŝ0, E〉 t
⊔
ζ∈S

ζ,s,E→ζ′,s′,E′

isReachable(ζ′)

〈ζ′, s′, E′〉

Intra(cmp, s0) = lfp(Fs0cmp)
isReachable(〈c, (ϕ,m), κ〉) = feasible(ϕ)

ζ0 = 〈ev(ecmp),Γ0, ret〉

Inter-Analysis The inter-analysis collects the effects
generated by the intra-analysis, and schedules the re-analysis
of the potentially impacted components. It is defined as a
function G parametrized by a worklist W , to keep track
of which components to analyse next, a global store s, a
map S of components to reachable states (K → P(State)),
and a map R of addresses to their read dependencies
(Address → P(K)). The result of G is an over-approximation
of all reachable program states.

G(W, s,R, S) =

S if W = ∅
G(W \ {cmp} ∪

⋃
call(c)∈E
c6∈dom(S)

c

∪
⋃

w(α)∈E
c∈R(α)

c,

s t s′,
R t

⊔
r(α)∈E [α 7→ {cmp}],

S[cmp→ S′]) otherwise
where cmp ∈W

〈S′, s′, E〉 = Intra(cmp, s)

The inter-analysis G is defined as a recursive function
that exhaustively explores the worklist until it is empty.
Additionally, we define an auxiliary function Inter that
analyses a program e.

Inter(e) = G(I(e), s0, ∅, ∅)

where I injects expression e into a component Main.
Detecting Contract Violations A contract violation is

represented as an analysis state with an error for its control
component. The inter-analysis function G yields the set of
reachable states. Therefore, a contract violation is detected
if such an error state is an element of the reachable states.
Formally: Blames ≡ {b | 〈error(b), , 〉 ∈ range(Inter(e))}

B. Collection Phase: Function Summary and Call Graph
Construction

Function Summaries During the collection phase, we
collect function summaries fs of the analysed components.
A function summary consists of a set of path conditions
Φ associated with their return value, a set of pairs of
blames and their paths B, and the initial symbolic store m0

which contains a symbolic representation for the language’s
primitives and for the function parameter.

Φ ::= Value→ P(PathCondition)

B ::= Blame → P(PathCondition)

fs ∈ FunctionSummary ::= (Φ,B,m0)

This function summary can be constructed using our base
intra-analysis. Given a component cmp and initial store s0,
the function summary fs of cmp is computed as follows:

〈S, s, E〉 = Intra(cmp, s0)

Φ =
⊔

〈ap(v,),(ϕ,),ret〉∈S
[v 7→ {ϕ}]

B =
⊔

〈error(b),(ϕ,), 〉∈S
[b 7→ {ϕ}]

Call Graph MODF keeps track of call dependencies during
the intra-analysis. We adapt the inter-analysis function G to
produce the call graph C (cmp→ P(cmp)) and set of function
summaries F (cmp→ FunctionSummary)) as an output of the
analysis. The adapted intra-analysis function G is depicted in
the equation below, the base case of the function G is omitted
for brevity.

G(W, s,R, S, C, F) = G(

as before, C t
⊔

call(c)∈E

[cmp→ {c}], F [cmp→ fs]

)

C. Propagation Phase: Function Summary Composition

During the propagation phase, information from function
summaries propagates in the call graph opposite to the direc-
tion of the call edges. We augment the small-step relation to
include a function summary store F which is represented by
a mapping F ∈ FSS ::= P(K → FunctionSummary).

(→) ∈ (State× Store× P(Effect) ×FSS)

× (State× Store× P(Effect) ×FSS)

The closure application rules are adapted to integrate the
function summary of the callee with the function summary of
the caller. For this, we define the compose and propagate
meta-functions. The former combines the path condition of
the callee with that of the caller based on the component and
symbolic store m0 of the callee, and the symbolic store of
the caller. The latter composes the set of blames together.
Both meta functions rewrite the path conditions in such a way
that corresponding symbolic expressions (for example on the
arguments of a function) are correctly rewritten such that
constraints on the argument values at the call site are linked
to the constraints generated by analyzing the callee’s function
body. We leave the definition of these functions abstract such
that they can be tuned to adapt the precision of the analysis.

We split the application rules into two: a regular function
application rule, and a blame summary propagation rule. The
former rule behaves similarly to the function application rule
of the first analysis phase, but propagates path conditions from
the called function using compose. The latter rule propagates
blames from the callee to the caller, while rewriting the asso-
ciated path conditions so that symbolic variables are correctly
mapped to their corresponding symbolic representation at the
call site.

APP

α = alloc(clo(λx.e, ρ′)) s′ = s ∪ s[α 7→ va]
E′ = E ∪ {call(clo(λx.e, ρ′)),write(α)}

(Φ,B,m0) = F (clo(λx.e, ρ′)) (vr, ϕcmp) ∈ Φ
ϕ′ = compose(ϕcmp, ϕ, clo(λx.e, ρ′),m,m0)

〈ap(va), (ϕ,m), appk(clo(λx.e, ρ′) :: κ〉, s, E, F
→ 〈ap(vr), (ϕ

′,m), κ〉, s′, E′, F

APPBLAME

α = alloc(clo(λx.e, ρ′)) s′ = s ∪ s[α 7→ va]
E′ = E ∪ {call(clo(λx.e, ρ′)),write(α)}

(Φ,B,m0) = F (clo(λx.e, ρ′)) (vr, ϕcmp) ∈ Φ
(blm, ϕblm) ∈ B

ϕ′
blm = propagate(ϕblm,m,m0) ϕ′ = ϕ ∧ ϕ′

blm

〈ap(va), (φ,m), appk(clo(λx.e, ρ′) :: κ〉, s, E, F
→ 〈error(blm), (ϕ′,m)), κ〉, s′, E′, F

Importantly, because of the isReachable(ζ) predicate in our
intra-analysis function F , blames with unsatisfiable paths are
no longer propagated since their states become unreachable.
The idea is that in safe programs (i.e., programs that do not
contain any contract violation), the path condition associated
with a particular blame eventually becomes unsatisfiable dur-
ing its backwards propagation.

Intra-Analysis Function summaries are computed at the
end of each intra-analysis. We therefore adapt our intra-
analysis function F to include the function summary store
as as an additional fixed parameter.

Fs0, Fcmp (S, s, E) = 〈{ζ̂0}, ŝ0, E〉 t
⊔
ζ∈S

ζ,s,E, F →ζ′,s′,E′, F
isReachable(ζ′)

〈ζ′, s′, E′〉

Intra(ζ0, s0, F) = lfp(Fs0, Fcmp)

Detecting Contract Violations Contract violations can no
longer be collected by merely inspecting the set of reachable
states. It might be possible to refute blames that propagate
transitively from callee to caller at one of the call sites on
the approximated call stack. Therefore we define a contract
violation boundary at which blames become real errors, and
count them as detected contract violations. In the context
of MODF we define this boundary as the entry point of the
program. At this boundary, blames can no longer be refuted,
and count towards actual contract violations. What follows is
an adapted definition of the set of contract violations:

Blames ≡ {b | 〈error(b), , 〉 ∈ Inter(e)(Main)}

Scheduling During the propagation phase, function summaries
are updated to take blames and path conditions of the callee
into account. To do so efficiently, we define a fixed order
based on the topological sorting of the call graph C as
computed during the collection phase. As the call graph may
contain cycles, we collapse the cycles using Tarjan’s strongly
connected components algorithm. This sorting is then used as
a schedule in the worklist of our inter analysis G.

V. IMPLEMENTATION

We implemented our approach in the open-source static
analysis framework MAF (Modular Analysis Framework) for
an R5RS-complaint programming language extended with
support for structures, modules and match expressions. We
provide four different configurations: SCVMODF, SCVMODF-
SENSITIVE, SCVMODFSUMMARY and SCVMODFTOPOS.

All configurations share the same abstract domain: a product
lattice where closures and contract values are represented by
powerset lattices, and a constant propagation lattice otherwise.
In contrast to the work by Nguyen et al. [6] we do not include
predicate-refined abstract values, neither do we implement
abstract operations on them. Improving the abstract domain
in our implementation would yield similar precision results
as Nguyen et al. [6]. However, the purpose of this paper is
to showcase how different propagation strategies influence the
precision in a purely symbolic reasoner.

The context sensitivity of our analysis is 0-m-cfa [13] for
most function calls. An argument sensitivity is used when one
of the arguments is a closure, meaning that a new component
is created for each different closure value that is used as an
argument. This is to ensure that path constraints propagate
more precisely in higher-order functions.

SCVMODF implements a baseline analysis (Section IV-A)
that does not share path conditions, nor symbolic stores across
function calls. Being almost equivalent to MODF [10], it
shares its performance and precision characteristics.

SCVMODFSENSITIVE implements the approach from
Nguyen et al. [6], differing in the aforementioned abstract
domain semantics. It can be expressed in our formal semantics
by keeping track of the path condition and symbolic store in
the context of the component itself.

cmp ∈ K = (λx.e, env, ϕ,m)

The intra-analysis function F then injects this path condition
and symbolic store into its initial analysis state. Finally,
to avoid non-termination, SCVMODFSENSITIVE reverts to
SCVMODF when analysing a recursive function.

SCVMODFSUMMARY and SCVMODFTOPOS implement
the approach proposed in this paper. The former uses MODF’s
effect system to schedule the analysis during the propagation
phase, while the latter uses a topological sorting of the com-
ponents. Both configurations share the same semantics, and
therefore yield the same analysis results. However, the latter
configuration is more likely to obtain an optimal schedule for
analysing the components during the propagation phase.

VI. EVALUATION

A. Experimental Setup

To evaluate our approach, we execute the four afore-
mentioned analysis configurations (Section V) on a set of
benchmark programs. We refer to these configurations by
numbers: (1) is SCVMODF, (2) is SCVMODFSENSITIVE, (3)
is SCVMODFSUMMARY and (4) is SCVMODFTOPOS. Our
analysis is run on a 2015 Dell PowerEdge R730 with 2 Intel

TABLE I
SUMMARY OF OUR SET OF BENCHMARK PROGRAMS

Name # Programs # Lines # Contract Checks
(average) (median)

snake 1 255 408
tetris 1 471 857
zombie 1 271 178
mochi 15 15 33
sergey 6 17 22
softy 10 11 34.5

Xeon 2637 639 processors and 256GB of RAM, OpenJDK
1.8.0 312 and Scala 3.1.0. The JVM was given a maximum
of 128GB RAM. We measured the following metrics:
• Running Time: we measured the running time of each of

the configurations, and compared them against each other.
To this end, we ran the analysis on each benchmark program
5 times (as a warm-up phase for the Java Virtual Machine),
after which the analysis is run 20 more times to obtain a
statistically significant number of benchmark results.

• Precision: we measured the precision of the analysis in
terms of the number of false positives (i.e., the number of
detected contract violations that do not actually occur at run-
time). As a ground truth, we used the benchmark suite by
Nguyen et al. [6], which contains a set of “safe” benchmark
programs which are known to not contain any contract
violations. Any detected contract violation is therefore a
false positive, which can be easily measured.
Benchmark Programs As a set of benchmark programs, we

used a subset of the publicly available2 benchmark programs
by Nguyen et al. [6]. The benchmark set is divided into
four groups: games, softy, mochi and sergey. The first set of
benchmarks consists of three (larger) programs implementing
some real-world games. The last three sets of benchmarks
are frequently used for benchmarking AAM-based analyses,
and were adapted by Nguyen et al. to contain meaningful
contracts [14], [6]. Table I depicts a summary of the afore-
mentioned benchmark sets. The table summarises the number
of distinct programs in each benchmark set, as well as the
average number of lines and contract checks in each program.

B. Results

Running Time Table II depicts the running time of the
different analysis configurations. In bold are speedups that are
greater than 0. For computing this speedup, we compare the
SCVMODFSENSITIVE configuration against SCVMODFTO-
POS. As expected, the baseline analysis SCVMODF has the
fastest execution time, but the lowest precision (see below) for
all benchmarks, because it does not share path conditions nor
symbolic stores across function call boundaries. Overall, in 21
out of the 34 benchmark programs, our proposed approach us-
ing function summaries is faster than SCVMODFSENSITIVE,
while still yielding an improvement in precision (see below).
The average speedup is 21%, and the median speedup is 16%.

2As found in https://github.com/philnguyen/soft-contract, branch popl18-ae

TABLE II
ANALYSIS EXECUTION TIME (IN MILLISECONDS)

Average Time (ms) Speedup
(1) (2) (3) (4)

games/snake.rkt 668 1538 3751 2769 -44.46%
games/tetris.rkt 5302 10118 7010 6642 52.33%
games/zombie.rkt 307 3878 3338 2148 80.54%
mochi/fold-div.rkt 83 192 129 127 51.18%
mochi/hors.rkt 92 222 119 119 86.55%
mochi/hrec.rkt 88 207 152 128 61.72%
mochi/l-zipunzip.rkt 98 188 146 146 28.77%
mochi/map-foldr.rkt 102 127 121 123 3.25%
mochi/mappend.rkt 93 145 124 122 18.85%
mochi/mem.rkt 154 778 3041 1944 -59.98%
mochi/mult.rkt 82 204 135 131 55.73%
mochi/neg.rkt 75 139 111 109 27.52%
mochi/nth0.rkt 73 112 88 88 27.27%
mochi/r-file.rkt 77 177 134 141 25.53%
mochi/r-lock.rkt 85 140 140 149 -64.00%
mochi/reverse.rkt 85 156 118 122 27.87%
mochi/sum.rkt 85 184 134 118 55.93%
mochi/zip.rkt 99 127 208 194 -34.54%
sergey/blur.rkt 105 89 110 98 -9.18%
sergey/eta.rkt 5 6 7 7 -14.29%
sergey/kcfa2.rkt 6 7 105 108 -93.52%
sergey/kcfa3.rkt 8 9 89 89 -89.89%
sergey/loop2.rkt 90 248 140 122 103.28%
sergey/mj09.rkt 85 72 84 80 -100.00%
sergey/sat.rkt 90 358 105 107 234.58%
softy/append.rkt 76 107 97 99 88.00%
softy/cpstak.rkt 96 384 162 145 164.83%
softy/last-pair.rkt 79 97 87 88 10.23%
softy/last.rkt 83 115 100 101 13.86%
softy/length-acc.rkt 104 114 152 154 -25.97%
softy/length.rkt 82 100 131 129 -22.48%
softy/member.rkt 4 5 8 7 -28.57%
softy/recursive-div2.rkt 102 102 128 130 -21.54%
softy/subst.rkt 120 291029 2776 1793 16100%
softy/tak.rkt 77 164 116 116 41.38%

We also compare the reduction in the number of components
analysed by SCVMODFSUMMARY compared to the SCV-
MODFSENSITIVE configuration.This information is depicted
in Fig. 2. Our findings are twofold: SCVMODFTOPOS realises
a reduction in the number of components, and this reduction
leads to an improvement in execution time. The reduction in
the number of components is due to the backwards (instead of
forwards) propagation of path conditions, which means that a
path condition is no longer part of the context of a component.
This avoids analysing the same state multiple times while only
differing in its path. Note that both analyses are sound (i.e.,
they overapproximate the set of reachable program states), but
our approach achieves a reduction in the number of abstract
analysis states.

Our SCVMODFSUMMARY analysis did not realise an im-
provement in terms of compositionality on our benchmark
programs. Most functions are only called once (by the en-
trypoint of our analysis, or as part of the call chain), or
twice (in case of recursive functions). The consequence of
this is that the performance improvement is mostly due to
the aforementioned reduction in the number of components.
Finally, the propagation phase terminates quickly due to the
information provided by the collection phase (86%-14% ratio
in terms of execution time on average).

The intra-analysis of a component produces paths by evalu-
ating control flow statements in that component, or by integrat-

ing paths from the summaries of called components using the
compose rule. Therefore, our selection of the compose rule,
which determines how path conditions are propagated, plays
an important role in the performance of the analysis. Informed
by our precision results (see below), our decision to opt for
only propagating paths originating from contracts seems to be
a reasonable approach that does not harm precision.

0 10 20 30 40 50 60 70 80
Component Reduction (%)

100

50

0

50

100

150

200

250

Sp
ee

du
p

Fig. 2. The relation between component reduction and speedup. In blue,
programs with negative speedup, in orange with positive speedup.

TABLE III
ANALYSIS PRECISION USING THE MEDIAN NUMBER OF FALSE POSITIVES,

GIVEN IN BOLD WHICH PRECISION IS BEST

Name (1) (2) (3) and (4)

snake 110 90 62
tetris 180 165 112
zombie 41 41 11
mochi 11 11 4
sergey 0 0 0
softy 12.5 8 3

Precision Table III depicts the precision of the benchmark
programs. Overall, SCVMODFSUMMARY yields an improve-
ment in precision compared to SCVMODFSENSITIVE. In con-
trast to SCVMODFSENSITIVE, path conditions associated with
blames flow backwards through the call chain. This means
that the feasibility of the contract violation can be checked in
the context of one of its callers, while SCVMODFSENSITIVE
checks the feasibility in its violation context, which is ab-
stracted to the empty path condition in case of loops, thereby
losing precision.

Summary Our compositional approach to soft contract
verification yields improvements in both execution time
and precision. SCVMODFSUMMARY realizes a reduc-
tion in the number of components by using function
summaries and propagating the summarized program
path conditions backwards. Furthermore, we realize a
precision improvement by propagating blame summaries
backwards from callee to caller, where more precise
constraints on the input values are available.

C. Theoretical Properties

Soundness A sound soft contract verifier detects all contract
violations in the program, but might yield a number of false
positives. To test for the soundness of our implementation, we
provide soundness tests [15], which run a concrete interpreter
against the benchmark programs and check whether its results
are subsumed by the static analysis. For generating test inputs,
we used the contracts given in the benchmark programs,
and generate values for them using Racket’s built-in input
generation facilities. These soundness tests yield an average
line coverage of 85% on the benchmarked programs, where
all results were subsumed by the static analysis.

Termination Our analysis is a variation of the MODF
analysis [10], [16]. MODF is adapted in the following ways:
1) Intra-procedural Symbolic Execution During the abstract
interpretation of a procedure, we keep track of a symbolic
store and a path condition. The abstract representation of these
additional components is unbounded, however they are only
extended in interpretation steps of our intra-analysis. Since the
size of the abstract syntax tree is finite, its traversal will also be
finite. Recursive function calls are the only means of looping.
During an intra-analysis, calls are immediately resolved to
values. Therefore, an intra-procedural analysis never loops and
always terminates in a finite number of steps. 2) Two-phase
analysis Our analysis runs in two phases: a blame and path
collection phase, and a propagation phase. The collection
phase is guaranteed to terminate due to the fixpoint properties
of MODF [10]. We presented two variants of our analysis: one
that uses the effect system of MODF during the propagation
phase, and another that uses a topological sorting of the call
graph. The former triggers a (re-)analysis of components based
on changes to propagate path conditions and blame summaries.
Since path conditions between components that are part of
a cycle are not propagated, the number of propagated path
conditions remains finite. The number of blames in a program
is fixed by the program’s text, and so are its blame summaries.
The latter variant schedules the analysis of a component by
using a topological sorting of the call graph (with collapsed
cycles) during the second phase. The number of components
in this topological sorting is finite. Therefore, both variants of
our analysis are guaranteed to terminate.

VII. RELATED WORK

Soft Contract Verification The concept of soft contract
verification was first introduced by Tobin-Hochstadt and Van
Horn et al. [17], [5]. In these works the idea of higher-
order symbolic execution is proposed where functions are
symbolically represented by their contracts. In later work
by Nguyen et al. [6] a static analysis based on the AAM
technique [7] is proposed. The advantage of this technique is
that first-order symbolic execution is sufficient for soft contract
verification. The reason for this is that the program is executed
until a first-order symbolic formula, solvable by off-the-shelf
SAT solvers, can be obtained.

Our proposed analysis expands this work by making it
compositional. Prior work executes the entire program sym-

bolically while representing some values (such as contracts
and closures) abstractly. This results in an analysis that shares
a path condition and symbolic store forwards across function
boundaries. Instead, our technique summarises the function
by its paths and potential contract violations while selectively
propagating some paths across function boundaries backwards,
and propagating all contract violations backwards along the
call chain.

Compositional Analysis Cousot and Cousot [8] propose a
modular compositional analysis, where the analysis of separate
components can be easily combined to obtain the analysis
of an entire program. For higher-order dynamic programming
languages, as is the subject of this paper, such decomposition
is generally difficult due to the absence of a call graph. For
this reason, we split the analysis into two phases: a collection
phase which results in a call graph, and a propagation phase in
which function summaries propagate through the call graph.

Separation logic [18] also enables modular verification of
heap-related and other program properties. Our analysis does
not specifically target heap-related properties, but rather works
well on contracts about the input and output of the function
with limited amount of state.

Furthermore, properties in separation logic are specified
using a fixed logic language, whose semantics are predefined.
Our analysis is able to reason about contracts specified in
the same programming language as the monitored code. In
fact, except for propagation heuristics, our analysis does not
differentiate between the execution of a contract check and the
execution of the monitored code.

Finally, our analysis provides a soft verifier, meaning that
the contracts that cannot be verified by our analysis are left as
residual checks to be checked at run time. In separation logic,
most verifiers aim for a full analysis of the program. However,
for unverified modules run-time systems also exist to ensure
the same properties as the verified ones [19]. Unfortunately,
because separation logic often expresses properties about own-
ership, such run-time systems introduce an additional burden
(i.e., support for machine-enforced capabilities). We do not
aim for our contract language to support expressing such
properties.

VIII. CONCLUSION

We presented a novel approach to soft contract verifi-
cation using a modular and compositional analysis called
SCVMODFSUMMARY. The analysis consists of two phases: a
collection phase and a propagation phase. The collection phase
results in a call graph that can be topologically sorted to obtain
an optimal path condition and blame propagation order. Our
analysis is compositional in the sense that all functions are
summarised to their paths and potential contract violations.
These summaries can then be re-used for the analysis of
other functions and composed together during the propagation
phase. We evaluated our approach on a number of benchmark
programs and demonstrated that our approach improves both
the performance (in terms of execution time) and precision
compared to the state-of-the-art.

REFERENCES

[1] B. Meyer, “Design by contract: The Eiffel method,” in TOOLS 1998:
26th International Conference on Technology of Object-Oriented Lan-
guages and Systems. IEEE Computer Society, 1998, p. 446.

[2] R. B. Findler and M. Felleisen, “Contracts for higher-order functions,”
in Proceedings of the Seventh ACM SIGPLAN International Conference
on Functional Programming (ICFP ’02), 2002, M. Wand and S. L. P.
Jones, Eds. ACM, 2002, pp. 48–59.

[3] C. Dimoulas, M. S. New, R. B. Findler, and M. Felleisen, “Oh
lord, please don’t let contracts be misunderstood (functional pearl),”
in Proceedings of the 21st ACM SIGPLAN International Conference
on Functional Programming (ICFP ‘16), J. Garrigue, G. Keller, and
E. Sumii, Eds. ACM, 2016, pp. 117–131.

[4] D. Feltey, B. Greenman, C. Scholliers, R. B. Findler, and V. St-Amour,
“Collapsible contracts: fixing a pathology of gradual typing,” vol. 2, no.
OOPSLA, 2018, pp. 133:1–133:27.

[5] P. C. Nguyen, S. Tobin-Hochstadt, and D. Van Horn, “Soft contract
verification,” in Proceedings of the 19th ACM SIGPLAN international
conference on Functional programming (ICFP ‘14), J. Jeuring and
M. M. T. Chakravarty, Eds. ACM, 2014, pp. 139–152.

[6] P. C. Nguyen, T. Gilray, S. Tobin-Hochstadt, and D. V. Horn, “Soft
contract verification for higher-order stateful programs,” Proceedings of
the ACM on Programming Languages, vol. 2, no. POPL, pp. 51:1–51:30,
2018.

[7] D. V. Horn and M. Might, “Abstracting abstract machines,” in Pro-
ceedings of the 15th ACM SIGPLAN International Conference on
Functional Programming, ICFP 2010, September 27-29, 2010, P. Hudak
and S. Weirich, Eds. ACM, 2010, pp. 51–62.

[8] P. Cousot and R. Cousot, “Modular static program analysis,” in Compiler
Construction, 11th International Conference (CC 2002), ser. Lecture
Notes in Computer Science, R. N. Horspool, Ed., vol. 2304. Springer,
2002, pp. 159–178.

[9] J. C. King, “Symbolic execution and program testing,” Commun. ACM,
vol. 19, no. 7, pp. 385–394, 1976.

[10] J. Nicolay, Q. Stiévenart, W. De Meuter, and C. De Roover, “Effect-
driven flow analysis,” in Verification, Model Checking, and Abstract
Interpretation (VMCAI 2019), ser. Lecture Notes in Computer Science,
C. Enea and R. Piskac, Eds., vol. 11388. Springer, 2019, pp. 247–274.

[11] M. Felleisen and D. P. Friedman, “A calculus for assignments in higher-
order languages,” in Conference Record of the Fourteenth Annual ACM
Symposium on Principles of Programming Languages. ACM Press,
1987, pp. 314–325.

[12] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in Conference Record of the Fourth ACM Symposium on
Principles of Programming Languages, R. M. Graham, M. A. Harrison,
and R. Sethi, Eds. ACM, 1977, pp. 238–252.

[13] T. Gilray, M. D. Adams, and M. Might, “Allocation characterizes poly-
variance: a unified methodology for polyvariant control-flow analysis,”
in Proceedings of the 21st ACM SIGPLAN International Conference
on Functional Programming (ICFP 2016), J. Garrigue, G. Keller, and
E. Sumii, Eds. ACM, 2016, pp. 407–420.

[14] P. C. Nguyen, S. Tobin-Hochstadt, and D. Van Horn, “Higher order
symbolic execution for contract verification and refutation,” J. Funct.
Program., vol. 27, p. e3, 2017.

[15] E. S. Andreasen, A. Møller, and B. B. Nielsen, “Systematic approaches
for increasing soundness and precision of static analyzers,” in Proceed-
ings of the 6th ACM SIGPLAN International Workshop on State Of the
Art in Program Analysis (SOAP@PLDI 2017), K. Ali and C. Cifuentes,
Eds. ACM, 2017, pp. 31–36.

[16] Q. Stiévenart, J. Nicolay, W. De Meuter, and C. De Roover, “A general
method for rendering static analyses for diverse concurrency models
modular,” Journal of Systems and Software, vol. 147, pp. 17–45, jan
2019.

[17] S. Tobin-Hochstadt and D. Van Horn, “Higher-order symbolic execution
via contracts,” in Proceedings of the ACM International conference
on Object oriented programming systems languages and applications
(OOPSLA ’12), ser. OOPSLA ’12. ACM, 2012, pp. 537–554.

[18] P. O’Hearn, “Separation logic,” Commun. ACM, vol. 62, no. 2, pp. 86–
95, jan 2019.

[19] T. V. Strydonck, F. Piessens, and D. Devriese, “Linear capabilities for
fully abstract compilation of separation-logic-verified code,” J. Funct.
Program., vol. 31, p. e6, 2021.

