
UCRL-CONF-209837

XWRAPComposer: A Multi-Page Data
Extraction Service for Bio-Computing
Applications

L. Liu, J. Zhang, W. Han, C. Pu, J. Caverlee, S. Park, T.
Critchlow, M. Coleman, D. Buttler

February 18, 2005

IEEE International Conference on Services Computing
Orlando, FL, United States
July 12, 2005 through July 15, 2005



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 



XWRAPComposer: A Multi-Page Data Extraction Service
for Bio-Computing Applications

Ling Liu, Jianjun Zhang, Wei Han, Calton Pu, James Caverlee, Sungkeun Park
College of Computing, Georgia Institute of Technology

{lingliu, zhangjj, weihan, calton , caverlee, mungooni}@cc.gatech.edu

Terence Critchlow, Matthew Coleman, David Buttler
Lawrence Livermore Nationral Laboratory, California, USA

{critchlow1, coleman16, buttler1}@llnl.gov

Abstract

This paper presents a service-oriented framework for the de-
velopment of wrapper code generators, including the methodol-
ogy of designing an effective wrapper program construction fa-
cility and a concrete implementation, called XWRAPComposer
Three unique features distinguish XWRAPComposer from exist-
ing wrapper development approaches. First, XWRAPComposer
is designed to enable multi-stage and multi-page data extraction.
Second, XWRAPComposer is the only wrapper generation sys-
tem that promotes the distinction of information extraction logic
from query-answer control logic, allowing higher level of robust-
ness against changes in the service provider’s web site design or
infrastructure. Third, XWRAPComposer provides a user-friendly
plug-and-play interface, allowing seamless incorporation of ex-
ternal services and continuous changing service interfaces and
data format.1 2

1 Introduction
With the wide deployment of Web service technology, the In-

ternet and the World Wide Web (Web) have become one of the
most popular means for disseminating scientific data from a vari-
ety of disciplines. Vast and growing amount of life sciences data
reside today in specialized Bioinformatics data sources, many
of them are accessible online with specialized query processing
capabilities. The Molecular Biology Database Collection, for in-
stance, currently holds over 500 data sources [1], not even includ-
ing many tools that analyze the information contained therein.
Bioinformatics data sources over the Internet have a wide range
of query processing capabilities. Typically, many Web-based
sources allow only limited types of selection queries. To com-
pound the problem, data from one source often must be com-

1This work was performed under the auspices of the U.S. Department of En-
ergy by University of California Lawrence Livermore National Laboratory under
contract No. W-7405-ENG-48. UCRL-CONF-209837.

2This work is partially supported by the Department of Energy under a Sci-
DAC SDM grant, the National Science Foundation under a CNS Grant, an ITR
grant, a Research Infrastructure grant, and the industry sponsors under an IBM
SUR grant, an IBM faculty award, and an HP equipment grant. Any opin-
ions, findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the sponsors.

bined with data from other sources to provide scientists with the
information they need.

The extraordinary growth of service oriented computing has
been fueled by the enhanced ability to make a growing amount
of information available through the Web. This brings good news
and bad news. The good news is that the Web services provide
the standard invocation interface for remote service calls and the
bulk of useful and valuable information is designed and pub-
lished in a human browsing format (HTML or XML). The bad
news is that these “human-oriented” Web pages returned by Web
services are difficult for programs to capture and extract infor-
mation of interests automatically and to fuse and integrate data
from multiple autonomous and yet heterogeneous data producer
services. Also different web service providers use different and
evolving custom data formats.

A popular approach to handle this problem is to write data
wrappers to encapsulate the access to Web sources and to au-
tomate the information extraction tasks on behalf of human.
A wrapper is a software program specialized to a single data
source or single Web service (e.g., a web site), which converts
the source documents and queries from the source data model
to another, usually a more structured, data model [15]. Several
projects have implemented hand-coded wrappers for a variety of
sources [3, 14, 12]. However, manually writing such a wrapper
and making it robust is costly due to the irregularity, heterogene-
ity, and frequent updates of the Web site and the data presen-
tation formats they use. Hand-coding wrappers can become a
major pain in situations where the data integration applications
are more interested in integrating new data sources or frequently
changing Web sources. We observe that, with a good design
methodology, only a relatively small part of the wrapper code
deals with the source-specific details, and the rest of the code is
either common among wrappers or can be expressed at a higher
level, more structured fashion. There are a number of challeng-
ing issues in automation of the wrapper code generation process.

• First, most Web pages are HTML or XML documents, which
are semi-structured text files annotated with various HTML
presentation tags. Due to the frequent changes in presen-
tation style of the HTML documents, the lack of semantic



description of their information content, and the difficulty in
making all applications in one domain to use the same XML
schema, it is hard to identify the content of interest using
common pattern recognition technology such as string regu-
lar expression specification used in LEX and YACC.

• Second, wrappers for Web sources should be more robust and
adaptive in the presence of changes in both presentation style
and information content of the Web pages. It is expected
that the wrappers generated by the wrapper generation sys-
tems will have lower maintenance overhead than handcrafted
wrappers for unexpected changes.

• Third, wrappers often serve as interface programs and pass
the Web data extracted to application-specific information
broker agents or information integration mediators for more
sophisticated data analysis and data manipulation. Thus it is
desirable to provide a wrapper interface language that is sim-
ple, self-describing, and yet powerful enough for extracting
and capturing information from most of the Web pages.

In scientific computing domains such as bioinformatics and
bioengineering, information extraction over multiple different
pages imposes additional challenges for wrapper code genera-
tion systems due to the varying correlation of the pages involved.
The correlation can be either horizontal when grouping data from
homogeneous documents (such as multiple result pages from a
single search) or vertical when joining data from heterogeneous
but related documents (a series of pages containing information
about a specific topic). Furthermore, the correlation can be ex-
tended into a graph of workflows as we will describe in Figure 2.
Therefore there is an increasing demand for automated wrapper
code generation systems to incorporate a multi-page information
extraction service. A multi-page wrapper not only enriches the
capability of wrappers to extract information of interests but also
increases the sophistication of wrapper code generation.

Surprisingly, almost all existing wrappers generated by appli-
cation code generators [8, 19, 2] are single-page wrappers in the
sense that the wrapper program responds to a keyword query by
analyzing only the page immediately returned. Most wrappers
cannot follow the links within this page to continue the informa-
tion extraction from other linked pages, unless separate queries
are issued to locate other linked pages.

Bearing all these issues in mind, we develop a code genera-
tion framework for building a semi-automated wrapper code gen-
eration system that can generate wrappers capable of extracting
information from multiple inter-linked Web documents, and we
implement this framework with XWRAPComposer, a toolkit for
semi-automatically generating Java wrapper programs that can
collect and extract data from multiple inter-linked pages auto-
matically. XWRAPComposer has three unique features with re-
gard to supporting multi-page data extraction.

• First, we introduce interface, outface, and composer script
for each wrapper program we generate. By encoding wrapper
developers’ knowledge in Interface Specification, Outerface
Specification and Composer Script, XWRAPComposer inte-
grates single-page wrapper programs into a composite wrap-
per capable of extracting information across multiple inter-

linked pages from one service provider.

• Second, XWRAPComposer transforms the multi-page infor-
mation extraction problem into an integration problem of
multiple single-page data extraction results, and utilizes the
composer script to interconnect a sequence of single-page
data extraction results, offering flexible execution choices
to address diverse needs of different users. It generates
platform-independent Java code that can be executed locally
on users’ machine. It also provide a WSDL-plugin module
to allow users to produce WSDL enabled wrappers as Web
Services [23].

• Third but not the least, XWRAPComposer supports micro-
workflow management, such as intermediate information
flow or result auditing. We demonstrate this capability by in-
tegrating XWRAPComposer and its generated wrappers with
some process modeling tools such as Ptolemy [4], allow-
ing users to interactively manage different components of a
wrapper and the interaction between them.

2 The Design Framework
A multi-page wrapper code generation is a complex process

and it is not reasonable, either from a logical point of view or
from an implementation point of view, to consider the construc-
tion process as occurring in one single step. For this reason, we
partition the wrapper construction process into a series of sub-
processes calledphases, as shown in Figure 1. A phase is a logi-
cally cohesive operation that takes as input one representation of
the source document and produces as output another represen-
tation. XWrapComposer wrapper generation goes through six
phases to construct and release a Java wrapper. Tasks within a
phase run concurrently using a synchronized queue; each runs
its own thread. For example, we decide to run the task of fetch-
ing a remote document and the task of repairing the bad format-
ting of the fetched document using two concurrently synchro-
nous threads in a single pass of the source document. The task
of generating a syntactic-token parse tree from an HTML doc-
ument requires as input the entire document; thus, it cannot be
done in the same pass as the remote document fetching and the
syntax reparation. Similar analysis applies to the other tasks such
as code generation, testing, and packaging.

The interaction and information exchange between any two of
the phases is performed through communication with the book-
keeping and the error handling routines. Thebookkeepingrou-
tine of the wrapper generator collects information about all the
data objects that appear in the retrieved source document, keeps
track of the names used by the program, and records essential
information about each. For example, a wrapper needs to know
how many arguments a tag expects, whether an element repre-
sents a string or an integer. The data structure used to record
this information is called a symbol table. Theerror handler is
designed for the detection and reporting errors in the fetched
source document. The error messages should allow a wrapper
developer to determine exactly where the errors have occurred.
Errors can be encountered at virtually all the phases of a wrap-
per. Whenever a phase of the wrapper discovers an error, it must
report the error to the error handler, which issues an appropriate



Interface


Specification


Outerface


Specification


Wrapper


Java


Program


Configuration


Files

Extraction


Script


External


Software


Package


Code Generation and


Packaging

Structure


Transformation


Generating Wrapper

Program Code


Enter a URL


Remote Connection and


Source-specific Parser

Generating


Interface Spec.


Generating

Parse Tree


Repairing

Syntax Erros


Multi-page Data Extraction


Document


Structure Spec


Extraction

Region


Identification


Information

Extraction


Rules


Remote


Web Page


Search and Remote


Invocation Rules


URLs


Request-respond


Flow Control Rules


Information Extraction Rules


Debugging and Release


Wrapper Program


Testing


Wrapper Program

Release


XML presentation


of Sample Page


Testing Request


+ Feedbacks


XWRAPComposer System
 Wrapper


Repository


Wrapper


Web


Service


Ptolemy


Wrapper


Actors


Wrapper


Extension


Figure 1. XWRAPComposer System Architecture

diagnostic message. Once the error has been noted, the wrapper
must modify the input to the phase detecting the error, so that the
latter can continue processing its input, looking for subsequent
errors. Good error handling is difficult because certain errors can
mask subsequent errors. Other errors, if not properly handled,
can spawn an avalanche of spurious errors. Techniques for error
recovery are beyond the scope of this paper.

Figure 1 presents an architecture sketch of the XWRAP-
Composer system. The system architecture of XWRAPCom-
poser consists of four major components: (1) Remote Connec-
tion and Source-specific Parser; (2) Multi-page Data Extraction;
(3) Code Generation and Packaging; and (4) Debugging and Re-
lease. Other components include GUI interface, bookkeeping
and error handling. GUI interface allows wrapper developers to
specify workflow of the multi-page data extraction, the request-
respond flow control rules and cross-page data extraction rules
interactively.

Remote Connection and Source-specific Parseris the first
component, which prepares and sets up the environment for in-
formation extraction process by performing the following three
tasks. First, it accepts an URL selected and entered by the
XWrapComposer user, issues an HTTP request to the remote ser-
vice provider identified by the given URL, and fetches the cor-
responding web document (or so called page object). During
this process, the XWRAPComposer will learn the search inter-
face and the remote service invocation procedure in the back-
ground and generate a set of rules that describe the list of in-
terface functions and parameters as well as how they are used
to fetch a remote document from a given web source. The list
of interface functions include the declaration to the standard li-
brary routines for establishing the network connection, issuing an
HTTP request to the remote web server through aHTTP Get or
HTTP Post method, and fetching the corresponding web page.
Other desirable functions include building the correct URL to
access the given service and pass the correct parameters, and
handling redirection, failures, or authorization if necessary. Sec-
ond, it cleans up bad HTML tags and syntactical errors using
XWRAPComposer plugin such as HTML TIDY [18, 21]. Third,

it transforms the retrieved page object into a parse tree or so-
called syntactic token tree. This page object will be used as a
sample for XWRAPComposer to interact with the user to learn
and derive the important information extraction rules, and the list
of linked pages the user is interested in extracting information in
conjunction with this page. In addition, all wrappers generated
by XWrap use the streaming mode instead of the blocking mode
(recall Section 2). Namely, the wrapper will read the web page
one block3 at a time. An interface specification will be created in
this phase.

Multi-page Data Extraction is the second component, which
is responsible for deriving information flow control logic and
multi-page extraction logic, both are represented in form of rules.
The former describes the flow control logic of the targeted ser-
vice in responding to a service request and the latter describes
how to extract information content of interest from the answer
page and the linked pages of interest. XWRAPComposer per-
forms the multi-page information extraction task in four steps:
(1) specify the structure of the retrieved document (page object)
in a declarative extraction rule language. (2) identify the interest-
ing regions of the main page object and generating information
extraction rules for this page; (3) identify the list of URLs refer-
enced in the extracted regions in the main page; and (4) generat-
ing information extraction rules for each of the pages linked from
the interesting regions of the main page object. We perform sin-
gle page data extraction process using XWRAPElite [8] toolkit,
a single page data extraction service developed by the XWRAP
team at Georgia Tech. At the end of this phase, XWRAPCom-
poser produces two specifications: an outerface specification that
describes the output format of the extraction result will be pro-
duced, and a composer script that describes both the information
flow control patterns and the multi-page data extraction patterns.

Code Generation and Packagingis the third component,
which generates the wrapper program code by applying three
sets of rules about the target service produced in the first two
steps: (1) the search and remote invocation rules, (2) the request-

3A block here refers to a line of 256 characters or a transfer unit defined
implicitly by the HTTP protocol.



respond flow control rules, and the information extraction rules.
A key technique in our implementation is the smart encoding
of these three types of semantic knowledge in the form of ac-
tive XML-template format (see Section 4 for detail). The code
generator interprets the XML-template rules by linking each ex-
ecutable component with the corresponding rule sets. The code
generator also produces the XML representation for the retrieved
sample page object as a byproduct.

Debugging and Releaseis the fourth component and the fi-
nal phase of the multi-page wrapping process. It allows the user
to enter a set of alternative service requests to the same ser-
vice provider to debug the wrapper program generated by run-
ning the XWRAPComposer’s code debugging module. For each
page object obtained, the debugging module will automatically
go through the syntactic structure normalization to rule out syn-
tactic errors, the flow control and information extraction steps
to check if new or updated flow control rules or data extraction
rules should be included. In addition, the debug-monitoring win-
dow will pop up to allow the user to browse the debug report.
Whenever an update to any of the three sets of rules occurs, the
debugging module will run the code generator to create a new
version of the wrapper program. Once the user is satisfied with
the test results, he or she may invoke the release to obtain the
release version of the wrapper program, including assigning the
version release number, packaging the wrapper program with ap-
plication plug-ins and user manual into a compressed tar file.

XWRAPComposer wrapper generator takes the following
three inputs: interface specification, outerface specification, and
composer script, and compiles them into a Java wrapper pro-
gram, which can be further extended into either a multi-page data
extraction Web service (with WSDL specification) or a Ptolemy
wrapper actor, which can be used for large scale data integration.

In the subsequent sections, we first provide a walkthrough
example to illustrate the multi-page extraction process. Next,
we focus our discussion primarily on multi-page data extraction
component of the XWrapComposer, and give a brief descrip-
tion of the wrapping interface and remote invocation component
as the necessary preprocessing step for information extraction,
together with a short summary of code generation as the post-
processing for the multipage extraction.

3 Example WalkThrough

Before describing the detailed techniques used in designing
multi-page data extraction services, we first present a walk-
through of XWRAPComposer using the motivating example in-
troduced in Figure 2, where a biologist first uses a program called
Clusfavorto cluster genes that have changed significantly in a
micro-array analysis experiment. After extracting all gene ids
from the Clusfavor result, he feeds them into the NCBI Blast ser-
vice, which searches all related sequences over a variety of data
sources. The returned sequences will be further examined to find
promoter sequences. Let us focus on the NCBI BLAST service.
Figure 2 shows the workflow of how a BLAST service request
to NCBI will be served. It consists of four steps: BLAST re-
sponse step presents the user with a request ID, BLAST delay
step presents the user with the time delay for the result. BLAST

Summary presents the user with an overview of all gene ids that
match well with the given gene sequence id. Finally, BLAST De-
tail shows for each gene id listed in the summary page, the full
sequence detail and the goal is to extract approximately 1000-
5000 bases of the DNA sequence around the alignment to cap-
ture the promoter regulatory elements, the region of a gene where
RNA polymerase can bind and begin transcription to create the
proteins that can regulate cell function.

Microarray


analysis


Genes that changed


significantly


CLUSFAVOR


NCBI BLAST


Data Integration


Gene ids


AA045112


All related sequences
Statistical Clustering


of genes


BLAST search over a variety


of data sources for common


promoter elements to link


new candidate genes


BLAST


Response


BLAST


Delay


BLAST


Summary


BLAST


Detail


Request ID
 Summary URL
 Detail URL


ID, etc.
 Sequences


Promoter sequences


…


…



Figure 2. A Scientific Data Integration Example Scenario

Figure 3 illustrates a typical BLAST query using NCBI ser-
vice [17]. A BLAST query involves four steps. The first step is
to feed a gene sequence into the text entry of the query interface.
Due to the time complexity of a BLAST search, the NCBI ser-
vice provider typically returns a response page with a request ID
and the first estimate of the waiting time for each BLAST search.
The biologist may later ask NCBI for the BLAST results using
the request ID (Step 2), the NCBI service will presents a delay
page if the BLAST search is not completed and results are not yet
ready to display (Step 3). Once the BLAST results are delivered,
they are displayed in a BLAST summary page, which contains a
summary of all genes matching the search query condition. Each
of the matching genes will provide a link to the NCBI BLAST
Detail page (Step 4). If the gene id used for the BLAST query
is incorrect gene id or NCBI does not provide BLAST service
for the given gene id, an error page will be displayed. If the
summary page does not include detailed information that the bi-
ologist is interested in, he has to visit each detail page (Step 5)
through the URLs embedded in the summary page.

A critical challenge for providing system-level support for
scientists to achieve such complex data integration tasks is the
problem of locating, accessing, and fusing information from a
rapidly growing, heterogeneous, and distributed collection of
data sources available on the Web. This is a complex search
problem for two reasons. First, as the example in Figure 2
shows, scientists today have much more complex data collec-
tion requirements than ordinary surfers on the Web. They often
want to collect a set of data from a sequence of searches over
a large selection of heterogeneous data sources, and the data se-



STEP 1


STEP 2


STEP 4


STEP 3


STEP 5


Figure 3. Multipage query with a NCBI web site

lected from one search step often forms the filter condition for the
next search step, turning a keyword-based query into a sophisti-
cated search and information extraction workflow. Second, such
complex workflows are manually performed daily by scientists
or data collection lab researchers (computer science specialists).
Automating such complex search and data collection workflows
presents three major challenges.

• Different service providers use different request-respond
flow control logics to present the answer pages to search
queries.

• Cross-page data extraction has more complex extraction
logic than the single page extraction system. In addition,
different applications require different sets of data to be ex-
tracted by the cross-page data extraction engine. Typically,
only portions of one page and the links that lead the extrac-
tion to the next page need to be extracted.

• Data items extracted from multiple inter-linked pages require
being associated with semantically meaningful naming con-
vention. Thus, mechanisms that can incorporate the knowl-
edge of the domain scientists who issued such cross-page ex-
traction job are critical.

There are several ways to design NCBI BLAST wrapper.
First, we can develop two wrappers, one for NSBI BLAST sum-
mary and one for NCBI BLAST Detail. The NCBI BLAST sum-
mer wrapper can be integrated with the NCBI BLAST Detail
wrapper by service composition. In this approach, we need to
capture the request-respond flow control through a flow control
logic in the composer script of NCBI Summary wrapper. The
outerface specification of the NCBI summary wrapper consists of
the general overview of the given gene id and the list of gene ids
that are relevant to the given gene id. The NCBI BLAST Detail

wrapper needs to extract approximately 1000-5000 bases of the
DNA sequence around the alignment. The composite wrapper
NCBI BLAST will be composed of the NCBI summary wrapper
and a list of executions of the NCBI BLAST Detail wrapper. In
the next section we describe the XWRAPComposer design using
this example.

4 Multi-Page Data Extraction Service
We have developed a methodology and a framework for ex-

traction of information from multiple pages connected via web
page links. The main idea is to separate what to extract from
how to extract, and distinguish information extraction logic from
request-respond flow control logic. The control logic describes
the different ways in which a service request (query) could be an-
swered from a given service provider. The data extraction logic
describes the cross-page extraction steps, including what infor-
mation is important to extract at each page and how such infor-
mation is used as a complex filter in the next search and extrac-
tion step.

We use interface description to specify the necessary input ob-
jects for wrapping the target service and the outerface description
to describe what should be extracted and presented as the final re-
sult by the wrapper program. We design and develop a XWRAP-
Composer Script language (a set of functional constructs) to de-
scribe the request-respond flow control logic and multi-page data
extraction logic, and to implement the output alignment and tag-
ging of data items extracted based on the outerface specification.

The compilation process of the XWRAPComposer includes
generating code based on three sets of rules: (1) Remote con-
nection and interface rules, (2) the request-respond flow control
logic and multi-page extraction logic outlined in the composer
script, (3) the correct output alignment and semantically mean-



ingful tagging based on the outerface specification.

4.1 Interface and Outerface Specification

Interface specification describes the schema of the data that
the wrapper takes as input. It defines the source location and
the service request (query) interface for the wrapper to be gener-
ated. Outerface specification describes the schema of the result
that the wrapper outputs. It defines the type and structure of ob-
jects extracted. The composer script consists of two sets of rule-
based scripts. The request-respond flow control script describes
the alternative ways that the target service will respond to a re-
mote service request, including result not found, multiple results
found or single result found, or server errors. The multi-page
data extraction script which describes (1) the extraction rules for
the main page, (2) the extraction rules for each of the interest-
ing pages linked from the main page, and (3) the rules on how
to glue single page data extraction components. XWRAPCom-
poser’s scripting language has domain-specific plugins to facili-
tate the incorporation of domain-dependent correlations between
the fragments of information extracted and the domain-specific
tagging scheme. Each wrapper generated by XWRAPComposer
will be associated with an interface specification, an outerface
description, and a composer script.

The design of the XWRAPComposer Interface and Outerface
Specification serves two important objectives. First and for most,
it will ease the use of XWRAP wrappers as external services to
any data integration applications. Second, it will facilitate the
XWRAPComposer wrapper code generation system to generate
Java code. Therefore, some components of the specification may
not be directly useful for the users of these wrappers. In the first
release of the XWRAPComposer implementation, we describe
the input and output schema of a multi-page (composite) wrap-
per in XML Schema and use the two XML schemas as the inter-
face and outerface specification. Concretely, the interface spec-
ification describes the wrapper name and which data provider’s
service needs to be wrapped by giving the source URL and other
related information. The outerface specification describes what
data items should be extracted and produced by the wrapper and
the semantically meaningful names to be used to tag those data
items. Figure 4 shows a fragment of the interface and outerface
description of an example NCBI BLAST summary wrapper [13].

4.2 Multi-page Data Extraction Script

XWRAPComposer multi-page data extraction service will
generate a composer script for each wrapper it creates. Each
composer script usually contains three types of root commands,
document retrieval, data extraction and post processing. The doc-
ument retrieval commands construct a file request or an HTTP
request and fetch the document. The data extraction commands
specify the detailed instructions on how to extract information
from the fetched document. The post processing commands al-
low adding semantic filters to make the extracted results conform
to the outerface specification.

Table 1 shows a list of commands that are currently supported
in the first release of the XWRAPComposer toolkit [9].

Figure 5 gives an extraction script example for the NCBI
Summary wrapper. Given a full sequence as the input, we first

<XCwrapper name="XC BlastN Summary" sourceURL=
"http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PAGE=Nucleotides" >
<interface ><!-- input schema in XML Schema -- >

<xsd:element name="input" type="xsd:string" >
<xsd:complexType >

<xsd:sequence >
<xsd:element name="select db" type="string"/ >
<xsd:element name="query sequence" type="string"/ >

</xsd:sequence >
</xsd:complexType >

</xsd:element >
</interface >
<outerface ><!-- output schema in XML Schema -- >

<xsd:element name="resultDoc" >
<xsd:complexType >

<xsd:element name="output" >
<xsd:complexType >

<xsd:choice minOccurs="0" maxOccurs="unbounded" >
<xsd:element name="homolog" >

<xsd:complexType >
<xsd:sequence >

<xsd:element name="geneid" type="string"/ >
<xsd:element name="description" type="string"/ >
<xsd:element name="length" type="int"/ >
<xsd:element name="score" type="string"/ >
<xsd:element name="expect" type="string"/ >
<xsd:element name="identities" type="string"/ >
<xsd:element name="strand" type="string"/ >
<xsd:element name="link" type="string"/ >
<xsd:element name="beginMatch" type="int"/ >
<xsd:element name="endMatch" type="int"/ >
<xsd:element name="alignment" type="string"/ >
<xsd:element name="beginMatch" type="string"/ >

</xsd:sequence >
</xsd:complexType >

</xsd:element >
</xsd:choice >

</xsd:complexType >
</xsd:element >
<xsd:attribute name="docLocation" type="string"/ >
<xsd:attribute name="docType" type="string"/ >
<xsd:attribute name="createdBy" type="string"/ >
<xsd:attribute name="creationDate" type="string"/ >

</xsd:complexType >
</xsd:element >

</outerface >
</XCwrapper >

Figure 4. An Example Of Interface And Outerface Spec-
ification – NCBi Summary

construct an NCBI Blast search URL based on the NCBI Blast
interface description. The script fragmentSet variable{ [text()]
indicates the sequence is in the input with the XPath, “text()”.
The first script commandFetchDocumentretrieves the NCBI
Blast response page that contains a request ID. We extract the ID
and construct the URL of the search results from the main page
object. The control-flow commandwhile...do...periodically in-
vokes the secondFetchDocumentto retrieve the result page until
the results are delivered. Finally we useGrabXWRAPEliteData
to extract useful data from the main result page. We use the com-
mandExtractLink to locate each of the linked pages of interest
from the main page object and use the commandExtractContent
to invoke the XWRAPElite single page data extraction service to
extract useful data from each linked page. Due to the space re-
striction, we omit the concrete techniques used in XWRAPCom-
poser for single page data extraction and refer readers to [5, 24]
for further detail.

4.3 Execution Model of an XWRAPComposer Wrapper

A typical XWRAPComposer wrapper consists of the follow-
ing five basic functional modules.

• TheSearch Interfacemodule accepts the user input through
the protocols defined by the user, such as the SOAP request in
web service scenario. It constructs the service request (query
command) and parameter list that will be forwarded to the
wrapped target service. Consider the NCBI BLAST wrap-
per, its search interface accepts the gene sequence and the



Command Category
ConstructHttpQuery Document Retrieval

ReadFile Document Retrieval

FetchDocument Document Retrieval

ExtractLink Data Extraction

ExtractContent Data Extraction

GrabSubstring Grab Function

GrabXWrapEliteData Grab Function

GrabConsecutiveLines Grab Function

GrabCommaDelimitedText Grab Function

ContainSubstring Boolean Comparison

While...Do... Control Flow

If...Then... Control Flow

ApplyStyleSheet Post Processing

Sleep Process Management

Table 1. Supported XWRAPComposer Extraction Root
Commands

other parameters such as alignment precision from the input
specification file or GUI interface. It composes the HTTP
POST command, which will be used to execute the query.

• TheRemote Invocationmodule accepts the service request
(query command) and parameters generated by the search in-
terface and converted them into the query acceptable by the
wrapped target service. The query can be a HTTP POST
command, a FTP GET command, or an RPC call. The re-
mote invocation module interacts with the wrapped target
service following the remote connection protocol defined by
the wrapped target service and the communication procedure
defined by the configuration file. The query result page will
be forwarded to the parser for preprocessing before entering
the multi-page data extraction module.

• The Page Parsertranslates the result page received from
the remote invocation module into a token tree structure, fil-
ters out the uninteresting information such as advertisements
from web pages, and converts the received document into a
standard format such as HTML or XML. In addition to build-
ing a token based parse tree, the page parser should incorpo-
rate the domain-specific knowledge about the page encoded
in the composer script to facilitate the data extraction process.
For multi-page wrappers, the page parser will parse the main
respond page based on its extraction rules and locate the list
of linked pages of interest. For each of the linked pages of
interest, the parser triggers the remote invocation module to
fetch the actual page and parses the page based on its corre-
sponding extraction rules.

• Information Extraction module processes each of the
parsed documents passed from the parser and extracts the ob-
jects of interest defined by the outerface specification. It uses
the domain specific knowledge about the pages of interest,
encoded in the composer extraction script, to guide the con-
crete multi-page data extraction process. For each extracted
data object, the XML tagging procedure is applied to assign

/ * Start constructing wrapper ncbisummary. * /
WrapperName "ncbisummary";

/ * Contruct the URL for NCBi Blast search * /
Generate blastSummaryPage :: ConstructHttpQuery (input) {

Set inputSource {
Set url {"http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?QUERY=$$&..." };
Set queryString { };
Set method {"get" };
Set variable { [text()] } ;

}
}
Generate blastSummaryData :: FetchDocument (blastSummaryPage) {}
Generate recordid :: ExtractContent (blastSummaryData) {

GrabSubstring {
Set BeginMatch {"The request ID is <input name= \"RID \" size= \"50 \"

type= \"text \" value= \" };
Set EndMatch {" \" >" };

}
}
Generate answerurl :: ConstructHttpQuery (recordid) {

Set inputSource {
Set url {"http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?FORMAT PAGE

TARGET=Format page 31680&RESULTSPAGETARGET=Blast Results for 31680
&RID=$$&SHOWOVERVIEW=on...&AUTO FORMAT=Semiauto"};

Set queryString { };
Set method { "get" };
/ * The first recordid is the input id. * /
Set variable { [text()] };

}
}
Generate answerPage :: FetchDocument(answerurl) {}
While {

ContainSubstring(answerPage) {
Set compSubstring {"This page will be automatically updated in" };

}
} Do {

Generate answerPage :: FetchDocument(answerurl) {}
/ * Pause for 10 seconds. * /
Sleep {

set inverval {"10000" };
}

}
Generate output :: ExtractContent (answerPage) {

GrabXWRAPEliteData {
/ * The following properties should be generated from a XWRAPELite tool. * /
...
}

}

Figure 5. Extraction Script Example For NCBi Summary

tag name to the object based on the tagging rules encoded in
the composer script.

• Output Packaging and Deliverymodule merges the output
from the information extraction module and packages it into
the final result format defined by the outerface specification.
Then it delivers the data package to the user who initiates the
execution of the wrapper program.

The first prototype of XWRAPComposer system is written in
Java. Wrappers generated by XWRAPComposer are also coded
in Java. In our first prototype implementation, the five compo-
nents execute sequentially− a component starts execution only
after the previous component finishes. The next extension of
XWRAPComposer code generation system is to introduce par-
allel extraction among these five components. Parallel execution
improves the performance, but it also incurs higher complexity
in implementation.

4.4 WSDL-enabled Wrappers

XWRAPComposer is developed with two objectives in mind.
First, we want to generate wrapper programs that can be used in
command line or embedded in an application system as a wrap-
per procedure. Second, we want XWRAPComposer to be able
to generate WSDL-enabled wrappers to allow each wrapper pro-
gram to be used as a Web service [22]. Our discussion so far
has been focused on the first objective. In this section we briefly
describe how to generate WSDL enabled wrappers.



In order to enable XWRAPComposer to generate WSDL-
enabled wrapper services, we add two extensions to the
XWRAPComposer wrapper generation system. First, we encap-
sulate an XWRAPComposer wrapper into a general Web service
servlet. The servlet automatically extracts the input from a SOAP
request, feeds it into the wrapper, and inserts the wrapping results
in a SOAP envelope before sending back to the user. Second, we
incorporate a WSDL generator to automatically generate Web
service description by binding the wrapper’s interface and outer-
face with the servlet configuration.

5 Related Work and Conclusion
The very nature of scientific research and discovery leads to

the continuous creation of information that is new in content or
representation or both. Despite the efforts to fit molecular biol-
ogy information into standard formats and repositories such as
the PDB (Protein Data Bank) and NCBI, the number of data-
bases and their content have been growing, pushing the enve-
lope of standardization efforts such as mmCIF [25]. Providing
integrated and uniform access to these databases has been a se-
rious research challenge. Several efforts [6, 7, 10, 11, 16, 20]
have sought to alleviate the interoperability issue, by translating
queries from a uniform query language into the native query ca-
pabilities supported by the individual data sources. Typically,
these previous efforts address the interoperability problem from
a digital library point of view, i.e., they treat individual databases
as well-known sources of existing information. While they pro-
vide a valuable service, due to the growing rate of scientific dis-
covery, an increasing amount of new information (the kind of
hot-off-the-bench information that scientists would be most in-
terested in) falls outside the capability of these previous interop-
erability systems or services.

Wrappers have been developed either manually or with soft-
ware assistance, and used as a component of agent-based sys-
tems, sophisticated query tools and general mediator-based in-
formation integration systems [26].

XWRAPComposer is different from those systems in three
aspects. First, we explicitly separate tasks of building wrappers
that are specific to a Web service from the tasks that are repeti-
tive for any service, thus the code can be generated as wrapper
library component and reused automatically by the wrapper gen-
erator system. Second, we use inductive learning algorithms that
derive information flow and data extraction patterns by reasoning
about sample pages or sample specifications. More importantly,
we design a declarative rule-based script language for multi-page
information extraction, encouraging a clean separation of the in-
formation extraction semantics from the information flow control
and execution logic of wrapper programs.

References
[1] DBCAT, the public catalog of databases. see

http://www.infobiogen.fr/services/dbcat.
[2] R. Baumgartner, S. Flesca, and G. Gottlob. Visual web informa-

tion extraction with Lixto.Proceedings of VLDB, 2001.
[3] R. Bayardo, W. Bohrer, and R. B. and et al. Semantic integration

of information in open and dynamic environments. InProceedings
of ACM SIGMOD Conference, 1997.

[4] Berkeley. Ptolemy group in eecs.
http://ptolemy.eecs.berkeley.edu/, 2003.

[5] D. Buttler, L. Liu, and C. Pu. A fully automated object extraction
system for the world wide web.Proceedings of IEEE ICDCS,
April 2001.

[6] T. Critchlow, K. Fidelis, M. Ganesh, R. Musick, and T. Slezak.
Datafoundry: Information management for scientific data.IEEE
Transactions on Information Technology in Biomedicine, 4(1):52-
57, March 2000.

[7] S. Davidson, O. Buneman, J. Crabtree, V. Tannen, G. Over-
ton, and L. Wong. Biokleisli: Integrating biomedical data and
analysis packages.Bioinformatics: Databases and Systems, S.
Letovsky, Editor, Kluwer Academic Publishers, Norwell, MA:201-
211, 1999.

[8] DISL Group, Georgia Insitute of Technology. Xwrap elite project.
http://www.cc.gatech.edu/projects/disl/XWRAPElite, 2000.

[9] DISL Group, Georgia Insitute of Technology. Xwrapcomposer.
http://www.cc.gatech.edu/projects/disl/XWRAPComposer/, 2003.

[10] C. A. Goble, R. Stevens, G. Ng, S. Bechhofer, N. Paton, P. G.
Baker, M. Peim, and A. Brass. Transparent access to multi-
ple bioinformatics information sources.IBM Systems Journal,
40(2):532-551, 2001.

[11] L. Haas, P. Schwarz, P. Kodali, E. Kotlar, J. Rice, and W. Swope.
Discoverylink: A system for integrated access to life sciences data
sources.IBM Systems Journal, 40(2):489-511, 2001.

[12] C. A. Knoblock, S. Minton, J. L. Ambite, N. Ashish, P. J. Modi,
I. Muslea, A. Philpot, and S. Tejada. Modeling web sources for in-
formation integration. InProceedings of AAAI Conference, 1998.

[13] LDRD Project. http://www.cc.gatech.edu/projects/disl/LDRD,
2004.

[14] C. Li, R. Yerneni, V. Vassalos, H. Garcia-Molina, Y. Papakon-
stantinou, J. Ullman, and M. Valiveti. Capability based mediation
in tsimiss. InProceedings of ACM SIGMOD Conference, 1997.

[15] L. Liu, C. Pu, and W. Han. XWrap: An Extensible Wrapper Con-
struction System for Internet Information Sources. InTechnical
Report, OGI/CSE, Feb., 1999.

[16] S. McGinnis. (genbank user services, national center for bitech-
nology information (NCBI), national library of medicine, us na-
tional institute of health).Personal Communication, 1, Jan.

[17] NCBI. National center for biotechnology information – blast data-
bases.http://www.ncbi.nlm.nih.gov/BLAST/, 2003.

[18] D. Raggett. Clean up your web pages with HTML TIDY.
http://www.w3.org/People/Raggett/tidy/, 1999.

[19] A. Sahuguet and F. Azavant. WysiWyg Web Wrapper Factory
(W4F). Proceedings of WWW Conference, 1999.

[20] A. C. Siepel, A. N. Tolopko, A. D. Farmer, P. A. Steadman, F. D.
Schilkey, B. Perry, and W. D. Beavis. An integration platform for
heterogeneous bioinformatics software components.IBM Systems
Journal, 40(2):570-591, 2001.

[21] W3C. Reformulating HTML in XML.
http://www.w3.org/TR/WD-html-in-xml/, 1999.

[22] W3C. Web services.http://www.w3c.org/2002/ws/, 2002.
[23] W3C. Web services description language (wsdl) version 1.2 part

1: Core language.http://www.w3c.org/TR/wsdl12/, 2003.
[24] H. Wei. Wrapper Application Generation for Semantic Web: An

XWRAP Approach. PhD thesis, Georgia Institute of Technology,
2003.

[25] J. Westbrook and P. Bourne. Star/mmcif: An extensive ontol-
ogy for macromolecular structure and beyond.Bioinformatics,
16(2):159-168, 2000.

[26] G. Wiederhold. Mediators in the architecture of future information
systems.IEEE Computer, 1992.




