
JFeature: Know Your Corpus

Idriss Riouak∗, Görel Hedin∗, Christoph Reichenbach∗, and Niklas Fors∗
∗idriss.riouak, gorel.hedin, christoph.reichenbach, and niklas.fors (@cs.lth.se)

Department of Computer Science, Lund University, Sweden

Abstract—Software corpora are crucial for evaluating research
artifacts and ensuring repeatability of outcomes. Corpora such
as DaCapo and Defects4J provide a collection of real-world open-
source projects for evaluating the robustness and performance
of software tools like static analysers. However, what do we know
about these corpora? What do we know about their composition?
Are they really suited for our particular problem? We devel-
oped JFEATURE, an extensible static analysis tool that extracts
syntactic and semantic features from Java programs, to assist
developers in answering these questions. We demonstrate the
potential of JFEATURE by applying it to four widely-used corpora
in the program analysis area, and we suggest other applications,
including longitudinal studies of individual Java projects and the
creation of new corpora.

Index Terms—Source-Code Analysis, Software Tools, Software
Corpora

I. INTRODUCTION

The impact of our research in computer science is bounded

by our ability to demonstrate and communicate how effective

our techniques and theories really are. For research on software

tools, the dominant methodology for demonstrating effective-

ness is to apply these tool to “real-life” software development

tasks and to measure how well they perform. Blackburn et

al. [3] outline this process in considerable detail, highlighting

the need for appropriate experimental design (to construct

experiments), relevant workloads (to obtain relevant data from

the experiments), and rigorous analysis (to obtain rigorously

justified insights from experimental data). The strength of our

insights is then bounded by the weakest link in this chain.

Carefully curated, pre-packaged workloads such as the

DaCapo Benchmark suite [2], Defects4J [20], the Qualitas

Corpus [30], and XCorpus [7] can help ensure that we use

relevant workloads. However, no software corpus aims to be

representative of all software, and for any given research

question there may not be any one corpus designed to answer

that question, so we must still validate that the corpus we

choose is relevant to what we want to show.

For instance, the DaCapo corpus aims to provide bench-

marks with “more complex code, richer object behaviors, and

more demanding memory system requirements” [2] than the

corpora that preceded it, and it systematically demonstrates

complex interactions between architecture and the Java Run-

Time Environment, whereas Defects4J collects “real bugs to

enable reproducible studies in software testing research” [20].

This work was partially supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation.

Despite DaCapo’s focus on run-time performance and De-

fects4J’s focus on software testing, both suites have seen heavy

use in research that they were not explicitly intended for,

including the authors’ own work in static analysis [8], [28]

(using Defects4J), and in compilers [9] and dynamic invariant

checking [27] (for DaCapo).

For each of these ostensible mis-uses, the authors selected

the corresponding benchmark corpus as the highest-quality

corpus they were aware of whose original purpose seemed

sufficiently close to the intended experiments. This divergence

between research question and corpus purpose required the

authors to carefully re-validate the subset of the corpus that

they had selected by hand.

In this paper, we argue that there is a need for increased

automation and decision support for selecting benchmarks

for specific research questions, and present JFeature, a static

analysis tool designed to help researchers in this process.

JFeature identifies how often a Java project uses key Java

features that are significant for different types of software

tools. JFeature operates at the source code level, and is capable

of identifying not only local syntactic features that may be

challenging to encode in regular expression search tools like

grep, but also complex semantic features that depend on

types and libraries. We have implemented JFeature in the

JastAdd [11] ecosystem as an extension of the ExtendJ [9] Java

Compiler. This implementation architecture gives easy access

to types and other properties computed by the compiler, and

also supports extensibility, allowing researchers to adapt the

analysis to fit their specific needs.

We demonstrate JFeature by running it on several widely-

used corpora, specifically the DaCapo, Defects4J, Qualitas,

and XCorpus corpora.

Our main contributions are:

• JFeature as an example of a tool for extracting informa-

tion about the features used in Java source code, and

• An overview over JFeature’s key insights on the DaCapo,

Defects4J, Qualitas, and XCorpus corpora.

The rest of this paper is organised as follows: Section II

introduces JFeature and discusses the design decisions that

underpin the tool. Section III shows the results of applying

JFeature to the four corpora. Section IV illustrates how JFea-

ture can be extended to extract new features, taking advantage

of properties in the underlying Java compiler. Section V

outlines future applications of JFeature. Section VI discusses

related work, and Section VII summarizes our conclusions.

236

2022 IEEE 22nd International Working Conference on Source Code Analysis and Manipulation (SCAM)

Work licensed under Creative Commons Attribution 4.0 License. https://creativecommons.org/licenses/by/4.0/
DOI 10.1109/SCAM55253.2022.00033

20
22

 IE
EE

 2
2n

d
In

te
rn

at
io

na
l W

or
ki

ng
 C

on
fe

re
nc

e
on

 S
ou

rc
e

Co
de

 A
na

ly
sis

 a
nd

 M
an

ip
ul

at
io

n
(S

CA
M

) |
 9

78
-1

-6
65

4-
96

09
-4

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

SC
AM

55
25

3.
20

22
.0

00
33

II. JFEATURE: AUTOMATIC FEATURE EXTRACTION

We have designed JFeature as an extension of the Ex-

tendJ extensible Java compiler. ExtendJ is implemented using

Reference Attribute Grammars (RAGs) [10] in the JastAdd

metacompilation system. ExtendJ is a full Java compiler,

feature-compliant for Java 4 to 7 and close to being feature-

compliant for Java 81. In building compilers by means of

attribute grammars [21], the abstract syntax tree (AST) is

annotated with properties called attributes whose values are

defined using equations over other attributes in the AST.

RAGs extend traditional attribute grammars by supporting

that attributes can be links to other AST nodes. ExtendJ

annotates the AST with attributes that are used for checking

compile-time errors and for generating bytecode. Example

attributes include links from variable uses to declarations, links

from classes to superclasses, types of expressions, etc. These

attributes are exploited by JFeature to easily identify AST

nodes that match a particular feature of interest.

A. Java version features
There are many different features that could be interesting

to investigate in a corpus. As the default for JFeature, we have

defined feature sets for different versions of Java, according

to the Java Language Specification (JLS). A user can then run

JFeature to, e.g., investigate if a corpus is sufficiently new, or

select only certain projects in a corpus, based on what features

they use. If desired, a user can extend the feature set for a

specific purpose.
In recent years there have been several new releases of the

Java language. Currently, Java 18 is the latest version available.

However, most projects utilise Java 8 or Java 11, both of which

are long-term support releases (LTS).
Table I summarises the main features introduced in each

Java release after the initial release (JDK 1.0) up to Java 8.

We have classified the features into either

• Syntactic: can be identified using a context-free gram-

mar, or

• Semantic: additionally needs context-dependent infor-

mation such as nesting structure, name lookup, or types.

While most features are syntactic, there are several features

that are semantic, and where the attributes available in the

compiler are very useful for identification of the features.
Given any Java 8 project, JFeature collects all the feature

usages, grouped by release version. By default, JFeature

supports twenty-six features2, but users may extend the tool

and add their own. We have chosen these features by looking

at each Java release note [12]–[19]. We included features

that represent the most significant release enhancements, i.e.,

libraries or native language constructs whose use signifi-

cantly impacts program semantics. In particular, we included

the usage of two libraries, JAVA.UTIL.CONCURRENT.* and

JAVA.LANG.REFLECT.*, because their usage may be pertinent

for the evaluation of academic static analysis tools.

1https://extendj.org/compliance.html
2The complete implementation can be found at https://github.com/lu-cs-sde/

JFeature.

Feature
Kind

Syn Sem

Java 1.1 - 4, 1997-2002 – [12]–[15]

Inner Class �
java.lang.reflect.* �
Strictfp �
Assert Stmt �

Java 5, 2004 – [16], [17]

Annotated Compilation Unit �
Annotations

Use �
Decl �

Enum
Use �
Decl �

Generics

Method �
Constructor �
Class �
Interface �

Enhanced For �
Varargs �
Static Import �
java.util.concurrent.* �

Java 7, 2011– [18]

Diamond Operator �
String in Switch �
Try with Resources �
Multi Catch �

Java 8, 2014– [19]

Lambda Expression �
Constructor Reference �
Method Reference �
Intersection Cast �
Default Method �

TABLE I: Major changes in the Java language up to Java 8.

B. Collecting features

To collect features, JFeature uses collection attributes [4],

[25], also supported by JastAdd. Collection attributes aggre-

gate information by combining contributions that can come

from anywhere in the AST. A contribution clause is associated

with an AST node type, and defines information to be in-

cluded, possibly conditionally, in a particular collection. Both

the information and the condition can be defined by using

attributes.

For JFeature, we use a collection attribute, features, on

the root of the AST. The value of features is a set of

objects, each defined by a contribution clause somewhere

in the AST. The objects are of type Feature that models

essential information about the extracted feature: the Java

version, feature name, and absolute path of the compilation

unit where the feature was found.

Figure 1 shows an example with JastAdd code at the top

of the figure, and below that, an example program and its

attributed AST. The features collection is defined on the

nonterminal Program, which is the root of the AST (line

1). Then two features are defined, STRICTFP and STRING IN

SWITCH (lines 3-5 and 7-9).

STRICTFP is a syntactic feature that corresponds to the

modifier strictfp. In ExtendJ, modifiers are represented by

the nonterminal Modifiers which contains a list of modifier

keywords, e.g., public, static, strictfp, etc. To find

237

1 coll HashSet<Feature> Program.features();
2
3 Modifiers contributes
4 new Feature("JAVA2", "Strictfp", getCU().path())
5 when isStrictfp() to Program.features();
6
7 Switch contributes
8 new Feature("JAVA7", "StringInSwitch", getCU().path())
9 when getExpr().type().isString() to Program.features();

Program

MethodDecl
<bar>

Modifiers
<strictfp>

...

MethodDecl
<foo>

ParamDecl
<String color> Switch

VarAccess
<color>

Block

Case
<"RED">

BreakStmt

...

features() strictfp void bar(){
...
}

void foo(String color){
switch(color){
case "RED":
break;

...
}
}

Collection Attribute

Contributor Node

AST Node

Contribution

Fig. 1: Example definitions of features.

out if one of the keywords is strictfp, ExtendJ defines a

boolean attribute isStrictfp for Modifiers. To identify

the STRICTFP feature, a contribution clause is defined on

the nonterminal Modifiers (line 3), and the isStrictfp
attribute is used for conditionally adding the feature to the

collection (line 5). The absolute path is computed using other

attributes in ExtendJ: getCU is a reference to the AST node

for the enclosing compilation unit, and path is the absolute

path name for that compilation unit (line 4).

STRING IN SWITCH is a semantic feature in that it depends

on the type of the switch expression. It cannot be identified

with simple local AST queries or regular expressions. Here,

the contribution clause is defined on the nonterminal Switch,
and the feature is conditionally added if the type of the switch

expression is a string. ExtendJ attributes used here are type
which is a reference to the expression’s type, and isString
which is a boolean attribute on types.

III. CORPORA ANALYSIS

We used JFeature to analyse four widely used corpora, to

investigate to what extent the different Java features from

Table I are used. We picked the newest available version of

each of the corpora.

A. Corpora Description

DaCapo Benchmark Suite: Blackburn et al. introduced it

in 2006 as a set of general-purpose (i.e., library), freely avail-

able, real-world Java applications. They provided performance

measurements and workload characteristics, such as object

size distributions, allocation rates and live sizes. Even if the

primary goal of the DaCapo Benchmark Suite is intended as

a corpus for Java benchmarking, there are several instances

of frontend and static analysers evaluation. For evaluation, we

used version 9.12-bach-MR1 released in 2018.

Defects4J: introduced by Just et al., is a bug database

consisting of 835 real-world bugs from 17 widely-used open-

source Java projects. Each bug is provided with a test suite

and at least one failing test case that triggers the bug. De-

fects4J found many uses in the program analysis and repair

community. For evaluation, we used version 2.0.0 released in

2020.

Qualitas Corpus: is a set of 112 open-source Java pro-

grams, characterised by different sizes and belonging to dif-

ferent application domains. The corpus was specially designed

for empirical software engineering research and static analysis.

For evaluation, we used the release from 2013 (20130901).

XCorpus: is a corpus of modern real Java programs with an

explicit goal of being a target for analysing dynamic proxies.

XCorpus provides a set of 76 executable, real-world Java

programs, including a subset of 70 programs from the Qualitas

Corpus. The corpus was designed to overcome a lack of a

sufficiently large and general corpus to validate static and

dynamic analysis artefacts. The six additional projects added

in the XCorpus make use of dynamic language features, i.e.,

invocation handler. For evaluation, we used the release from

2017.

B. Evaluation

Methodology: To compute complete semantic analysis with

JFeature and ExtendJ, all dependent libraries and the classpath

are needed for each analysed project. Unfortunately, different

projects use different conventions and build systems, making

automatic extraction of this information difficult. Therefore,

for our study of the full corpora, we decided to extract

features depending only on the language constructs and the

standard library, but that did not require analysis of the project

dependencies. This way, we could run JFeature on these

projects without any classpath (except for the default standard

library).

Table II shows an overview of the results of the analysis.

For each corpus, we report the number of projects that use a

particular feature from Table I. More detailed results, including

the results for all 26 features, and counts for each individual

project, are available at https://github.com/lu-cs-sde/JFeature/

blob/main/features.xlsx.

For standard libraries, like java.lang.reflect.* and

java.util.concurrent.*, we count all variable accesses,

variable declarations, and method calls whose type is hosted

in the respective package.

While ExtendJ mostly complies to the JLS version 8, its

Java 8 type inference support diverges from the specification

in several corner cases. As Table II shows, these limitations did

not affect DaCapo, but they did surface in 43 method calls in

9 projects (2 projects in Defects4J that we manually inspected

to validate our findings.

238

TABLE II: Corpora Analysis. Each entry represents the total number of projects utilising the respective feature.

CORPUS

(# PROJECTS)

JAVA 1.1 - 4 JAVA 5 JAVA 7 JAVA 8

In
n
er

C
la

ss

ja
v
a.

la
n
g
.r

efl
ec

t.
*

S
tr

ic
tf

p

A
ss

er
t

S
tm

t

A
n
n
o
ta

te
d

C
U Annotation Enum Generics

E
n
h
an

ce
d

F
o
r

V
ar

A
rg

s

S
ta

ti
c

Im
p
o
rt

ja
v
a.

u
ti

l.
co

n
cu

rr
en

t.
*

D
ia

m
o
n
d

O
p
er

at
o
r

S
tr

in
g

in
S

w
it

ch

T
ry

w
/

R
es

o
u
rc

es

M
u
lt

i
C

at
ch

L
am

b
d
a

E
x
p
re

ss
io

n

C
o
n
st

ru
ct

o
r

R
ef

er
en

ce

M
et

h
o
d

R
ef

er
en

ce

In
te

rs
ec

ti
o
n

C
as

t

D
ef

au
lt

M
et

h
o
d

U
se

D
ec

l

U
se

D
ec

l

M
et

h
o
d

C
o
n
st

ru
ct

o
r

C
la

ss

In
te

rf
ac

e

DACAPO (15) 15 12 2 5 0 8 4 14 8 6 2 7 4 8 7 5 7 2 1 3 2 2 0 2 0 0
DEFECTS4J (16) 16 15 1 8 0 15 7 16 14 13 3 12 10 15 13 14 14 14 7 13 10 10 5 8 1 1
QUALITAS (112) 109 100 4 51 9 67 35 109 45 55 7 59 41 68 49 46 50 1 1 1 1 0 0 0 0 0
XCORPUS (76) 74 65 4 28 3 39 21 74 32 31 4 35 22 39 28 25 27 4 2 3 3 2 1 2 0 0

CORPUS

PROJECTS

MOCK ASM DERBY JUNIT TOMCAT XERCES JREP JMETER

1.1 2.0 3.3 5.2 10.14 10.9 4.10 4.12 6.0 7.0 2.8 2.10 1.1 3.7 2.5 3.1
DaCapo � � � � �

Defects4J �
Qualitas � � � � � �
XCorpus � � � � � �

TABLE III: Projects used in the corpora with different

versions.

Corpora overlap: Figure 2 shows the overlap between

the four corpora as two Venn diagrams where each number

represents a project. In the left diagram, two versions of the

same project are counted as two separate projects. In the right

diagram, we only consider the project name, disregarding the

version. From the left diagram, we can see that Defects4J

does not overlap with any other corpus analysed. As expected,

most of the projects are shared across Qualitas and XCorpus

as XCorpus was built as an extension of Qualitas. From the

diagrams, we can see that eight projects (145-137) are used

among the corpora, but with different versions. Table III details

these projects and versions.

Discussion: Table II provides insight into the features

utilised by each project. Using Qualitas Corpus as an illus-

tration, we see that strictfp is only used in four projects.

Similarly, in DaCapo, fewer than fifty percent of the projects

use concurrency libraries. With JFeature, we can achieve

a fine-grained classification of the properties. We can, for

16

42664

611

TOT:145
1 14

3964

1

6

36

2

1

TOT:137

DACAPO DEFECTS4J QUALITAS XCORPUS

Fig. 2: Project overlap. In the left diagram, two projects with

the same name but different versions are counted as distinct—

the diagram to the right shows overlap when versions are

disregarded.

instance, distinguish between uses and declarations of anno-

tations, and when it comes to generics, we can distinguish

between the declarations of generic methods, classes, and

interfaces, providing the user with a better comprehension

of the corpus. It is apparent that most projects utilise only

Java 4 and Java 5 features. With the exception of Defects4J,

few projects employ Java 7 and Java 8. Indeed, this table

reveals that Defects4J is the most modern corpus, as nine of

the fourteen assessed applications utilise at least one of the

observed Java 8 features.

IV. EXTENSIBILITY

Extensibility is one of the key characteristics of JFeature.

Users can create new queries to extract additional features,

making use of all attributes available in the ExtendJ compiler.

We illustrate this by adding a new feature, OVERLOADING,

that measures the number of overloaded methods in the source

code. Listing 1 shows the JastAdd code for this: we define

a new boolean attribute, isOverloading, that checks if a

method is overloaded. We then use this attribute to condition-

ally contribute to the features collection, only for overloaded

method declarations. The attribute isOverloading is defined

using several ExtendJ attributes: the attribute hostType is

a reference to the enclosing type declaration of the method

declaration. A type declaration, in turn, has an attribute

methodsNameMap that holds references to all methods for that

type declaration, both local and inherited. If there is more than

one method for a certain name, that name is overloaded.

Listing 1: Definition of the OVERLOADING feature

MethodDecl contributes
new Feature("JAVA1", "Overloading", getCU().path())
when isOverloading() to Program.features();

syn boolean MethodDecl.isOverloading()
= hostType().methodsNameMap().get(getID()).size() > 1;

For the computation to work, it is necessary to supply the

classpath, so that ExtendJ can find the classfiles for any direct

or indirect supertypes of types in the analysed source code.

We analysed 16 distinct projects for which we successfully

extracted the classpaths and dependencies required for ExtendJ

compilation. The results provided by JFeature for the sixteen

239

PROJECTS ∼ KLOC
NUMBER

of METHODS

OVERLOADED

METHODS
%

antlr-2.7.2 34 2081 358 17,2
commons-cli-1.5.0 6 585 76 13
commons-codec-1.16-rc1 24 1812 422 23,3
commons-compress-1.21 71 5359 571 10,7
commons-csv-1.90 8 716 93 13
commons-jxpath-1.13 24 2030 167 8,23
commons-math-3.6.1 100 7229 1779 24,6
fop-0.95 102 8317 666 8,01
gson-2.90 25 2289 125 5,46
jackson-core-2.13.2 48 3687 839 22,8
jackson-dataformat-2.13 15 1122 161 14,3
jfreechart-1.0.0 95 6980 1000 14,3
joda-time-2.10 86 9324 1257 13,5
jsoup-1.14 25 2556 408 16
mockito-4.5.1 19 2054 318 15,5
pmd-4.2.5 60 5324 1021 19,2

TABLE IV: Results from the OVERLOADING feature.

projects are summarised in Table IV. As can be seen, each

project has overloaded methods. In some cases, such as

commons-codec, commons-math, and jackson-core, more

than one fifth of the methods are overloaded.

OVERLOADING is a good example of a feature that requires

semantic analysis—it can not be computed by a simple pattern

match using regular expressions or a context-free grammar.

V. USE CASES FOR JFEATURE

We already discussed two possible use cases for JFeature:

corpus evaluation (Section III), and extending JFeature to

identify specific features (Section IV). In this section, we

discuss two additional use cases: longitudinal studies and

project mining.

A. Longitudinal Study

JFeature can be used to conduct longitudinal studies, i.e.,

changes occurring over time. As an example, we conducted a

study on Mockito and its evolution on the adaption of Java 8

features over time. Mockito is one of the most popular Java

mocking frameworks and has an extensive history with over

5,000 commits. Java 6 was utilised by Mockito until version

2.9.x. With version 3.0.0, Java 8 was adopted. The evolution

of the occurrences of LAMBDA EXPRESSIONS and TRY WITH

RESOURCES is depicted in Figure 3. As can be seen, at commit

Fig. 3: Usage of LAMBDA EXPRESSIONS and TRY WITH

RESOURCES in Mockito over time.

number 52693, there is a substantial increase in utilisation of

try with resources, whereas at commit number 56964, there is

a significant increase in the use of lambda expressions.

B. Project mining

Contemporary revision control hosting services (GitHub5,

GitLab6, bitbucket7) offer uniform interfaces to the source

code of millions of software projects. These interfaces enable

researchers to “mine” software projects at scale, filtering

by certain predefined properties (e.g., the number of users

following the project or the main programming language). For

example, the GitHub Java Corpus [1] collects almost 15,000

projects from GitHub, filtered to only include Java projects

that have been forked at least once. Combining JFeature

with these query mechanisms allows researchers to select

projects by more detailed syntactic and semantic features.

For instance, a corpus suitable for answering questions about

race detection [22] could select projects that make explicit

use of JAVA.UTIL.CONCURRENT.*, while an exploration of

functional programming patterns [6] could select projects that

use LAMBDA EXPRESSIONS and METHOD REFERENCES.

VI. RELATED WORK

Existing tools for code metrics are usually focused on code

quality metrics, rather than what language features are used,

and typically analyse the intermediate representation rather

than the source code. One example is the CKJM tool [29]

for the Chidamber and Kemerer metrics [5]. Another example,

that more closely resembles ours, is jCT, an extensible metrics

extractor for Java 6 IL-Bytecode, introduced by Lumpe et

al. [23], in 2011. Like us, they evaluated their tool on Qualitas

Corpus; however, because jCT works only on annotated byte-

code and not on source code, the number of features that can

be extracted is limited. A significant amount of information

is lost during the compilation of Java source code to Java

bytecode. For example, enhanced for statements, diamond

operators and certain annotations, such as @Override, are not

present in the bytecode. For XCorpus, the authors analysed

the language features used, and a summary was presented in

their paper [7]. They also analysed the bytecode, which was

implemented using the visitor pattern.

A way to improve the user experience would be to integrate

JFeature with a visualisation tool like Explora [26]. The

idea behind Explora is to provide to the user a visualisation

tool designed for simultaneous analysis of multiple metrics

in software corpora. Finally, JFeature may be enhanced by

incorporating automated dependency extractors, such as Mag-

pieBridge’s JavaProjectService [24], to infer and download

libraries automatically. Currently, JavaProjectService infers the

dependencies for projects using Gradle or Maven as build

system.

3Commit: b3fc349.
4Commit: 6b818ba.
5https://github.com
6https://gitlab.com
7https://bitbucket.org

240

VII. CONCLUSIONS

We have presented JFeature, a declarative and extensible

static analysis tool for the Java programming language that

extracts syntactic and semantic features. JFeature comes with

twenty-six predefined queries and can be easily extended with

new ones.

We ran JFeature on four widely used corpora: the DaCapo

Benchmark Suite, Defects4J, Qualitas Corpus, and XCorpus.

We have seen that, among the corpora, Java 1-5 features

are predominant. This leads us to conclude that some of the

corpora may be less suited for the evaluation of tools that

address features in Java 7 and 8.

We have illustrated how JFeature can be extended to cap-

ture semantically complex features by writing the queries as

attribute grammars, extending a full Java compiler. This allows

powerful queries to be written that can make use of all the

compile-time properties computed by the compiler.

We discussed several possible use cases for JFeature: eval-

uation of corpora, mining software collections to create new

corpora, and longitudinal studies of how projects have evolved

with regard to the use of language features. We also note

that for some features to be analysed, the full classpath and

dependencies are required. An interesting future direction is

therefore to combine JFeature with recent tools that support

automatic extraction of such information from projects that

follow common build conventions.

REFERENCES

[1] M. Allamanis and C. Sutton. Mining Source Code Repositories at Mas-
sive Scale using Language Modeling. In The 10th Working Conference
on Mining Software Repositories, pages 207–216. IEEE, 2013.

[2] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann.
The DaCapo benchmarks: Java benchmarking development and analysis.
In OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN
conference on Object-Oriented Programing, Systems, Languages, and
Applications, pages 169–190, New York, NY, USA, Oct. 2006. ACM
Press.

[3] S. M. Blackburn, K. S. McKinley, R. Garner, C. Hoffmann, A. M. Khan,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, et al.
Wake up and smell the coffee: Evaluation methodology for the 21st
century. Communications of the ACM, 51(8):83–89, 2008.

[4] J. T. Boyland. Descriptional composition of compiler components. PhD
thesis, University of California, Berkeley, 1996.

[5] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented
design. IEEE Transactions on software engineering, 20(6):476–493,
1994.

[6] D. R. Cok. Reasoning about functional programming in java and c++. In
Companion Proceedings for the ISSTA/ECOOP 2018 Workshops, pages
37–39, 2018.

[7] J. Dietrich, H. Schole, L. Sui, and E. D. Tempero. XCorpus - An
executable Corpus of Java Programs. Journal of Object Technology,
16(4):1:1–24, 2017.

[8] A. Dura, C. Reichenbach, and E. Söderberg. JavaDL: Automatically
Incrementalizing Java Bug Pattern Detection. In Proceedings of the
ACM on Programming Languages. ACM, Sep 2021.

[9] T. Ekman and G. Hedin. The JastAdd extensible Java compiler. In
Proceedings of the 22nd annual ACM SIGPLAN conference on Object-
oriented programming systems and applications, pages 1–18, 2007.

[10] G. Hedin. Reference attributed grammars. Informatica (Slovenia), 24(3),
2000.

[11] G. Hedin and E. Magnusson. JastAdd - an aspect-oriented compiler
construction system. Science of Computer Programming, 47(1):37–58,
2003.

[12] JDK 1.1 New Feature Summary. Note: Available as file
jdk1.1.8/docs/relnotes/features.html in zip file for Java Development Kit
(JDK) Documentation 1.1 (jdk118-doc.zip) at https://www.oracle.com/
java/technologies/java-archive-downloads-javase11-downloads.html (lo-
gin needed), Last accessed: 2022-08-03.

[13] Java 2 SDK, Standard Edition, version 1.2. Summary of
New Features and Enhancements. Note: Available as file
jdk1.2.2.202/docs/relnotes/features.html in zip file for Java
2 SDK, Standard Edition Documentation 1.2.2_006 (jdk-
1_2_2_006-doc.zip) at https://www.oracle.com/java/technologies/
java-archive-javase-v12-downloads.html (login needed), Last accessed:
2022-08-03.

[14] Java 2 SDK, Standard Edition, version 1.3. Summary of New Fea-
tures and Enhancements. Note: Available as file docs/relnotes/fea-
tures.html in zip file for Java 2 SDK, Standard Edition Documen-
tation 1.3.1 (java1.3.zip) at https://www.oracle.com/java/technologies/
java-archive-13docs-downloads.html (login needed), Last accessed:
2022-08-03.

[15] Java 2 Sdk for Solaris Developer’s Guide. Sun Microsystems, 2000.
ISBN: 978-14-005-2241-5, Note: Includes description of New Features
and Enhancements for Java 1.4.

[16] New Features and Enhancements. J2SE 5.0. https://docs.oracle.com/
javase/1.5.0/docs/relnotes/features.html. Accessed: 2022-08-03.

[17] Java SE 6 Features and Enhancements. https://www.oracle.com/java/
technologies/javase/features.html. Accessed: 2022-08-03.

[18] Java SE 7 Features and Enhancements. https://www.oracle.com/java/
technologies/javase/jdk7-relnotes.html. Accessed: 2022-08-03.

[19] What’s New in JDK 8. https://www.oracle.com/java/technologies/javase/
8-whats-new.html. Accessed: 2022-08-03.

[20] R. Just, D. Jalali, and M. D. Ernst. Defects4J: A database of existing
faults to enable controlled testing studies for Java programs. In
Proceedings of the 2014 International Symposium on Software Testing
and Analysis, pages 437–440, 2014.

[21] D. E. Knuth. Semantics of context-free languages. Mathematical systems
theory, 2(2):127–145, 1968.

[22] K. Li, C. Reichenbach, C. Csallner, and Y. Smaragdakis. Residual
investigation: Predictive and precise bug detection. ACM Trans. Softw.
Eng. Methodol., 24(2):7:1–7:32, Dec 2014.

[23] M. Lumpe, S. Mahmud, and O. Goloshchapova. jCT: A Java Code
Tomograph. In 2011 26th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2011), pages 616–619, 2011.

[24] L. Luo, J. Dolby, and E. Bodden. MagpieBridge: A General Approach
to Integrating Static Analyses into IDEs and Editors (Tool Insights
Paper). In A. F. Donaldson, editor, 33rd European Conference on Object-
Oriented Programming (ECOOP 2019), volume 134 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 21:1–21:25, Dagstuhl,
Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[25] E. Magnusson, T. Ekman, and G. Hedin. Extending attribute gram-
mars with collection attributes–evaluation and applications. In Seventh
IEEE International Working Conference on Source Code Analysis and
Manipulation (SCAM 2007), pages 69–80, 2007.

[26] L. Merino, M. Lungu, and O. Nierstrasz. Explora: A visualisation tool
for metric analysis of software corpora. In 2015 IEEE 3rd Working
Conference on Software Visualization (VISSOFT), pages 195–199. IEEE,
2015.

[27] C. Reichenbach, N. Immerman, Y. Smaragdakis, E. Aftandilian, and
S. Z. Guyer. What can the GC compute efficiently?: A language
for heap assertions at GC time. In Proceedings of the 25th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2010, October 17-21, 2010,
Reno/Tahoe, Nevada, USA, pages 256–269. ACM, 2010.

[28] I. Riouak, C. Reichenbach, G. Hedin, and N. Fors. A precise framework
for source-level control-flow analysis. In 2021 IEEE 21st Interna-
tional Working Conference on Source Code Analysis and Manipulation
(SCAM), pages 1–11. IEEE, 2021.

[29] D. Spinellis. Tool writing: A forgotten art? IEEE Software, 22(4):9–11,
July/August 2005.

[30] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton,
and J. Noble. Qualitas Corpus: A Curated Collection of Java Code
for Empirical Studies. In 2010 Asia Pacific Software Engineering
Conference (APSEC2010), pages 336–345, Dec. 2010.

241

