

Towards Service Collaboration Model in Grid-based Zero
Latency Data Stream Warehouse (GZLDSWH)

Tho Manh Nguyen, A Min Tjoa
Institute of Software Technology,
Vienna University of Technology

tho,tjoa@ifs.tuwien.ac.at

Guenter Kickinger,Peter Brezany
Institute for Software Science,

University of Vienna
kickinger,brezany@par.univie.ac.at

Abstract
A Grid-based Zero-Latency Data Stream Warehouse
(GZLDSWH), built upon a set of OGSI-based grid
services and GT3 Toolkit, overcomes the resource
limitation issue for data stream processing without using
traditional approximate approaches. However, due to its
“automated event-based reaction” characteristic, the
GZLDSWH requires a mechanism which allows the grid
services to be able to work together to fulfil the common
tasks. This paper describes the Collaboration Model for
the Grid Services which enables the automation of the
GZLDSWH in capturing and storing continuous data
streams, making analytical processing, and reacting
autonomously in near real time with some kinds of
events based on well-established Knowledge Base.
Keywords: Grids based Zero-Latency DWH, Data
Streams processing, dynamic workflow execution

1. Introduction

We are entering a new area of computing in today’s
incredibly complex world of computational power, very
high speed machine processing capabilities, complex data
storage methods, next generation telecommunications,
new generation operating systems and services, and
extremely advanced network services capabilities. At the
same time, the number of emerging applications which
handle various continuous data streams [1,10,12,17], such
as sensor networks, networking flow analysis,
telecommunication fraud detection, e-business and stock
market online analysis, is growing. It is demanding to
conduct advanced analysis over fast and huge data
streams to capture the trends, patterns, and exceptions.
Data streams arrive in high-volume, in un-predictable
rapid bursts and need to be processed continuously.
Processing data streams, due to the lack of resource, is
challenging in the following two aspects. On the one
hand, random access to fast and large data streams may
be impossible. On the other hand, the exact answers from

data streams are often too expensive. Therefore, the
approximate answers [1,9,12,15] are acceptable because
there is no existing computing capacity which is strong
enough to produce exact analytical results on continuous
data streams.

In the last few years we have witnessed the emergence
of Grid Computing [6,8] as an important new technology
accepted by a remarkable number of scientific and
engineering fields and by many commercial and
industrial enterprises. Grid Computing provides highly
scalable, secure, and extremely high performance
mechanisms for discovering and negotiating access to
remote computing resources in a seamless manner. Our
research effort is trying to build a Grid based Zero-
Latency Data Stream Warehouse (GZLDSWH) that can
capture continuous data stream to perform analytical
processing and react automatically with some kinds of
events based on well-established Knowledge. Instead of
applying the approximate approach based on statistical
estimations, we try to capture and store all data streams
continuously while making the analytical processes
within the Grids. The GZLDSWH is composed of several
Grid services built on top of OGSI and GT3 toolkit.
However, due to its “automated event-based reaction”
characteristic, the GZLDSWH requires a mechanism
which allows the grid services to be able to work together
to fulfil the common tasks. During its runtime, a Grid
service instance must be able to discover, create, bind,
and invoke other relevant service instances within the
Grids environment.

This paper describes the Automated Collaboration
Model for Grid Services enabling the automation of a
GZLDSWH in capturing and storing continuous data
streams, making analytical processing, and reacting
autonomously in near real time with some kind of events
based on well-established Knowledge. An overview of
the GZLDSWH will be described in Section 2. Section 3
introduces the operations of the GZLDSWH services to
react against continuous data streams in the near real
time. The Collaboration Model of the Grid services will

be discussed in Section 4. In Section 5, we introduce our
XML-based language namely DSCL. The Workflow
management service will be described in Section 6.
Section 7 concerns some Related Work. Finally, we give
a conclusion and future work in Section 8.

2. GZLDSWH overview

A Zero-Latency Data Warehouse (ZDLWH) [3,11]
aims to significantly decrease the time to react to business
events. This allows the organizations to deliver relevant
information as fast as possible to applications which need
a near real-time action to new information captured by an
organization’s information system. In Data Stream
applications, events take the form of continuous data
streams. The exact analysis results on these data stream
events are very expensive because they require a very
high computing capacity which is capable of huge storage
and computing resources. A Grid-based approach thus is
applied in ZLDWH to tackle the issue of lacking resource
for continuous data stream processing. Figure 1 depicts
significant phases throughout the overall process of such
GZLDSWH.

Figure 1. Overview of GZLDSWH

The continuous data streams will be captured, cleaned

and stored within the Grids. The analytical processes can
be executed immediately after the new data arrival or
based upon some predefined schedule. Consequently, the
virtual Data Warehouse will be built on the fly [7] from
data sources stored within the Grid nodes. Obviously, this
approach is not concerned with traditional incremental
updating issues in Data Warehouse because the virtual
DWH is built from scratch using the most current data.
Analytical processes will then be executed on such virtual
DWH and the results will be evaluated by the Knowledge
Base. Finally, depends on specification of the Knowledge
Base, the system sends notifications, alerts or
recommendations to the users.

All of these activities will be executed automatically
without user intervention. The activities at each phase

compose of several tasks and the specific tasks will be
accomplished by invoking relevant services within the
Grid environment. Sharing the same approach with
GridMiner [2,13,14], the structure of GZLDSWH is built
on top of OGSI and GT3 Toolkit, including the following
specific Grid services as described in figure 2.
• Data Capturing Service (DCS) captures data streams

in the limited time without loosing the data.
• Data Cleaning Service (DES) is the optional service

that cleans the data before storing into the Grids.
• Data Storing Service (DSS) resides in each Grid node

and ready for storing the data streams without loss.
• Data Mediation Service (DMS) provides a single

virtual data source having the same client interfaces as
classical grid data sources but integrating data from
multiple heterogeneous federated data sources.

• Data Integration Service (DIS) is responsible for
secure, reliable, efficient operation and management of
the necessary data transfer within the grid
environment.

• OLAP Cube Management Service (CMS) is one of
the major components of GZLDSWH. This service
creates distributed OLAP cubes 1 from several data
sources stored at specified Grids nodes. After the
initial cube creation, the service can be used for cube
interaction and life cycle management.

• System Information Service (SIS) The SIS is a
specialized implementation enabling the system for
specific decision making and monitoring.

• Resource Broker Service (RBS) is used to find best-
fitting resources for resource allocation as a reference
for the Workflow Engine in discovering, creating,
binding and invoking other services instances.

• Data Preprocessing Service (DPS) performs several
pre-processing activities such as data cleaning,
normalization, selection, reduction, transformation etc.

• Data Analysis Service (DAS) is another major core
component of the system. It works very close with the
OLAP Engine and performs analytical process by
sending commands such as “drill up”, “drill down”,
“slide and dice”, etc. which allows analyzing datasets
at different abstraction levels. The outputs of the Data
Analysis Service are the analysis results which will
then be evaluated by the Knowledge Base for further
actions.

• Data Mining Service (MIS) is created as an
extensible framework providing necessary data mining
algorithms making it convenient for the related
application developers to easily plugin their algorithms
and tools.

• Knowledge Base Rule Design Service (RDS) allows

1 Online Analytical Processing (OLAP) is based on multi-dimensional
data structures called cubes

Figure 2. The Service Components of GZLDSWH

the users to specify the Knowledge Base for the
system. The Knowledge Base embeds the ECA rules
which consists of the event, condition and action part,
but carries out complex OLAP analyzes on warehouse
data instead of evaluating simple conditions as
compared with ECA rules in OLTP system.

• Notification/Action Service(NAS) takes the analytical
results from DAS, evaluates these results against the
Knowledge Base rules, and finally takes suitable
actions such as issuing notifications, alarms or
recommendations to the users. It can also invoke the
DAS to perform analytical process when receiving the
data update events from Grids node data sources.

• Workflow Management Service (WMS) is used for
services collaboration and cooperation. This service
provides the execution of the complex, highly dynamic
workflows for several heterogeneous grid services.
The workflow supports service execution, service
termination, service communications, etc.

3. The operation of GZLDSWH

In this section, we describe how the GZLDSWH

system operates for processing and reacting to the
continuous data streams, in the near real time. The system
operations are based on the collaborative interaction
between the services to fulfill the pre-defined reactive
plans which are specified by the advanced knowledge
user. Within the Grids environment as described in Fig. 3,
there are one Master node and several child nodes (Node
1, 2…, Node N). The Master node controls other child
nodes to fulfill system activities. These child nodes keep
the role of storing data within the Grid environment. The
Master node therefore includes most of the essential
services while the child nodes only contain some data
input services and local data update detection services.
The Master node also keeps the Grid metadata for Grids
management and the Knowledge Base for controlling
event reaction behavior.

The operation of the GZLDSWH is as follows. The
Data Capturing Service (DCS) receives continuous data
streams from stream sources such as sensor systems,
satellites, etc. Due to the huge amount of data arriving,
the DCS must capture the data timely and invokes
available Data Storing Services (DSS) resident at several
child nodes for storing data. The DCS could invoke Data
Cleaning Service (DES) to clean the data before storing.

After storing data at child nodes, the Analysis Service
(DAS) at the Master node will be invoked immediately or
after predefined timely schedule depending on
application requirements and performance trade off. DAS
execution will create the virtual Data Warehouse from
scratch. For this purpose firstly, the DASs available at
several local child nodes are invoked. Due to this, the
Cube Management Service (CMS) gains the essential raw
data at the child nodes to build the global cube. Each
child node contains part of the cube namely “cube
chunk”. Data will then be integrated into the common
format by the Data Integration Service (DIS). Before
being stored into the virtual Data Warehouse, data can be
passed to preprocessing phase via the Data Preprocessing
Service (DPS). The DPS can perform several tasks such
as data cleaning, data transformation, data normalization
or data reduction. After the global cube is formed, the
DAS will perform analysis queries or data mining
algorithms (via the equivalent Mining Service - MIS)
based on the data inside the virtual DWH.

The analysis results then will be sent to the
Notification-Action Service (NAS) for evaluation. The
NAS accesses the Knowledge Base and evaluates the
rules. The Knowledge Base rules are provided by the user
through the Rule Design Service (RDS). The NAS then
will issue relevant notifications or alerts to the users. It
can also send back the action commands to several grid
child nodes for executing some actions at the local data
sources such as insert, delete, update, etc. Besides, the
analysis process can be executed to answer the analysis
queries issued by other applications. Especially, the

analysis process can also be executed in case the local
update data happens at the grid child nodes. Whenever
the local data update happens, the NAS at local child
node sends the “local data updates” message events to the
NAS of the Master node. The NAS then invokes the DAS
and the Analysis process will execute.

The Grid services invocation process described above
is strictly monitored by the Resource Broker Service
(RRS) and the System Information Service (SIS). These
services manage the resource available and finding the
best-fitting resources for resource allocation and dispatch.
The role of Workflow Management service (WMS) is to
execute the complex, highly dynamic workflows
involving different grid service instances. The workflows
are constructed flexibly through the adaptive,
architectural interaction framework.

Figure 3. The operations of GZLDSWH

4. Automatic Grid service Collaboration

As previously mentioned, GZLDSWH is composed of

many specific OGSI-based services. Each service is able
to perform an individual task within the whole process.
Obviously, these services must have the ability of
collaborating with other services to fulfill the whole
common purpose. In GridMiner [13,14], the services do
not communicate with each other. The output of the first
service serves as the input of the second service, the
output of the second one serves as the input of the third
one and so on. No service thus is aware of other existing
services and each of the service is able to run completely
independently.

However, in our system, due to the requirement of
automated event-based reaction, a service must be able to
discover, create, bind, and invoke relevant service
instances within the Grids environment. The execution
flows are specified by pre-defined workflow in which the
services are arranged in the specified logical execution
order to fulfill the common task. However, during the
execution time, the services have their autonomy to
invoke other relevant physical service instances
depending on the context at that time. We therefore need
the model that enables the automatic adaptive
collaboration between the Grid services followed by the
pre-defined plan which describes the logical service
execution flows (as described in figure 4).

To the best of our knowledge, there are 2 possible
approaches for the service flow execution i.e. centralized
control and distributed control. In the former approach,
there is a central service control engine which controls all
service executions from the start node to the end node of
the workflow. The engine itself is responsible in
discovering, creating, binding, invoking, and destroying
service instances to follow the logical workflow. The
engine thus must keep the information of the whole
workflow and should trace the information of the Grid
environment such as grid nodes status, resource
availability, etc. to coordinate the services execution. In
the later approach, there is no such central engine but
each service instance has its own “knowledge” to invoke
the next service instances throughout the workflow. It is
not necessary for each service to keep information of the
whole workflow, instead, each service need to keep only
part of the workflow metadata related to itself such as its
immediate successor and predecessor services, the Grids
environment context at its time of execution. That
information is passed to the service as parameter at the
time of its invocation. The service will use such
information to invoke the next relevant service instances.

Both of the two approaches have advantages and
disadvantages. In the centralized control approach, the
central service control engine, which could also be
realized as a service, copes with the coordination between
other services. The other services thus only focus on their
specific functionality without taking into account the
workflow execution. However, it could be the heavy
work-load for the engine service if it processes the high
complexity workflow or if the number of service
instances increases. The distributed control approach, on
the other hand, does not have to deal with the bottle-neck
issue. However, it is more complicated to develop the
services because each service besides its specific
functionality must be realized as an agent to adapt with
flexible service instance invocation. Moreover, the
service invocation would also become more complex due
to the parameters

Figure 4. Predefine Workflow of Service Invocation

transferred between the service instances. Further
investigation on distributed control approach is out of the
scope of this paper. However, it will be one of our
considerations in the future work.

In GZLDSWH, we use the central service control
engine to coordinate the service execution via XML
based workflow description language namely DSCL
(Dynamic Service Control Language). The engine will
extend the DSCE engine specified in GridMiner [14] to
support the condition branches, loops as well as allow the
references of the service instance handles (GSH) could be
transferred as parameters in DSCL. The logical workflow
could be specified with the service instance handles are
not known in advanced (their handle references will be
declared as variables). During the execution time, the
Engine queries the Resource Broker Service to get the
relevant dynamic service instance handle references. The
Engine then will invoke these service instances via the
reference variables. That operation will be repeated at
each step of the workflow until the whole process is
finished. We will describe in more detail about the DSCL
in Section 5 and our Workflow Management service in
Section 6.

5. Dynamic Service Control Language

DSCL is a XML based language allowing the users to

specify the workflow of services activities. It contains
exactly two sections:
• The <variables> section: all variables must be defined

here. The variables could be either the parameters of
service calls, or the results of service calls. XML
Schema Simple Type, Complex Type and SOAP
Arrays Type are supported as variable type.
<variables>

 <variable name="iAge">
 <value type="int" 25 </value>
 </variable>

</variables>
• The <composition> section contains the description of

the workflow to be executed. A workflow composes of
a set of activities which could be classified as “control
flow” or “operational”. The control flow activities
controls the execution of the workflow and thus must
contain other activities while the operational activities
are the atomic activities which perform operations.
<composition>

 control flow activities
 other control flow activities or operational activities
 operational activities
</compostion>

5.1 Workflow Structure

Our DSCL supports 4 basic execution styles (Sequential
execution, Parallel execution, Condition Branch and
Loop) by providing several tags namely <Sequence>,
<Parallel>, <Condition>, and <Loop> respectively.
These tags could be nested to realize the complex
workflow composition. Figure 5 states an example of a
workflow including all control activities and the
respective DSCL document

Figure 5. Composite Workflow Example

<composition>
 <sequence>
 activity1
 <condition>
 cond_var1 = TRUE
 <loop while cond_var2 = TRUE>
 activity2
 </loop>
 cond_var1 = FALSE
 <sequence>
 <parallel>
 activity3
 activity4
 </parallel>
 activity5
 </sequence>
 </condition>
 </sequence>
</compostion>

5.2 Workflow operations

Beside the control flow activities, DSCL supports

other activities namely operational activities. Operational

activities perform operations of interacting with the
underlying Grid services such as creating new service
instances, destroying instances, invoking operation of
services, querying service data element. DSCL provides
respective tags to specify these operational activities:
<createService>, <destroyService>, <invoke>, and
<querySDE>. The operational activity could not contain
other activities and must have the mandatory attribute
namely activityID which is of type DTD. This attribute is
necessary for the workflow engine to identify the activity.

The great difference between Grid and common Web
services is the fact that the Grid service could be either
persistent or transient. The persistent service is created
and available if its container is running. In contrast, the
transient one is created and invoked when required and
soon destroyed afterwards. The transient service is
always created by its Factory service. The following
information is necessary to create a new service instance

1. The location of the factory service
2. Additional service parameters
3. A virtual instance name of the newly created instance

…
<createService activityID ="Act1"
factory-gsh="http://url/serviceFactory"
instance _ name="newInstance1"/>
…

In GZLDSWH, there is the situation when we have
more than equivalent factory services at different grid
nodes at the same time e.g. the Data Storing services
located at several child nodes when we need to store data
stream. In such situation and in other cases when the Grid
environment changes rapidly, the Resource Broker
Service decide which Service Factory should be executed
to create a new instance according to the availability and
resource capacity of the different Grid nodes. DSCL
provides the dynamic service creation by allowing Grid
service handle references transferred via variables. It is
also possible to create the service instance with user
defined parameters via <parameter> tag.
…
<variables>

 <variable name="factgsh">

 <! Default value of the factory service handle>
 <value type="string" http:url/serviceFactory </value>
 </variable>
…
</variables>
…
<!other services set the value of factgsh, e.g. Resource Broker >
…
<! Create the service instance via reference to factory handle >
<createService activityID ="Act1"
factory-ref="factgsh"
instance _ name="newInstance1"/>

After a service instance is created, it is possible to
destroy the instance, invoke its operations or query its

data elements. These activities require the service
instance reference to identify the relevant instance. We
provide 3 optional attributes namely instance-name,
instance-gsh, and instance-ref enabling to reference a
service instance (1) via instance name (2) via Grid service
handle and (3) via a variable reference to the instance.
The usage of each attribute is optional, however exactly
one of the three attributes must be used together with the
activity.
…
<destroyService activityID ="Act1"

instance-gsh="http://url/SerInst01" (or instance-name =
“Instant1” or instance-ref = “varInstGSH”)
…

Invoking an operation of a Grid service is similar to
invoking a method in common programming language, to
invoke an operation of a Grid service, the following
information is necessary:

1. The required Grid service instance – referenced by
one of the attributes: instance-name, instance-gsh,
instance-ref

2. Name of the operation – mandatory defined within
attribute operation and optional attribute portType

3. The required parameters – specified in <parameter>
tags, the parameter is simply a reference to a variable.

4. Result – storing the result of a Grid invocation via
<result> tag
…
<Invoke activityID ="CleanData01"
instance-gsh="http://url/DES01" (or instance-name = “DES01”
or instance-ref = “varInstGSH”)
operation = “Clean_Data”
<parameter variable= “Data_Strore”>
<result variable= “Data_Result”>
</Invoke>
…

Some of operations do not return the results; instead
store them into so called service data elements. To allow
querying the content of these element, DSCL provides the
tag <querySDE>, this operation requires the reference to
Grid service instance and the name of the required service
data element (stored in attribute sdName).
…
<querySDE activityID="act1"
 instance _ name="instance01"
 sdName="value"
 <result variable="var02"/>
</querySDE>
…
6. The Workflow Management Service

In GridMiner project [13,14], we have developed an

engine service so called the Dynamic Service Control
Engine (DSCE) which processes DSCL documents and
controls the service execution in both interactive and

batch modes. It provides some interesting features such as
(a) independent processing (without any interaction of the
user) of a workflow described in DSCL, (b) the provision
of all intermediate results from the services involved, (c)
the possibility for a user to stop, cancel or resume a
workflow and (d) the possibility to change workflow at
run time (by stopping the engine, changing the DSCL
document, and restarting engine again).

Figure 6. Conceptual Architecture of DSCE

Figure 6 describes the Conceptual Architecture of

DSCE [14]. The engine is implemented as a stateful,
transient OGSI Grid service and has several structured
layers. The “top” layer is the Interface layer which
provides essential operations to control the engine. The
Factory interface allows users to create a new DSCE
instance for a specific DSCL document via operation
CreateService (DSCLDocument dscl). The DSCE engine
instance now will be created and its state will change
within its life cycle according to user interactions and the
activities execution results. The possible states could be
empty, initialised, running, stopping, waiting, finishing,
or failure. The Service interface provides interactive
control operations such as changeWorkflow(), start(),
stop(), resume() as well as several service data elements
containing information about the DSCL document,
Workflow state and activity state.

The “middle” DSC Engine layer covers the main
functionality of DSCE. It controls the whole workflow
execution by controlling the execution of activities
specified by the DSCL document. First, the DSCL
workflow description is parsed, then the “network of
activities”, an internal model of the workflow, is
constructed before processing the activities. Such
activities network describes the dependency between the
activities. Each activity could have succeeding and
preceding activities. Succeeding activities are executed
right after the execution of actual activity is finished. If
an activity has more than one successor, all of them will
be executed in parallel after that actual activity is
finished. Similarly, the activity could not be started until
all of its proceeding ones are finished. This could happen

in some situations like loop or parallel execution. Several
internal operations are provided in this layer for
managing the workflow such as start(), stop(), resume(),
reset(), setDSCLWorkflow() etc. as well as some
operations for controlling the activities such as
startActivity(), EndActivity(), CreateInstanceActivity(),
DestroyInstance Activity(), InvokeActivity(), QuerySDE-
Actvity(), startNext Activites(), wat-ForPrevious-
Activities() ,etc. The necess- ary parameters of all
underlying services are also prepared at this layer.

Normally, when a Grid service is developed and
implemented, additional stub and proxy classes are
generated to hide the complexity of communication
between the client and the service. This approach is very
common and practically used in all distributed object
systems like CORBA, Java RMI, and Web Service. To
benefit from this approach, the required services or
remote objects must be known at the compilation time.
However, this requirement is not satisfied in DSCE
because DSCE receives a DSCL workflow description
document and shall be able to communicate with all
services specified within that DSCL. The “lowest” layer
namely Dynamic Grid Service Invocation (DGSI), is
composed of the DGS Invocation and Dynamic Invoker.
It provides classes which allow accessing Grid services
and their operations without using common stubs/proxy
approach. The Dynamic Invoker, the lowest layer,
provides the possibility to invoke any operation on any
underlying Grid service. It uses much of ApacheAxis
[23], and SOAP engine which are based of GT3 toolkit.
Dynamic Invoker translates an operation invocation into a
SOAP1.1 message and sends it to the corresponding
service to invoke specified operations. It provides all
necessary marshalling and un-marshalling of arguments
by firstly fetching the WSDL of the corresponding Grid
service (via its handle GSH), then setting service port
type via setPortType(String port-TypeName), setting
operation via setOperation (String operation Name) ,
setting parameters of the operation via setParameters
(Object[] params). All of information is used to construct
essential SOAP operation call. Finally invoke() executes
the operation by sending that SOAP message to
correspond services. At higher layer, the DGS Invocation
provides the classes to use stub-less operation invocation
and to access the functionality of the GT3. It provides
three classes namely DGSIService, DGSIFactory, DGSI-
Listener allowing the workflow engine to handle its
underlying services such as creation and destruction of
Grid service instance, invocation of operations, querying
of service data element and synchronization of
asynchronous service calls.

DSCE suits well in GridMiner where the interaction
role of user is important. The engine operates based on
the “physical” DSCL document specified by the user, i.e.

it only works with the DSCL that specifies exactly the
service handles. It does not accept the “logical” workflow
which only specifies the logical name of the required
service. In GZLDSWH, we sometimes do not know in
advance which service factory should be executed to
create a new instance. Instead, the decision should
depend on the runtime environment. Besides, because of
the “automated event-based reaction” feature of
GZLDSWH, a higher level of automation in service
invocation engine is required. Therefore, the Dynamic
Workflow Management Service in GZLDSWH extends
the DSCE with the automatic Workflow Re-writer ability.
Now, the WMS Service will accept the logical DSCL,
parse it and find out logical services i.e. services which
do not have the exact physical factory handle. It then
queries the Resource Broker Service to have the relevant
physical service factory handle and then re-write the
DSCL with the new factory handle value. It finally passes
the re-write DSCL to the DSCE engine to invoke the
services. The architecture of Dynamic Workflow
Management service is described in figure 7.

Figure 7.Dynamic Workflow Management service

7. Related Work

There has been a surge of interest recently in the area
of query processing over continuous data streams
[10,12,15], and other related problems such as resource
management, approximately computation, architectures
[9,10,16,17]. Furthermore, conventional OLAP and data
mining models have been extended to tackle data streams,
such as multi-dimensional analysis [5], clustering [18]
and classification [19]. However, most of previous
approaches on data stream processing focus on
approximate methods based on statistical estimations due
to the limitations of storage and computing resources.
Our effort, instead, tries to store all data streams and
processes them within the Grids as if they are stored in
the super large databases.

So far, only a little attention was devoted to
knowledge discovery on the Grid. An attempt to design
an architecture for performing data mining on the Grid
was presented in [4]. The authors present the design of a
Knowledge Grid architecture based on the non-OGSI-
based version of the Globus Toolkit, and do not consider
any concrete application domain. R. Moore presents the

concepts of Knowledge-based Grids in [20]. A lot of
valuable data integration concepts have been developed
in the project “Federated Database for Neuroscience”
[27]. The WP4 of the OGSA-DAI project is concerned
with the design of a distributed query processing service
for the Grid. However, the above projects did not take
into account the automatic collaboration between the
Grids services.

Workflow, “the coordinated execution of multiple
tasks or activities” [28], can be extended and applied
virtually to other areas, from science and engineering to
entertainment. Web services already provide mechanisms
to handle complex workflows. Since every Grid service
is a Web service with improved characteristics and
services [29] (the converse of this statement is not true), it
is possible to adapt the ideas for workflow compositions
from Web services and apply them to Grid services.
BPEL4WS 1.1 [24] is the actual standard, which can
describe compositions of Web Services. The Grid
Services Flow Language [26] intends to do the same for
Grid Services. GSFL is based on the so called Web
Services Flow Language [25], a predecessor of
BPEL4WS, published by IBM. All of those flow
language specifications have all the same target:
describing a business process built up of various web
services. This description then serves as input for a
workflow engine like BPWS4J [24] (an engine for
BPEL4WS developed by IBM). Such an engine works
with the persistent Web services (not transient Grid
services as in GridMiner or ZLGDSWH), and of course,
it requires the specification documents of “physical” Web
service URIs.

8. Conclusions and Future Work

The concept of Grid-based Zero-Latency Data Stream

Warehousing system applied Grid technology for
continuous data streams processing to tackle the resource
limitation issues. In this paper, we have introduced a Grid
service collaboration model which allows the Grid
service in GZLDSWH to collaborate with each other
automatically following the pre-defined logical
workflow. We have extended the DSCL language and
DSCE engine developed in GridMiner to allow the
dynamic re-writing of the logical workflow to the
physical one according to the Grid environment at
runtime. Detailed technical references and some results
of DSCL and DSCE could be found in our Technical
Report [14].

Both Grid and Data Stream processing technologies
are young and still evolving. The Semantic Grid [21] and
Grids services have the role similar to Semantic Web and
Web services. Recently, WS-Resource Framework &

WS-Notification [22] proposals have just been announced
as an evolution of OGSI with the purpose of effective
integration Grids and Web services standards. The work
presented here is closely related to OGSA/OGSI so it has
to adopt with the WS-Resource Framework with suitable
modifications. The distributed control of service
discovery, creation, invocation and destroying will be
considered as an alternative of collaboration model. The
orchestration of Grids or Web services, another approach
for solving the workflow problem should also be further
investigated.

Acknowledgement

This work is partly supported by grant P16095-N05 of the
Austrian Science Fund (FWF).

The first author is supported by the Science and Technology
grant of the Austrian Government and by the Student Travel
Awards for Research of Microsoft Research (STAR Program).

Reference

[1] B. Babcock, S. Babu, M. Datar, R. Motwani, and J.

Widom, “Models and Issues in Data Stream Systems”,
Proc. of the 2002 ACM Symp on Principles of Database
Systems, June 2002.

[2] P. Brezany, J. Hofer, A. Tjoa, and A. Woehrer,
“GridMiner: An Infrastructure for Data Mining on
Computational Grids”, APAC Conf. and Exhibition on
Advanced Computing, Grid Applications and eResearch,
October, 2003.

[3] R. Bruckner, “Zero-Latency Data Warehousing: Toward
an Integrated Analysis Environment with Minimized
Latency for Data Propagations”, Ph.D. Thesis, Vienna
University of Technology, November 2002.

[4] M. Cannataro, and D. Talia, “The Knowledge grid: An
architectture for distributed knowledge discovery”, Com-
munications of the ACM, Vol. 46, No. 1, January 2003.

[5] Y. Chen,, G. Dong, J. Han, B. Wah, and J. Wang, “ Multi
Dimensional Regression Analysis of Time-Series Data
Streams”, Proc. of the 28th VLDB Conference, Hong
Kong, 2002.

[6] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of
the Grid: Enabling scalable virtual organizations”, Intl. J.
Supercomputer Applications, Vol. 15, No. 3, 2001.

[7] I. Foster, and R. Grossman, “Data Integration in a
Bandwidth-Rich World”, Communications of the ACM,
Vol. 46, No. 11, November 2003.

[8] J. Joseph, C. Fellenstein, “Grid Computing”, Prentice Hall
PTR, December 2003.

[9] S. Guha, and N. Koudas, “Approximating a data stream for
querying and estimation: Algorithms and performance
valuation”, Proc. of the 2002 Intl. Conf. on Data
Engineering, 2002.

[10] R. Motwani, and J. Widom et al., “Query processing,
approximation, and resource management in a data stream
 management system”, Proc. First Biennial Conf. on
InnovativeData Systems Research (CIDR), Jan. 2003.

[11] N. Tho, and A. Tjoa, “Zero-Latency Data Warehousing:
Continuous Data Integration and Assembling Active
Rules”, 5th Intl. Conf. on Information Integration and
Web-based Applications and Services, Jakarta, Feb. 2003.

[12] P. Tucker, D. Maier, and T. Sheard, “Applying
Punctuation Schemes to Queries Over Continuous Data
Streams”, Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering, March 2003.

[13] G. Kickinger, J. Hofer, A. Tjoa, and P. Brezany,
“Workflow Management in GridMiner”, 3rd Cracow Grid
Workshop, Cracow, Poland, October 27-29, 2003

[14] G. Kickinger, and P. Brezany, “The Grid Knowledge
Discovery Process and Corresponding Control Structures”,
Technical Report, March, 2004 (http://www.gridminer.org/
publications/gridminer2004-02.pdf)

[15] S. Chandrasekaran, and M. Franklin, “Streaming queries
over streaming data”, Proc. 28th Intl. Conf. on Very Large
Data Bases, Aug. 2002.

[16] A. Dobra, M. Garofalakis, J. Gehrke and R. Rastogi,
“Processing complex aggregate queries over data streams”,
Proc. of the 2002 ACM SIGMOD Intl. Conf. on
Management of Data, 2002.

[17] A. Lerner, and D. Shasha, “The Virtues and Challenges of
Ad Hoc + Streams Querying in Finance”, Bulletin of the
 IEEE Computer Society Technical Committee on Data
Engineering, March 2003.

[18] S. Guha, N. Mishra, R. Motvani, and L. O'Callaghan,
“Clustering Data Streams”, Proc. IEEE Symposium on
Foundations of Computer Science (FOCS00), CA, 2000.

[19] G. Hulten, L. Spencer, and P. Domingos, “Mining Time-
changing Data Streams”, Proc. of the Seventh ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD01), CA, 2001.

[20] R. Moore, “Knowledge-Based Grids”, Technical Report
TR-2001-02, San Diego Supercomputer Center, Jan. 2001.

[21] D. Roure, N .Jennings, and N. Shadbolt1, “The Semantic
Grid: A Future e-Science Infrastructure”, available at
http://www.semanticgrid.org/documents/semgrid-journal
/semgrid-journal.pdf

[22] Globus Alliance, IBM, and HP, “The WS-Resource
Framework”, at http://www-fp.globus.org/wsrf/default.asp

[23] The Axis Project, “Webservices – Axis 1.1”, at
http://ws.apache.org/axis

[24] IBM, “The IBM business process execution language for
web services”, at http://alphaworks.ibm.com/tech/bpws4j

[25] F. Leymann, “Web services flow language (WSFL 1.0)”, at
http://www-4.ibm.com/software/solutions/webservices/pdf
/WSFL.pdf

[26] S, Krishnan, P. Wagstrom, and G. Laszewski “GSFL: A
workflow framework for grid services”, at
http://www.globus.org/cog/papers/gsfl-paper.pdf

[27] B. Ludaescher, A.Gupta, E. Martone, “Model-based
mediation with domain maps”, 17th Intl. Conference on
Data Engineering (ICDE), Heidelberg, April 2001.

[28] D. Marinescu, “Internet-Based Workflow Management:
Toward a Semantic Web”, John Wiley, 2002.

[29] B. Sotomayor, “The Globus Toolkit 3 Programmer's
Tutorial”, at http://www.casa-sotomayor.net/gt3-tutorial/

http://www.cyf-kr.edu.pl/cgw03/index.html
http://www.cyf-kr.edu.pl/cgw03/index.html
http://www.gridminer.org/
http://www.semanticgrid.org/documents/semgrid-journal /semgrid-journal.pdf
http://www.semanticgrid.org/documents/semgrid-journal /semgrid-journal.pdf
http://www-fp.globus.org/wsrf/default.asp
http://ws.apache.org/axis
http://alphaworks.ibm.com/tech/bpws4j
http://www-4.ibm.com/software/solutions/webservices/pdf /WSFL.pdf
http://www-4.ibm.com/software/solutions/webservices/pdf /WSFL.pdf
http://www.globus.org/cog/papers/gsfl-paper.pdf
http://www.casa-sotomayor.net/gt3-tutorial/

