
‘FAIR’ BPEL PROCESSES TRANSACTION

USING NON-REPUDIATION

PROTOCOLS

By

MUHAMMAD BILAL

Bachelor of Mechanical Engineering

University of Engineering & Technology

Lahore, Pakistan

2000

Submitted to the Faculty of the

Graduate College of the
Oklahoma State University

in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

May 2005

‘FAIR’ BPEL PROCESSES TRANSACTION

USING NON-REPUDIATION

PROTOCOLS

Thesis Approved:

Johnson Thomas

Thesis Adviser
John P. Chandler

Debao Chen

A. Gordon Emslie

Dean of the Graduate College

 ii

TABLE OF CONTENTS

Chapter Pages

1. INTRODUCTION……………………………...…………………………………...1

Motivation……………………………………………….……………………...3

2. LITERATURE REVIEW……..….…………………………………….…….……..5

Literature review on BPEL4WS……..……………….………………….……...5

Literature review on non-repudiation protocol…….……...……….....………...7

J. Zhou and D. Gollmann’s Protocol……………..……….........………….10

Non-repudiation Message Protocol for Collaborative E-business……........11

3. OBJECTIVE ………..………………….……....……………………………….…14

4. METHODOLOGY AND APPROACH….………..……...…………..……..…….16

Assumptions…………………………….………………...…..………..….…..16

Building reliable asynchronous process…………………………...….....….…16

Flow of Protocol…………………………………...…………….………...17

Building the Non-repudiation BPEL processes…………………………..…....20

Building the public Web service definitions ……………….……….……..20

Request component of Buyer………………………...…...……….….……22

Supplier process……………………………………...….……….....……...25

Acceptance component of Buyer……………..………...…...….………….25

Trusted Third Party process…………………..…………....……..………..26

Security information …………………………………………………………...27

 iii

Petri Net Model of BPEL…………………………….…….…………………..27

Petri Net model of abstract BPEL process………………..…...…………...27

Petri Net model of executable BPEL process……………….……………..27

Petri net model of paradigm……...……………………….………………..28

A Novel Non-repudiation Protocol for a chain of Business Transactions..........31

Design and Approach; Case1…………………………………….………...32

Petri Net model of Non-repudiation chain linked protocol………………...35

Dispute Resolution………………….………………………….…………..38

Security Requirements..…….………………………………….…………..39

Building the BPEL processes; Case 1...………………………….………...42

Chain-linked Non-repudiation Protocol for Modified Messages……..………..45

Design and Approach; Case 2…………………………………..………….46

Color Petri Net based Model of Case 2………………………….………....50

Reliability of Protocol…………………………………………….………..58

Dispute Resolution……………………………………………….………...60

Security Requirements..………………………………………….………....61

Building the BPEL processes; Case2 ……………………………………...64

Non-repudiation Protocol for Multiple Entities..………………………………67

Design and Approach……….……………………………………………...68

Dispute Resolution…………………………………………………………71

Security Requirements..……………………………………………………73

Efficiency……………………………………………………......................76

Building the BPEL processes for the MENR protocol..…………………...79

 iv

Non-repudiation Protocol for Chain linked Multiple Entities….……................81

Design and Approach……………………………………………………....81

Building BPEL Process for the CLMENR Protocol…………………….....84

5. CONCLUSION…………………………………………………………………….87

6. REFERENCES……………………………………………………………………..89

7. GLOSSARY……………………………………………………………………......94

Glossary A - BPEL and Web Services Terminologies………...……………....94

Glossary B - Non-repudiation Terminologies……………………………….....97

Glossary C - Petri Nets Terminologies…………………………………………98

 v

LIST OF TABLES

Table Page

1. TTP’s computation complexity ………………………………………………….77

2. A’s computation complexity..77

3. N’s computation complexity……………………………………………………..78

 vi

LIST OF FIGURES

Figure Page

4. A Fair Non-repudiation Protocol………………………………………………...11

5. Secure message Transfer Protocol for E-commerce……………………………..13

6. The e-business dialogue………………………………………………………….19

7. Buyer.wsdl……………………………………………………………………….21

8. BUYERrequest.bpel……………………………………………………………...24

9. Petri net modeling of BPEL process……………………………………………..30

10. A Non-repudiation Protocol for Chained Linked Business Transaction………....33

11. Case1; Petri Net Model of Chain Linked Business Transaction…………………37

12. Non-repudiation Protocol for Chained Linked Business Transaction with message

modification……………………………………………………………………48

13. Case2; Color Petri Net Model of Chain Linked Business Transaction…………..57

14. Multiple-Entities Non-repudiation Protocol……………………………………..70

15. Chain-linked multiple entities Non-repudiation protocol………………………..82

 vii

Chapter 1

Introduction

Development of web services is a step toward universal interoperability between

applications by using web standards. The complete prospective of web services as an

integration platform can only be accomplished by combining the complex interactions

among the applications and business processes using a standard process integrated model.

These interactions typically suppose to be the sequences of peer to peer synchronous or

asynchronous message exchanges. A business process requires a proper description of the

message exchange protocol for interactions. In these protocols the message exchange

behavior among parties should be visible without disclosing their internal

implementation.

“Business Process Execution Language for Web Services usually called BPEL is a

language for the formal specification of business processes and business interaction

protocols” [2]. It expands the web services so that they can interact with each other and

capable for supporting exchange of data, business documents, agreements, payments,

contracts, acknowledgements, and business transactions among themselves. BPEL is an

XML-based flow language. It defines the interaction of business processes. Complex

processes can be created in BPEL by developing and integrating different activities e.g.

different Web services invocations, manipulate data, throw faults, or end a process and

 1

these activities are nested within structured activities in order to run them parallel, or

sequential or depending on required conditions.

“The role of BPEL4WS is to define a new Web service by composing a set of

existing services to enable business processes to interoperate within and between

companies that use different underlying technologies (universal interoperability)”[2].

Web services broadcast themselves so that other web services can discover them

and also invoke them creating a communication amongst each other. BPEL provides an

environment to describe business processes that include multiple Web services and

standardize message exchange internally and among partners. Linking those web services

together into a one large business process gave the user a number of disputing dilemmas.

One of these problems is Non-repudiation which means denial of having

participated in a message exchange. Non-repudiation is one of the important security

issues. “Non-repudiation is a security service which creates, collects, validates and

maintain cryptographic evidence of an electronic transaction to support the settlement of

a possible disputes “[1]. A numbers of protocols have been developed to solve Non-

repudiation. In general, the messages are encrypted with a secret key and send it to the

receiver.

Fairness of a protocol depends on who is controlling the execution of the protocol.

It may be inclined either toward the sender or receiver, or may be fair to both. For

example receiver repudiation can be avoided by designing a protocol such that the sender

sends the encrypted message and does not release the encryption key until he gets a

receipt acknowledgment from the receiver. Such a protocol is in the favor of the sender

because he may not send key after receiving acknowledgement and claims that he did. On

 2

the other hand a Trusted Third Party (TTP) is involved which releases the key to the

receiver and message no longer under control of sender after sending the encrypted

message to the receiver which makes protocol fair for the receiver. To eliminate the

presence of TTP at the time of dispute, the protocol needs to generate enough digital

evidences for both the sender and the receiver.

Petri Net is a graphical and mathematical tool [10] used for modeling and

analyzing system with concurrency. Petri Nets have been successfully used for modeling

of communication protocols. Petri net consists of Places, Transitions and Arcs.

Transitions are active components and on firing change the state of the system. The

current state of the system is represented by number of tokens at a Place. Both Places and

Transitions are connected by Arcs. Arcs from Places to Transitions are inputs and Arcs

from transitions to Places are called outputs.

Motivation:

WS-security is used to make secure communication among BPEL processes but it

does not provide fairness and accountability. To fulfill such requirements there is a need

to use a fair non-repudiation protocol. In this thesis, we propose a number of Non-

repudiation protocols for different scenarios. The proposed protocols are specified in

BPEL because they provide security, accountability, fairness, timeliness and

confidentiality. Furthermore we use Petri Net in order to analyze the proposed non-

repudiation protocols that are specified in BPEL are correct.

The rest of the thesis is organized as follows: chapter 2 introduces the BPEL and

basic notations used in web services and business processes. It also gives a brief

introduction to Non-repudiation protocols. We describe the objective of this thesis in

 3

chapter 3. In Chapter 4 we propose the non-repudiation protocols, specify them in BPEL

and analyze those protocols.

 4

Chapter 2

Literature review

2.1 Literature review on BPEL4WS:

The BPEL is an XML-based standard that is used to combine Web services in

order to develop business processes. “It provides an XML-based grammar for describing

the control logic required to coordinate web services participating in a process flow and is

layered on the top of WSDL, with BPEL defining how the WSDL operation should be

sequenced” [2]. BPEL consist of two types of processes: executable and abstract.

Abstract process:

An abstract process is a business protocol, specifying the message exchange

behavior between different parties without revealing internal activities. In BPEL process

all partners and their interactions are represented in terms of abstract WSDL interface

(portType and operations) with no reference to the actual services invoked by the process

instance.

Executable process:

It specifies the execution order between a number of activities constituting the

process, the partners involved in the process, the messages exchanged between these

partners, and the fault and exception handling specifying the behavior in cases of errors

and exceptions.

 5

2.1.1 Relation with WSDL:

The interaction between the service and its partners are represented in the WSDL

file. The portTypes, which reside in the WSDL file, are used as reference to define a

BPEL process. Since the possible deployment of the process is not used to define BPEL

process, it allows the reuse of business process definitions for several deployments.

2.1.2 Relation with SOAP:

There are operations in WSDL file that bound to a number of protocols, one of

which is SOAP. BPEL does not specify which binding to use. There are ports in WSDL

file and each port must be associated with a binding.

2.1.3 Security in BPEL:

“It is strongly recommended that business process implementations use WS-

Security to ensure messages have not been modified or forged while in transit or while

residing at destinations” [2]. WS-security provides security by secure SOAP message

exchange.

2.1.4 BPWS4J: A runtime engine for BPEL

The BPWS4J is a runtime engine [27] that takes BPEL document which includes

the process to be executed, the WSDL document of the services that process may invoke

during execution, and the WSDL document that contain the interface information that the

process will present to the client process. This runtime engine automatically generates the

bindings that are required to interact and the process is available as a Web service with a

SOAP interface. Runtime engine supports the invocation of Web services with SOAP

interface, or EJBs, or normal Java classes.

 6

 BPWS4J is used for creating and executing BPEL4WS processes. Platform

required for BPWS4J are Linux, Windows® 2000 or other platforms for which Eclipse

2.1 is available. Eclipse editor is used to create and edit BPEL files. JDK 1.3 is

mandatory for Eclipse editor.

User Eclipse Editor (JDK mandatory)
 If no error

 If errors

Process
available BPWS4J

runtime
engine

BPEL4WS
process

2.2 Literature review on non-repudiation protocol:

There are two approaches for fair non-repudiation. In general these protocols

encrypt the message with a secret key and send it to the receiver and then two the parties

exchange a delivery receipt and the message key to get the original message. An alternate

approach is to involve a trusted third party that acts as a notary.

We consider different cases in message passing protocols [1, 3, 4, 15]. Assume

that A wishes to send a message M to B and get the corresponding receipt. TTP is a

trusted third party.

Basic Notations

eK(X) and dK(X): encryption and decryption of message X with key K.

sK(X): digital signature of message X with the private key K.

PA, SA: the public and private key of A.

s: signature

A → B: X : A send message X to B.

A ↔ B: X : A fetches message X from B.

NRO = sSA (fNRO, B, L, C): Non-repudiation of Origin of M.

 7

NRR = sSB (fNRR, A, L, C): Non-repudiation of Receipt of M.

sub_K = sSA (fSUB, B, L, K): proof of submission of K.

con_K = sST (fCON, A, B, L, K): confirmation of K issued by TTP.

 fNRO: flag information indicating NRO (Non-repudiation of Origin)

fNRR: flag information indicating NRR (Non-repudiation of Receipt)

 fSUB: flag information indicating submission of key.

 fCON: flag information indicating confirmation of key issued by TTP.

fACK: flag information indicating acknowledgement.

Case 1: Sender and receiver are fair to each other and communicating channel is

completely reliable. In this case, the protocol is very simple.

1. A → B : fNRO, B, M, sSA (fNRO, B, M)

Sender A is sending a message M signed with its private key to B. Here sSA (fNRO,

B, M) is a digital signature on message (fNRO, B, M) with the private key of A.

2. B → A : fNRR, A, sSB (fNRR, A, M)

Where, sSB (fNRR, A, M) is a digital signature on message (fNRR, A, M) with the

private key of B. The signatures of sender and receiver serve as evidence. Note that in the

scheme the message is not encrypted.

Case 2: Sender and receiver don’t necessarily play a fair role, but the

communicating channel is completely fair. The above protocol is advantageous to B in a

situation where A sends a message and B can refuse to send an acknowledgement. This

problem can be solved by involving a TTP.

 1. A→ TTP : fNRO, TTP, B, M, sSA (fNRO, TTP, B, M)

2. TTP → B : fNRS, A, B, M, sST (fNRS, A, B, M)

 8

Where sST (fNRS, A, B, M) is a digital signature of TTP using its private key.

3. TTP →A : fNRD, A, B, sST (fNRD, A, B, M)

Signatures of the TTP serve as proof of submission. Still this protocol is

advantageous to B in a situation where B could deny having received the TTP’s message.

Case 3: Sender and receiver are fair to each other but the communicating

channel is not completely reliable. Each message can be sent over and over again until

acknowledgment has been received.

1. A → B : fNRO, B, M, sSA (fNRO, B, M)

2. B → A : fNRR, A, sSB (fNRR, A, M)

B confirms receipt of A’s message.

3. A → B : fACK, B, sSA (fACK, B, M)

As the communication channel is not reliable, A informs B that it has received

B’s receipt of A’s message. We assume that B repeatedly does step 2 until A’s

acknowledgment. In this protocol B has an advantage in a situation where B need not

provide a proof of receipt.

Case 4: Both parties do not necessarily play fair and the communication channel

is not reliable. To solve this problem, the encrypted message is sent under the key K that

is sent later.

1. A → B : fPOE, B, eK (M), sSA (fPOE, B, eK(M))

2. B → A : fACP, A, sSB (fACP, A, eK(M))

3. A → B : fNRO, B, K, sSA (fNRO, B, K)

4. B → A : fNRR, A, sSB (fNRR, A, K)

 9

Unfortunately, the problem is still there and B can refuse to send the last message,

leaving A without proof of receipt.

2.3 J. Zhou and D. Gollmann’s Protocol:

This protocol considers that the communication channel is not reliable and the

two parties do not necessarily play fair. “A non-repudiation protocol is fair if it provides

the originator and the recipient with valid irrefutable evidence after completion of the

protocol, without giving any party an advantage over the other at any stage of

protocol”[3].

2.3.1 ZG’s fair protocol

In this protocol [3], the originator divides a message into two parts, a commitment

C and a key K. C is a cipher text of message M, e.g. M encrypted with a key K. L is a

unique label for the protocol run. This protocol assume that A, B and TTP are each

equipped with their own private signature key and the related public verification keys and

even in case of network failure, both parties will be able to retrieve the key from TTP.

The main idea of this protocol is to send C first and then key K, which unlocks the

message, is released:

1. A → B : fNRO, B, L, C, NRO

2. B → A : fNRR, A, L, NRR

3. A → TTP : fSUB, B, L, K, sub_K

4. B ↔ TTP : fCON, A, B, L, K, con_K

5. A ↔ TTP : fCON, A, B, L, K, con_K

 10

Figure 2.1: A Fair Non-repudiation Protocol

In step 1, A sends the encrypted message to B. In step 2, B confirms receipt, but

cannot access the original message. In step 3, A submits the key to the TTP; sub_K is the

proof of submission of K. The TTP stores the tuple (A, B, L, K, con_K) in some read

only directory available to public; con_K is the confirmation of key issued by the TTP. In

step 4, B gets the key and in step5 A confirms that B can indeed get the key.

The protocol is called “fair” but as pointed out in [4], the protocol has some

weaknesses. First, the successful execution of the protocol depends on whether the sender

submits the key to TTP. So it is advantageous to senders and the protocol is not fair to the

message recipients. Secondly, the encrypted key K is visible to TTP, thus, anyone who

can access the key at TTP is able to access the original contents of message M.

2.4 Non-repudiation Message Protocol for Collaborative E-business:

In this protocol [15], the message is encrypted with secret key, which is generated

at runtime. The sender sends a message encrypted with the secret key. That key is

‘double-encrypted’ which means a twice-encrypted secret key that is first encrypted with

the receiver’s public key and then with the public key of TTP.

Encrypted message = em = eK(M)

Double-encrypted Key = dek = ePTTP(ePR(K))

 11

Where M is the original message, K is secret key, PR is private key of recipient

and PTTP is private key of TTP. The receiver can access original message only using

secret key.

Step1: The sender generates the secret key randomly to encrypt the message. It

then double-encrypt the secret key. Signature is generated on concatenation of the

message digest of the encrypted message and the message digest of the double encrypted

secret key. All this information is sent to the recipient.

 S R : t id | S | em | dek | dual_signature

Where [15], tid = transaction id

 dual_signature = t id | md1 | md2 | sSS(t id | md1 | md2)

md1= MD(em): message digest of the message

md2= MD(dek): message digest of the double encrypted key

Step 2: The recipient forwards double-encrypted key to the TTP along with its

signature that he received a correct encrypted message as an acknowledgement. The

recipient is required to send his signature, otherwise TTP will not reply to it.

 R TTP : t id | S | R | md1 | dek | sSR(t id | md1)

Step 3: TTP decrypts the double-encrypted key and release the encrypted key to

the recipient and wait for the acknowledgement from R for sometime.

 TTP R : t id | ek_from_TTP

 Where ek_from_TTP = dSTTP(dek) : decryption of dek using private

key of TTP.

 12

Step 4: After getting the secret key and the message by decrypting it with its own

private key, the receiver creates a signature on the digested secret key and sends it to TTP

which is the conformation of receiving the secret key.

 R TTP : t id | sSR(MD(ek_from_TTP))

Step 5: In the final step of the protocol, TTP forwards two signatures that he has

received in step 2 and 4 from recipient to the original sender.

 TTP S : t id | sSR(t id | md1) | sSR(MD(ek_from_TTP))

Figure 2.2: Secure message Transfer Protocol for E-commerce

 13

Chapter 3

Objective

BPEL4WS is a model and a grammar for describing the behavior of a business

process on interactions between the process and its partners and it involves invocation of

different web services to achieve business goals. It interacts with partners and web

services by message passing. There are two things to be considered.

• Usually messages at the business level may contain confidential types of

documents so it is required that no one else can get the original messages except

the partner to which it is sent.

• There is a problem of repudiation among parties.

To avoid these circumstances we propose a protocol that protects the

confidentiality of message contents such that no unauthorized intermediary is able to see

the original message and achieve non-repudiation by involving a trusted third authority

(TTP) but do not need the third party at the time of dispute and more over the third party

cannot access the secret key and hence the original message. This is done by encrypting

the message with a secret key and then double encrypts that key. It means a twice-

encrypted secret key that is encrypted with the recipient’s public key first and then with

the public key of Trusted third party (TTP) involved in the protocol.

 14

We propose a novel Non-repudiation protocol for a chain linked business

transactions that may involve more intermediate parties in many different topologies. In

our protocol, intermediate parties may or may not be able to access and modify the

original message depending upon the authorization needed. We extend this protocol to

facilitate the sender to send different messages to the multiple entities. When there are

multiple entities involved, there is a high probability of communication bottleneck

created at the TTP. The proposed protocol aims to reduce this bottleneck. In the

proposed protocol, the originator can send the messages to multiple recipients using a

single key. The third party therefore needs to decrypt only a single key and not multiple

keys from each entity involved in the business communication. We also propose a

protocol with an intermediate entity which acts as a hub, thus reducing the load on the

originator. In our chain- linked protocols, the recipient can get the key only after

identifying himself, which means the key cannot be revealed to a wrong unidentified

party. We analyze that protocol to make it optimal, improve, efficient, secure and

accountable. We specify these non-repudiation protocols in BPEL.

This thesis also proposes a Petri Net merging method to model the integration of

web services and business processes. We use Petri net to get the reliability of chain-

linked business transaction. We use color Petri net to explain the flow of chain-linked

protocol in which intermediate node can modify messages.

 15

Chapter 4

Methodology and Approach

4.1 Assumptions:

1. Web services within the organization can trust each other. A non-repudiation

protocol is therefore required only when communication is in between external

services.

2. Third party is not available at the time of dispute.

3. Communication channels are reliable.

4. Key generating algorithms are out of scope.

BPEL is a layer on top of WSDL, that is, it uses WSDL to specify actions that

should take place in a business process, and to describe the web services provided by a

business process. There are ports in WSDL that must be associated with bindings, one of

which is SOAP.

SOAP (header, encryption, key, signature, etc)

WSDL (definition, messageType, portType, etc)

BPEL4WS (process, activities)

4.2 Building reliable asynchronous process:

 16

By default, web services perform synchronous operations. In our case we focus on

security, fairness and accountability. Each process may be asynchronous, that is, the

originator may start a business transaction with a receiver at any time. However, the non-

repudiation protocol for each individual business transaction is synchronous. To enable

asynchronous communication using web services, every party involved in the protocol

should be implemented as a web services. This make a peers-to-peer process where all

parties can initiate conversation when necessary.

4.2.1 Flow of a protocol

Brief description:

We consider a transaction between two parties, one is a Buyer and other is a

supplier. We involve a Trusted Third Party to establish Non-repudiation between parties.

We divide the Buyer BPEL process into two components because the requested business

processes may take time for processing request. There are four public web services

(considering BPEL process as a web service) and some internal web service. An internal

web service, which is an inventory manager, sends an order to replenish inventory to the

buyer request process. The buyer request process now needs to interact with the external

web service. These are the steps executed between a requester and a supplier.

1. Requester sends a purchase message, which is encrypted with double-encrypted

key (Key is first encrypted with the public key of the recipient and then with the

public key of TTP) to the seller along with the double-encrypted key and dual

signature (signature on the message digest of the double encrypted key and

message digest of the encrypted message – see chapter 2).

 17

2. Supplier receives the encrypted message and sends an acknowledgement receipt

back to the requester after checking the integrity of main content eK(M) and

double-encrypted key by comparing with the dual signature. Both eK(M) and the

double-encrypted key are checked by the supplier generating the message digests

and comparing with the message digests in the signature. So supplier confirms

that it receives the correct encrypted message contents before proceeding.

3. Supplier forwards the double-encrypted key to the TTP, along with its signature1

on the message digest of encrypted message to acknowledge the correct receipt of

the encrypted message. Supplier is required to send this signature1 to the TTP in

order to access the key. TTP stores the signature1 temporarily for signature

distribution at the end of the protocol.

4. TTP decrypt the double-encrypted key using its private key and releases the

encrypted key to the Supplier. The TTP then waits for acknowledgement from the

supplier. In case the TTP does not receive this acknowledgement within a certain

timeout, TTP detects the supplier’s misbehavior.

5. The supplier decrypts the encrypted key received form the TTP using its private

key. It then sends signature2 on the message digest of the decrypted secret key to

the TTP, as confirmation of receiving the key. The supplier creates the signature2

on the digested secret key so that TTP cannot access any key information from the

signature.

6. TTP sends two signatures in step 2 and step 4 to the original sender. These two

signatures are the supplier’s acknowledgement of receiving correct purchase

message and secret key.

 18

Figure 4.1: The e-business dialogue

7. After processing the buyer’s request, supplier sends the encrypted purchase

acceptance message, along with double encrypted key and dual signature to

second component of buyer as in step 1.

8. Buyer Acceptance process sends an acknowledgement receipt back to supplier.

9. This is same as step 3, but instead of supplier, this message is send by Buyer

Receiver component to TTP.

10. TTP decrypt the double-encrypted key and release the encrypted key to the Buyer

Receiver component process.

11. The Buyer Receiver component sends signature to the TTP, the confirmation of

receiving the key same as in step 5.

12. The protocol ends with TTP forwarding both signatures to seller.

 19

There are 12 messages. We can reduce it to 10 by removing step 2 and 8 and use

step 6 and 12 as acknowledgments.

4.3 Building the Non-repudiation BPEL4WS Processes:

Conceptually, we need only three processes, one for buyer, one for supplier and one

for TTP. The supplier may take time to process order so we need to split the buyer process as

two separate BPEL4WS processes. We develop a business process to show a quick overview

of the activities and syntax of BPEL.

4.3.1 Building the public Web service definitions:

Start from the WSDL definitions for processes, starting with Buyer.wsdl shown in figure

4.2. This web service allows replenishing inventory by placing order according to their

need.

“BPEL4WS enabled WSDL definitions require some additional information and since

this WSDL file will be used in the BPEL4WS process, it requires a service link definition

to be added to the file. Service links enable partners in the BPEL4WS process to be

linked to actual "actions" defined in the BPEL process.”[5].

Following is the Buyer.wsdl file. Logic is the same as in [5]

<definitions targetNamespace="http://www.buyer.com/services/Buyer"
 xmlns:BUYER="http://www.buyer.com/services/Buyer"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:slt="http://schemas.xmlsoap.org/ws/2002/07/service-link/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <message name="ReplenishInventroyRequest">
 <part name="PORequest" type="xsd:string"/>
 </message>
 <message name="ReceiptAcknowledgement">
 <part name="receiptAck" type="xsd:string"/>

 20

 </message>
<message name="SignaturefromTTP">
 <part name="SupSignatureOnPO" type="xsd:string"/>
 </message>

 <portType name="ReplenishInventoryRequestPort">
 <operation name="replenishRequest">
 <input message="BUYER:ReplenishInventoryRequest"/>
 <output message="BUYER:ReceiptAcknowledgement"/>
 </operation>
 </portType>
<portType name="SignaturefromTTPPort">
 <operation name="SignatureReceive">
 <input message="BUYER:SignaturefromTTP"/>
 </operation>
 </portType>

 <slt:serviceLinkType name="ReplenishInventoryRequestSLT">
 <slt:role name="inventoryService">
 <slt:portType name="BUYER:ReplenishInventoryRequestPort"/>
 </slt:role>
 </slt:serviceLinkType>

<slt:serviceLinkType name="SignatureTransmitReqSLT">
 <slt:role name="GetSignatureFromTTP">
 <slt:portType name="BUYER:SignaturefromTTPPort"/>
 </slt:role>
 </slt:serviceLinkType>
 <!—BPWS4J Engine will automatically generate the bindings-->
<service name="BUYERPORequesterServiceBP">
 </service>
</definitions>

Figure 4.2: Buyer.wsdl

There are three messages, a request for purchase order, acknowledgment receipt of the

request, and signature from TTP.

Service links are used to define the capabilities of partners in the BPEL process. A

partner is linked to a portType and also a set of operations in the WSDL file using those

service links. In this example, Web service is an associated component of a BPEL

process, the BPWS4J engine automatically generates the necessary bindings which helps

 21

the BPEL process to absorb the Web service, listening to the defined ports for any

activity [5]. Therefore, the service and bindings sections of the WSDL definition are

empty.

4.3.2 Request Component of Buyer:

This process takes the request from an inventory manager and sends request with

double-encrypted key to the supplier. In the final step it receives signatures from TTP. There

are three partners of the buyer request process - inventory manager, Supplier and TTP. We

first define partners and containers to store data.

The BPEL process at the buyer is BUYERrequest.bpel. It is layered on top of the

BUYER.wsdl file that we created earlier.

BUYERrequest.bpel is as follow. Logic is the same as in [5]

<process name="BUYERrequestProcess"
 targetNamespace="http://www.buyer.com/services/BUYERrequestProcess"
 xmlns="http://schemas.xmlsoap.org/ws/2002/07/business-process/"
 xmlns:buy="http://www.buyer.com/services/Buyer"
 xmlns:supply="http://www.supplier.com/wsdl/POService">
 xmlns:TTP="http://www.ttp.com/services/TTPservice">

<!-- This process has three partners, the internal inventory service that triggers the -->
<!-- process and the Supplier, to whom the PORequest is sent and TTP -->

 <partners>
 <partner name="inventoryService"
 serviceLinkType="buy:ReplenishInventoryRequestSLT"/>
 <partner name="supplier" serviceLinkType="supply:PORequestSLT"/>
 <partner name="TTP" serviceLinkType="TTP:TTPrequestSLT"/>
 </partners>

<containers>
 <container name="replenishRequestCTR"
 messageType="buy:ReplenishInventroyRequest"/>
 <container name="replenishResponseCTR"
 messageType="buy:ReceiptAcknowledgement"/>
 <container name="outputPORequestAckContainer"

 22

 messageType="supply:ReceiptAckPORequestType"/>
 <container name="SupplierSignaturefromTTP"
 messageType="buy:SignaturefromTTP"/>
 </containers>

<sequence name="placePOSequence">

<!-- Receive the inventory manager PO Request and store it in replenishRequest
container-->
 <receive name="ReplenishRecieve"
 partner="inventoryService" portType="buy:ReplenishInventoryRequestPort"
 operation="replenishRequest"
 container="replenishRequestCTR" createInstance="yes">
 </receive>

<!-- Initialize container -->
<assign>
 <copy>
 <from expression="'initializing'"/>
 <to container="replenishResponseCTR" part="receiptAck"/>
 </copy>
</assign>

<!-- Invoke placePORequest service at supplier Inc -->
<invoke name="PlacePOwithSeller"
 partner="supplier" portType="supply:placePORequestPort"
operation="placePORequest"
 inputContainer="replenishRequestCTR"
 outputContainer="outputPORequestAckContainer"/>

<!-- Copy acknowledgement receipt from supplier to be sent to Inventory Manager -->
<assign>
 <copy>
 <from container="outputPORequestAckContainer" part="receipt"/>
 <to container="replenishResponseCTR" part="receiptAck"/>
 </copy>
</assign>

<!-- Reply to inventory manager with the acknowledgement receipt of the PO Order
sent by supplier -->
<reply name="ReplenishResponse"
 partner="inventoryService"
 portType="buy:ReplenishInventoryRequestPort"
 operation="replenishRequest"
 container="replenishResponseCTR">
</reply>

 23

<-- Process receive Signature from TTP -->
<receive name="SignatureRecieve"
 partner="TTP" portType="buy:SignaturefromTTPPort "
 operation="SignatureReceive"
 container="SupplierSignaturefromTTP" createInstance="no">
 </receive>
</sequence>
</process>

Figure 4.3: BUYERrequest.bpel

In this process, after defining the partners and containers of the process, we

specify the BPEL activities of the process start with the sequence activity.

Begin sequence

• Receive a request from the Inventory Manager and deposit it in the request

container.

• Assign the data from the request container to the container to be sent to supplier.

• Invoke a "place purchase order" request with supplier based on data stored in the

pervious step.

• Assign the acknowledgement received from supplier to container being sent to

Inventory Manager.

• Reply to the Inventory Manager with the response from supplier.

• Receive the signatures from trusted third party show that supplier has accessed the

original message.

End sequence

Note: Receive, Invoke, Reply, and Assign etc. are the BPEL activities. See appendix for

more detail.

 24

4.3.3 Supplier Process:

The sequence of activities of BPEL process at supplier is as follow:

Begin sequence

• Receive the Request from Buyer Request process.

• Assign a receipt message in the container that is used in the reply activity.

• Reply to Buyer Request process.

• Assign encrypted message and double encrypted key in the container that used in

the invoke activity.

• Invoke the TTP process and send the Double-encrypted key and signature1.

• After receiving the key from the TTP it again invoke the TTP process to send the

signature2.

• After processing the order send the order status to the Buyer Acceptance process

by invoke.

• Finally, it receives the signatures of buyer receive process from TTP.

End sequence

4.3.4 Acceptance Component of Buyer:

The second BPEL process at BUYER has following sequence.

Begin sequence

• Receive the Acceptance from Supplier.

• Reply to the supplier with the receipt acknowledgement.

 25

• Invoke the TTP to decrypt the double encryption key and send the signature1 (on

the message digest of original message and dek), and to get the encrypted key.

• Invoke the TTP to send the signature2 (on the digested key) after accessing

original message.

End sequence

4.3.5 TTP Process:

The Fourth BPEL process places at the TTP.

Begin sequence

• Receive the Request and signature1 from the supplier process to decrypt the

key.

• Reply to the request from the supplier process.

• Receive the signature2 from the supplier process.

• Invoke the Buyer Request process to send the signatures of the supplier

process.

• Receive the request and signature1 from Buyer Acceptance process to decrypt

the key.

• Reply to the request from the Buyer Acceptance process.

• Receive the signature2 from the Buyer Acceptance process.

• Invoke the Supplier process to send the signatures of the Buyer Acceptance

process.

End sequence

 26

4.4 Security Information:

Because messages can be modified, it is recommended that business process

implementation use WS-Security (web service security). It provides security by keeping

security information in the SOAP part of the message. WS-security does not provide

fairness and accountability. To fulfill such requirements there is a need to use the fair

non-repudiation protocol.

4.5 Petri Net Model of BPEL:

BPEL processes consist of two types, abstract process and executable process.

Both processes contain elements that can be model in Petri nets.

4.5.1 Petri Net Model of Abstract BPEL Process:

In our model the mapping of WSDL’s parts [12] is as below

 Place → PortType (Operations – input, output messages)
Transition → ServiceLinkType (Name, my role, partner role)
Token → Message (Data)
Arc → Binding

Note: The Service link type definition can be placed within the WSDL document

defining the portTypes from which the different roles are defined.

4.5.2 Petri Net Model of Executable BPEL Process:

We can model BPEL process using Petri net. The mapping for BPEL process is

defined as:

Place → Containers
Transition → Invoke, Receive, Reply, Assign, Switch
Token → Message (Data)

 27

A sequence activity is represented hierarchically and can be refined into a number

of lower level activities such as invoke, receive etc.

Models of each process are merged to obtain a system-wide view a complete web

business transaction. Although the individual models may display the desired properties

of livness, safeness and complete termination, the merged net may not display such

properties.

4.5.3 Petri Net Model of Paradigm:

The Petri net modeling captures websites, which use web services, such as the

inventory manager’s website in our case. The web service on that site calls the Buyer

Request process which may invoke different processes to fulfill the request and so on.

The whole procedure of business processes and transactions involving web services is

represented as a big web.

 To draw the Petri net of B2B processes, global information of the processes are

required. Each process is only aware of itself and other web services (or BPEL processes)

it calls. The entire business transaction can be therefore modeled by merging the models

of individual transactions.

When a process or web service needs to be invoked, its respective WSDL file is traced. A

WSDL file has all the information required to communicate. The complete Petri net

represents all the possible execution paths of the whole system, in our case inventory

manager’s web method (web services) is followed by the WSDL and then the web

service and then WSDL of process and so on.

Figure 4.6 shows the Petri net model of executable BPEL processes. It starts with

inventory manager. This model also shows a switch statements in the supplier process

 28

when number of available products is less then the requested. It invokes manufacturer in

order to fulfill the demand. Places represent containers in process, Transitions represents

invoke and incoming Arcs to the transitions represent out going data and outgoing Arcs

from the transitions is incoming data. Tokens are data.

 29

 Inventory manager

 Inventory manager method

 Container BuyerRequest

 Assign

 Container BuyerRequest

 Invoke Supplier

 Container Supplier

 Assign

 Container Supplier

 Invoke TTP

 Container TTP

 Assign

 Container TTP

 Web service to decrypt

 Container TTP

 Assign

 Container of TTP to reply

 Reply to supplier invoke

 Container supplier

 Container

 Web service to get message

 Container Supplier

Sw
itc

h
ca

se

(A
va

ila
bl

e>
=

re
qu

ire
d)

O
th

er
w

is
e

C

on
ta

in
er

 T
TP

M

an
uf

ac
tu

re
r

M

et
ho

d

C

on
ta

in
er

 su
pp

lie
r

 In
vo

ke
 T

TP

 In
vo

ke
 T

TP

Invoke BuyerRequest

 A
ss

ig
n

C

on
ta

in
er

 T
TP

In

vo
ke

 B
uy

er
R

eq
ue

st

C

on
ta

in
er

 T
TP

C

on
ta

in
er

 S
up

pl
ie

r

C

on
ta

in
er

 T
TP

 A
ss

ig
n

C

on
ta

in
er

 B
uy

er
R

eq
ue

st

 30

Figure 4.4: Petri net modeling of BPEL process

4.6 A Novel Non-repudiation Protocol for a Chain of Business Transactions:

The protocol presented in Section 4.2 established non-repudiation between two

individual parties. However, business transactions are rarely so simple, and may involve

more parties in many different topologies. For example, in a multicast scenario, a request

(such as a contract bid) may be multicast to a number of different vendors. Each vendor

may contact their suppliers for more information. Some, if not all of the vendors will

come back with a quote to the originator of the request. There is a need for non-

repudiation in such a multicast environment. It is beyond the scope of this thesis to

consider all possible scenarios. We consider a chain-linked business transaction. Assume

a supplier (X) wants to publish details about a new product (say a bar of soap). He

publishes the information to a public Market Place called Transora. Transora gets the

information from a lot of suppliers. Retailer (X) sells soap and wants to know when new

soap products are available. Retailer (X) has relationship with UCCnet. UCCnet sends

information to a lot of retailers. The flow will be:

 To other marketplaces

Supplier(X) Transora UCCnet Retailer(X)

From other Suppliers To other retailers

We simplify above initially to just:

Transora UCCnet Retailer(X) Supplier(X)

Issues:

 31

How can Retailer(X) be guaranteed that the information he received is indeed

from Supplier(X)? Or how can Supplier(X) be guaranteed that Retailer(X) did actually

get the new product detail? We propose a novel non-repudiation protocol for chain linked

business transactions.

Approach:

Non-repudiation in a chain linked system is as follow.

 A B C D N

There are following cases

Case 1: A N

Intermediate businesses (B, C, D …) cannot access message or key.

Case 2: A N

Intermediate businesses (B, C, D …) can access message, modify it or add their own

information.

4.6.1 Design and Approach; Case 1:

To avoid modification in the message by the intermediate nodes, there must be a

Non-repudiation protocol down the whole business linked chain. The proposed protocol

works as follow. We have borrowed notation from [15]

Where K: a symmetric key generated by A

t id: transaction id

em = eK(M)

ek_from_A = ePN(K) dek = ePTTP(ek_from_A)

md1 = MD(em) md2 = MD(dek) md3 = MD(id_N)

 32

id_N = ePN(id-message) id-message generated by originator

id_TTP = ePTTP(id-message)

treble signature = t id | md1 | md2 | md3 | sSA(t id | md1 | md2 | md3)

Figure 4.5: A Non-repudiation Protocol for Chained Linked Business Transaction.

Step 1: The A sends the encrypted id-message, encrypted message, double encrypted key

and treble signature to the B, who sends it to the C and so on until it reaches the N.

Message from A B : t id | A | B | N | id_N | em | dek | treble signature

Message from B C : t id | B | C | N | id_N | em | dek | treble signature

Note: This will not stop intermediate nodes from corrupting the message.

Step 2: The A encrypts the id-message with public key of TTP and sends it to the TTP.

A TTP : tid | ePTTP(id-message)

Step 3 : Now suppose an intermediate node B tries to get the key by sending the

decrypted id_message dSB(id_N’) (it is not same as id_N).

B TTP : tid | dSB(id_N’)

The TTP will not accept because id_message is not equal to id_message he received in

step 2 from A.

Step 4: TTP B : tid | Negative acknowledgement

 33

Now consider messages with the recipient N. First the recipient N needs to identify itself.

Step 5: id_N is first decrypted at the N using private key of the N: dSN(id_N). It is next

encrypted using public key of the TTP and sent to the TTP.

N TTP : tid | ePTTP(id_message)

Step 6: TTP N : Positive acknowledgement

Step 7: The recipient N sends double encrypted key and signature1 to the TTP

N TTP : t id | A | N | md1 | md3 | dek | sSN(t id | md1 | md3)

Step 8: TTP decrypts the double encrypted key and sends encrypted key to the recipient

N.

TTP N : t id | ek_from_TTP

Where, ek_from_TTP = dSTTP(dek) : decryption of dek using private key of TTP.

Step 9: The recipient N sends his signature2 on a digested secret key to the TTP.

N TTP : t id | sSN(MD(ek_from_TTP))

Step 10: TTP sends both signatures to the originator A.

TTP A : t id | sSN(t id | md1 | md3) | sSN(MD(ek_from_TTP))

Requirements:

In this section we give an informal analysis on how our protocol satisfies the

requirements of a chain of Business Transactions.

Requirement 1: Intermediate nodes cannot get the key from the TTP because of id_N.

Requirement 2: How does the originator A know that the recipient N gets message? It is

because of md3 in the recipient N’s signature.

Requirement 3: How does the originator A know that message is correct? It is because of

md1 in the recipient N’s signature.

 34

Requirement 4: How does the originator A know that the key is delivered correctly? It is

because of the signature of the recipient N on the digested secret key i.e.

sSN(MD(ek_from_TTP)) .

Requirement 5: How does N know that this message is from the originator A? The

recipient N checks the integrity of message using treble signature. It is the only sender

that can generate that signature.

4.6.2 Petri Net Model of Non-repudiation chain-linked Protocol:

The protocol is modeled in figure 4.4. It started with the place p1 and ended with

the final place p12. Each process task is represented by a transition [18]. There is a token

in p1 thus t1, which represents process A, is the only enabled transition. Firing t1

consumes the tokens in p1 and produced tokens in p2 and p6 then t2, which represents

process B, is enabled. Transition t5 is not enabled at this time because it required the

token in p5. Firing t2 consumes the tokens in p2 and produced new tokens in p3 and p13,

and then t3 and t11 are enabled. Transition t12 represents the negative acknowledgment

from the TTP to the process B when it tried to access message. Now t3, which is process

C, is enabled. Firing t3 consumes tokens in p3 and produced tokens in p4. This process

continues until message reaches the recipient N. Figure 4.4 shows the process N as a

transition t4 and is enabled as p4 contain tokens. On firing t4 it produced tokens in p5.

Now p6 and p5 contain tokens so transition t5, which represents process TTP, is enabled.

It guarantees the correct execution of parallel tasks [18]. If t5 fires, both tokens in p6 and

p5 are consumed and a token is produced in p7. Now transition t6 is enabled. On firing, it

consumed tokens from p7, which is a positive acknowledgment from the TTP process to

the recipient N, and tokens are produced in p8. This process continued until t10 is fired,

 35

which is process A, to get both signatures from TTP and produced tokens in p12. It means

one instances of message passage from the process A to the Process N has finished.

 36

 p1

 t1 Process A

 p2

 t2 Process B

 p3 p13

 t3 Process C t11 Process TTP

 p6
 p4 p14

 t4 Process N t12 Process B

 p5 p15

 t5 Process TTP

 p7

 t6 Process N

 p8

 t7 Process TTP

 p9

 t8 Process N

 p10

 t9 Process TTP

 p11

 t10 Process N
 p12

Figure 4.6: Case1; Petri Net Model of Chain Linked Business Transaction

 37

4.6.3 Dispute Resolution:

Two kinds of disputes can come up [23]: repudiation of origin and repudiation of

recipient. Repudiation of recipient arises when the originator A claims having sent a

message to the recipient N, who denies having received it. Repudiation of origin arises

when the recipient N claims having received the message from the originator A, who

denies having sent it.

Repudiation of Recipient:

If the recipient N denies receiving message ‘M’, the originator A can present

evidence in the form of signatures of N plus (tid, em, dek, id_message, md1, md2, md3,

K, M, PTTP, PN, ek_from_TTP) to arbitrator. The arbitrator will compare the tid and check

em = eK(M)

md1= MD(em)

dek = ePTTP(ek_from_A)

ek_from_A =ePN(K)

md2= MD(dek)

md3=MD(id_N)

Message digest of ek_from_TTP

N’s signatures sSN(t id | md1 | md3), and sSN(MD(ek_from_TTP))

TTP’s signature dSTTP(dek) and its log information to get signature.

The originator A will win the dispute if all the checks are positive. Originator A

will win even if he is unable to provide log information of the TTP as in last check. So it

is not required the presence of the TTP at the time of dispute.

Repudiation of Origin:

 38

If the originator A denies sending the message ‘M’, the recipient N can present

evidence in the form of treble signature of A plus (tid, em, dek, md1, md2, md3, K, M,

ek_from_TTP) to the arbitrator. The arbitrator will compare the tid and check

em = eK(M)

md1 = MD(em)

dek = ePTTP(ek_from_A)

ek_from_A = ePN(K)

md2= MD(dek)

md3 = MD(id_N)

A’s signature sSA(t id | md1 | md2 | md3)

TTP’s signature dSTTP(dek)

Recipient N will win the dispute if all the checks are positive.

4.6.4 Security Requirements:

Important requirements of non-repudiation services are fairness, timeliness,

protection and confidentiality.

Fairness of Protocol:

A non-repudiation protocol provides fairness if neither party can gain an

advantage by quitting premature or misbehaving during the execution of protocol [23].

If the protocol terminates at step 1 because of some problem in communication channel

or misbehavior of the intermediate node, the originator loss nothing. At this time, even

intermediate nodes or the recipient N has an encrypted message em = eK(M) and double

encrypted key dek = ePTTP(ek_from_S) but they cannot access the message until the TTP

decrypts the key. If any intermediate node tries to access secret key, first he needs to

 39

identify himself by decrypting id_N and this is not possible because id_message is

encrypted with public key of recipient N.

The recipient N gets access to entire original message after step 8. After this step

the recipient N can misbehave in two ways. Recipient N does not execute step 9. TTP

detects the misbehavior of the receiver when timeout is reached and TTP does not receive

N’s signature. In this case TTP sends sSN(t id | md1 | md3) and ek_from_TTP to the

originator A. Originator A proves the misbehavior by presenting tid, em, id_message and

dek and showing that em and id_message are matched to the message digest in sSN(t id |

md1 | md3) and dek is matched to the ek_from_TTP.

Recipient N can also misbehave by deliberately signing on a fake key in step 9 to

reject the transaction later. In this case the originator A can prove the dishonesty of the

recipient by showing that key sent at step 1 matched with ek_from_TTP at step 8 but not

to the signature2 of the N in step 9.

The protocol also prevents the originator A from sending an invalid message or

denying sending a message. In the final step, the originator A can get a receipt in the

form of digital signature. However, final step cannot be reached if the originator A has

sent an invalid message because the receiver N can check the integrity of message by

comparing the message digest of the encrypted message and double encrypted key with

the treble signature. If the recipient N did not receive the encrypted message and double

encrypted key correctly, he would not give the signature1. Recipient N would not send

the second signature if he cannot access the encrypted message using the secret key. In

court, N can presents that key and message digest of the key that he received in treble

signature and showing that the key corresponds to the its message digest but unable to

 40

unlock the message. There is no way that the originator A can denies having sent

message and double encrypted key because of the treble signature. If originator A denies

from these encrypted message and double encrypted key and claims that he sent different

message and double encrypted key (which is different from original encrypted message

and double encrypted message received by N), the recipient N can clear his position and

disprove that claim by showing treble signature on message digest of em, dek and id_N

that has been received.

Consider the situation when the TTP and the originator team up to get the

recipient N in trouble. On receiving the double encrypted key, TTP does not send the

encrypted key to the receiver and claims that he did. Now the recipient already has the

treble signature so that he can have partial evidence on the double encrypted key. TTP

cannot argue that he gave the encrypted key to the recipient, because the recipient would

not give the second signature until he gets the encrypted key.

Protection and integrity of Message:

This protocol protects the involved parties from common message protection

threats such as message interception and modification, and reply attacks. We used

message digest and encryption techniques to protect the message from interception and

modification. The integrity of message can be verified by comparing with the message

digest value. Protection is provided by encrypting a message with a key which is double

encrypted so that no one but recipient can access the message content. The protocol

generates a new transaction id (tid) every time to protect from replay attacks [15].

Confidentiality of transaction:

 41

The protocol provides the confidentiality so that, except the recipient no one else

including the TTP can access the original contents of the message. The recipient needs to

identify itself by sending id_message to TTP. Although the intermediate nodes are

involved in the communication, they cannot access the message. The only way to read the

message is through the secret key that encrypts the message. The secret key is double

encrypted to prevent the intermediaries and TTP from getting access to the key and hence

the original message. In step 9 the recipient signs the message digest of the secret key but

not the secret key itself so that TTP does not know the key, even though it is involved in

the protocol.

Timeliness:

The Protocol achieves timeliness as each involved party can terminate the

protocol at any time at their own judgment while maintaining fairness [23]. If the

protocol terminates after step 1, the recipient N cannot take any advantage because it

cannot access the message even it gets the treble signature. If it terminates at step 2 and

step 3 or step 4 and step 5, nobody can claim any thing because these are only

identification messages. If it ends at step 7, the originator A cannot claim anything

because the recipient N has yet to sign on the digested secret key. If the protocol ends at

step 8, the recipient N cannot take any advantage because of his signature over the

encrypted message and log information over the key are available to the TTP when

executing step 7. If protocol terminates at step 9 and before step 10, the originator A can

contact the TTP later to get both signatures.

4.6.5 Building the BPEL Processes; Case 1:

 42

For the BPEL specification we consider only one intermediate node in the above

protocol. For more intermediate nodes, the BEPL specification for the intermediate nodes can

be simply replicated for each intermediate node. . We therefore need only four processes, one

for supplier A, one for buyer N, one for intermediate party B and one for TTP.

Supplier Process A:

This process takes the request from the process B and sends request with double-

encrypted key to the intermediate process. The process A also sends id_message to the

process TTP. Finally it receives signatures from the TTP process. So there are three partners

in this transaction - Supplier A, intermediate node B and TTP. First we define partners and

containers to store data.

After defining the partners and containers of the process, we need to define

activities of the process starting from sequence of process.

Begin sequence

• Receive a request from the intermediate node.

• Invoke a process to produce encrypted id_message, encrypted message and

double encrypted key.

• Assign the data to the container to be sent to intermediate node.

• Reply the intermediate node to send message.

• Assign encrypted id_message to a container.

• Invoke the process TTP and send encrypted id_message.

• Receive the signatures from the trusted third party that buyer access the original

message.

 43

End sequence

Intermediate Process B:

The sequence of activities at intermediate process is as follow:

Begin sequence

• Invoke the buyer process to send request of purchase.

• Receive the information from supplier process.

• Invoke the buyer process to send that information.

End sequence

Buyer Process N:

The sequence of activities is as follow:

• Receive the information from intermediate node.

• Assign the id_message to the container to be use in the invoke activity.

• Invoke the process TTP and send the id_message.

• Receive the acknowledgement from the process TTP.

• Assign double encrypted key and signature1 to the container.

• Reply to the process TTP and send double encrypted key and signature1.

• Receive encrypted key from the process TTP.

• Reply the process TTP and send the signature2.

End sequence

Process TTP:

The fourth BPEL process place at the TTP and its sequence of activities is as follow:

Begin sequence

 44

• Receive id_message from the supplier process A.

• Receive id_message from the buyer process N.

• Invoke internal process to compare id_message for identification.

• Reply with the acknowledgement to the buyer process N.

• Receive double encrypted key and signature1 from buyer process.

• Reply with encrypted key to the buyer process.

• Receive the signature2 from the buyer process.

• Reply the supplier process to send the signatures of the buyer process.

End sequence

4.7 Chain linked Non-repudiation protocol for Modified Messages; Case 2:

The protocol presented in Section 4.7 established non-repudiation in chain linked

business transactions where intermediate node cannot access and modify the messages.

However, in some scenarios there are some transactions in which intermediate nodes may

need to add their own information to the message.

Example Scenario:

A given product is created by merging two products from different producers A

and C. Producer A is sent the purchase order from the buyer N.

• Producer A accepts the order and sends the order fulfillment note to the buyer’s

preferred shipper B. Producer A has included the price in the order fulfillment

note and does not want anyone else to know this price. It is also critical that no

one else modify this price. Included is the number of units to be produced,

shipping data of products (size, weight etc) and dates for shipment.

 45

• Shipper B read his own contents e.g. shipping date, weight, and size etc. and sent

information (including shipping) to the producer C.

• Producer C sends a note to the shipper B on when the complete order will be

available and other information. Included also is the price that only Buyer N

should read.

• Shipper B sends a note to the buyer N with price to ship final product to the buyer

from the producer C.

• Buyer N receives order fulfillment note.

Flow for this chain linked scenario is as follow.

 A B C B N

Issues:

• How does the recipient N know that intermediate node access only those pieces of

the message that they should modify?

• How does N know that intermediate nodes did modify the pieces they were

supposed to change?

• How does A know that message did get to the recipient N and intermediate nodes

did make appropriate changes? etc.

We propose a new non-repudiation protocol for chain linked business transactions

in which intermediate nodes can add their information in the message.

4.7.1 Design and Approach:

We divide the message into two different portions.

 46

1. Segment that cannot be seen or modified by any intermediate node e.g. price of

product from any producer. We encrypt this segment of message with a double

encrypted key.

2. Segment that is viewable to the particular intermediate node e.g. shipping date,

size and weight etc. We encrypt this segment of message with public key of

particular intermediate node.

The protocol works as follow.

Where K : a symmetric key generated by A

t id : transaction id

em(A) = eK(mA)

ek_from_A = ePN(KA) dek(A) = ePTTP(ek_from_A)

md1 = MD(em(A)) md2 = MD(dek(A)) md3 = MD(id_N)

md4=MD(em(C)) md5=MD(em(B))

id_N = ePN(id-message) em_for_B = ePB(M)

id_TTP = ePTTP(id-message)

treble signature = t id | md1 | md2 | md3 | sSA(t id | md1 | md2 | md3)

Step 1: The originator A sends encrypted id-message, encrypted message (this segment is

encrypted with a double encrypted key), double encrypted key, treble signature and

encrypted message to B (this segment is encrypted with a public key of B).

A B : t id | A | B | N | id_N | em(A) | dek(A) | treble signature | em_for_B

Step 2: The originator A encrypts the id-message with public key of the TTP and sends

it to the TTP.

A TTP: tid | ePTTP (id-message)

 47

Step 3: The intermediate node B decrypts message M using its private key and sent an

encrypted message (encrypted with a public key of C) to the Producer C.

B C: tid | ePC(message)

Step 4: The producer C gets the information and sends an encrypted message, double

encrypted key, dual signature and encrypted message (encrypted with a public key of B)

to the shipper B.

em(C) = eK(mC) ek_from_C = ePN(KC) dek(C) = ePTTP(ek_from_C)

C B : t id | C | B | N | em_for_B | em(C) | dek(C) | Dual_signature_from_C

Figure 4.7: Non-repudiation protocol for chain-linked business transaction with message

modification.

Step 5: The shipper B gets the information and forwards message from A (encrypted

message , double encrypted key, id-message and treble signature), message from C

 48

(encrypted message, double encrypted key and dual signature), and sends his own

encrypted message, double encrypted key and dual signature to the Buyer N.

em(B) = eK(mB) ek_from_B = ePN(KB) dek(B) = ePTTP(ek_from_B)

B N : t id | B | N | em(A) | dek(A) | treble signature | em(C) | dek(C) | id_N |

Dual_signature_from_C | em(B) | dek(B) | Dual_signature_from_B

Step 6: id_N is first decrypted at N using private key of N: dSN(id_N). It is next

encrypted using public key of TTP and sent to the TTP.

N TTP : tid | ePTTP(id_message)

Step 7: TTP N : tid | Positive acknowledgement.

Step 8: The recipient N sends Signature1, double encrypted key from A, double

encrypted key from C, and double encrypted key from B to the TTP.

N TTP : t id | A | N | md1 | md3 | md4 | md5 | dek(A) | dek(C) | dek(B) | sSN(t id |

md1 | md3 | md4 | md5)

Step 9: TTP decrypts the double encrypted keys and sends the encrypted keys to N.

TTP N : t id | eks_from_TTP

Step 10: The recipient N sends its signature2 on the digested secret keys to TTP.

N TTP : t id | sSN(MD(eks_from_TTP))

Step 11: TTP forwards both signatures to the producer A which then forward it to the

shipper B and producer C.

TTP A : t id | sSN(t id | md1 | md3 | md4 | md5) | sSN(MD(eks_from_TTP))

Requirements:

In this section we give an informal analysis on how our protocol satisfies the

requirements for a chain of Business Transactions.

 49

Requirement 1: How can the buyer N be guaranteed that the price it gets is indeed what

was input by producer A (or C)?Buyer N checks the integrity of message from A using

treble signature and from C and B using their dual signature. These are the only senders

that can generate these signatures.

Requirement 2: Intermediate node cannot get the key and hence the message from TTP

because of ePN(id_message).

Requirement 3: How can the A, B and C are guaranteed that buyer N did get the correct

information and it was not tampered or read by any of the intermediate notes? It is

because of md1, md4 and md5 respectively in N’s signature.

Requirement 4: How can the producer A be guaranteed that the information was not

transmitted to a potential competitor (e.g. Producer C may have a preferred partner and

may send some of the product details to this partner)? A encrypts the confidential

information with a double encrypted key and no one can get access to key without

identifying himself.

Color Petri Net:

Definition: A colored Petri Net (CPN) is a tuple CPN = (PN, ∑, CR, E) [20] where

1. PN = (P, N, F, M) in an ordinary Petri net,

2. ∑ = {σ1, σ2, …} is a finite set of colors,

3. CR is color factor such that CR(p) ⊆ ∑, and CR(m(p)) ⊆ CR(P) (see glossary for

more explanation), and

4. E, the arc function such that: ∀f (p, t), f(t, p) ∈ F, Ef ⊆ CR(p)MS (see glossary for

more explanation)

4.7.2 Color Petri Net Based Model of Case 2:

 50

We prefer color Petri Net to model Non-repudiation protocol as intermediate node

can modify messages and it is simple to flow the each message along the whole chain.

Buyer N sent the purchase order to the Producer A, so token with color ‘a’ starts

instance in place p1.

 Place Process

Transition Method

Token Data

Step1:

 p1 t1 p2

 p3

.

C(p1) = a C(p2) = {b, c, e, f, g} C(p3) = d

E f (p1, t1) = a E f (t1, p2) = b + c + e + g + f E f (t1, p3) = d

Where, a = start instance b = dek(A) c = em_for_B d = id_TTP

 e = id_N f = treble signature g = em(A)

Consider the CPN, there are three places p1, p2 and p3 and a transition t1 such that

the color set of p1, p2 and p3 are CR(p1) = {a}, CR(p2) = {b, c, e, g, f}, and CR(p3) = {d},

respectively. So p1 is initially marked with token ‘a’ to represent token of color ‘a’. The

arc function associated with the three arcs f (p1, t1), f (t1, p2), and ƒ (t1, p3) are E f (p1, t1)

= a, E f (t1, p2) = b + c + e + g + f, and E f (t1, p3) = d, respectively, meaning that enabling t1,

 51

which represents a method at process A, needs a token of color ‘a’ and firing t1 produces

tokens of color b, c, e, f, and g in place p2 and token of color ‘d’ in place p3. Since E f (p1,

t1) ≤ m(p1) (i.e. a ≤ a) so t1 is enabled. We are following the notations as in [20]

Step2:

 p2 t2 p4

 p5

C(p2) = {b, c, e, f, g} C(p4) = {b, e, f, g} C(p5) = h

E f (p2, t2) = b + c + e + f + g E f (t2, p4) = b + e + f + g E f (t2, p5) = h

Where, h = ePc(message)

Since E f (p2, t2) ≤ m(p2) (i.e. b + c + e + f + g ≤ b + c + e + f + g) so t2 is enabled. Firing t2,

which represents a method at process B, produces tokens of color b, e, f, and g in place p4

and token of color ‘h’ in place p5.

Step3:

 p5 t3 p6

C(p5) = h C(p6) = {o, q, r, s}

E f (p5, t3) = h E f (t3, p6) = o + q + r + s

Where, o = em(C) q = dek(C) r = Dual_signature_from_C

 52

 s = em_for_B

Since E f (p5, t3) ≤ m(p5) (i.e. h ≤ h) so t3 is enabled. Firing t3, which represents a method at

process C, produces tokens of color o, q, r, and s in place p6.

Step 4:

 p4 t4 p7

 p6

C(p4) = {b, e, f, g} C(p6) = {o, q, r, s} C(p7) = {e, b, g, f, k, i, n, o, q, r}

E f (p4, t4) = b + e + g + f E f (p6, t4) = o + q + r + s

E f (t4, p7) = b + e + f + k + i + n + o + q + r

Where, k = em(B) i = dek(B) n = Dual_signature_from_B

Since E f (p4, t4) ≤ m(p4) and E f (p6, t4) ≤ m(p6) so t4 is enabled. Firing t4, which represents a

method at process B, produces tokens of color e, b, g, f, k, i, n, o, q, and r in place p7.

Step5:

 p7 t5 p8

C(p7) = {e, b, g, f, k, i, n, o, q, r} C(p8) = u

E f (p7, t5) = e E f (t5, p8) = u

Where, u = ePTTP(id_message)

 53

Since E f (p7, t5) ≤ m(p7) (i.e. e ≤ e + b + g + f + k + i + n + o + q + r) so t5 is enabled.

Firing t5, which represents a method at process N, produces a token of color ‘u’ in place

p8.

Step 6:

 p3 t6 p9

 p8

C(p3) = d C(p8) = u C(p9) = v

E f (p3, t6) = d E f (p8, t6) = u E f (t6, p9) = v

Where, v = positive acknowledgement from the TTP

Since E f (p3, t6) ≤ m(p3) and E f (p8, t6) ≤ m(p8) so t6 is enabled. Firing t6, which represents a

method at process TTP, produces a token of color ‘v’ in place p9.

Step 7:

 p9 t7 p10

 p7

C(p9) = v C(p7) = {b, g, f, k, i, n, o, q, r} C(p10) = {b, q, i, w}

 54

E f (p9, t7) = v E f (p7, t7) = b + q + i E f (t7, p10) = b + q + i + w

Where, w = sSN(t id | md1 | md3 | md4 | md5)

Since E f (p7, t7) ≤ m(p7) and E f (p9, t7) ≤ m(p9) so t7 is enabled. Firing t7, which represents a

method at process N, produces tokens of color b, q, i, and w in place p10.

Step8:

 p10 t8 p11

C(p10) = {b, q, i, w} C(p11) = x

E f (p10, t8) = b + q + i E f (t8, p11) = x

Where, u = eks_from_TTP

Since E f (p10, t8) ≤ m(p10) (i.e. b + q + i ≤ b + i + q + w) so t8 is enabled. Firing t8, which

represents a method at process TTP, produces a token of color ‘x’ in place p11.

Step 9:

 p11 t9 p12

 p7

C(p11) = x C(p7) = {g, f, k, n, o, r} C(p12) = y

E f (p7, t9) = g + k + o E f (p11, t9) = x E f (t9, p12) = y

Where, y = sSN(MD(eks_from_TTP))

 55

Since E f (p11, t9) ≤ m(p11) and E f (p7, t9) ≤ m(p7) (i.e. g + k + o ≤ g + f + k + n + o + r) so t9

is enabled. Firing t9, which represents a method at process N, produces tokens of color ‘y’

in place p10.

Step 10:

 p12 t10 p13

 p10

C(p12) = y C(p10) = w C(p13) = {w, y}

E f (p12, t10) = y E f (p10, t10) = w E f (t10, p13) = w + y

Since E f (p12, t10) ≤ m(p12) (i.e. y ≤ y) and E f (p10, t10) ≤ m(p10) (i.e. w ≤ w) so t10 is enabled.

Firing t10, which represents a method at process TTP, produces tokens of color w and y in

place p10.

 56

 p1

 t1

 p2
 p3
 t2

 p4 p5

 t3

 p6

 t4

 p7

 t5

 p8

 t6

 p9

 t7

 p10 t8

 p11

 t9

 p12

 t10 p13

 57

Figure 4.8: Case2; Color Petri Net Model of Chain Linked Business Transaction

4.7.3 Reliability of Non-repudiation Protocol for Chain-Linked

Transactions:

In this section, we show that if any transaction does not take place due to communication

failures or node misbehavior, the protocol will terminate.

Definition 1:

 Given a CPN, we define the number of distinct color associated with a place pi as

ui = | C(pi) |. [20]

Definition 2:

 Given a CPN, we define the number of ways in which a transition ti can fire as vi

= the number of consistent substitutions of each arc function f(pj, ti) (the condition to be

satisfied for the transition to fire) with the elements in C(pj), where pj є •ti. [20]

We can regard a colored Petri net as continuous time homogeneous Markov process and

we can analyze the system reliability by means of analytic method [22].

Definition 3:

 System is reliable if and only if each input and output function of all transitions

are reliable. Where, reliability of the system is denoted by R(system)

R(system) = R (I(tj)) AND R (O(tj))

R(system) = R (f(pi, tj)) AND R(f(tj, pk))

Now first consider R (f(pi, tj)), where pi є •tj (set of input places of tj)

Unfolding the CPN as follow [20]:

 58

For each place pi in CPN, create as many places as ui and label them with color σ1,

σ2, σ3 ……, σu and for each transition tj in CPN create as many transitions as vj and give

them distinct label to each.

Now draw the edges from every place derived from pi to every transition tj with

arc function E f (pi, tj) and substitute σk in E f (pi, tj) with logical 1 which ensure a correct

execution of tj, so

 u
R (f(pi, tj)) = ∏ E f (pi, tj)

 i=1

Now consider R(f(tj, pk)), where pk є tj• (set of output places of tj)

For each place pk in CPN, create as many places as uk and label them with color

σ1, σ2, σ3 ……, σk and for each transition tj in CPN create as many transitions as vj and

give them distinct label.

Now draw the edges from every transition derived from tj to every transition pk

with arc function E f (tj, pk) and substitute σk in E f (tj, pk) with logical 1 which ensure a

correct execution of tj, so

 u
R (f(tj, pk)) = ∏ E f (pi, tj)

 i=1
Hence;

R(system) = R (f(pi, tj)) AND R(f(tj, pk))

This shows that in the colored Petri net a transition may not fire properly (due to

communication failure or misbehaving nodes). We assume that the Petri Net is live. If a

transition does not fire, then the liveness property is no longer true and this will terminate

the system.

 59

4.7.4 Dispute Resolution:

There are two kinds of disputes in this protocol: repudiation of origin and

repudiation of receipt. Repudiation of receipt arises when the senders claim having sent a

message to the recipient N, who denies having received it. Repudiation of origin arises

when the recipient N claims having received a message(s) from the sender(s), who denies

having sent the message(s).

Repudiation of Recipient:

If the recipient N denies receiving messages mA, mB, and mC, entity A, B and C

can present evidence in the form of signatures of N plus (tid, em(A), em(B), em(C),

dek(A), dek(B), dek(C), id_message, md1, md3, md4, md5, K, mA, mB, mC, PTTP, PN,

eks_from_TTP) to arbitrator. The arbitrator will compare the tid and check

em(A) = eK(mA) em(B) = eK(mB) em(C) = eK(mC)

md1 = MD(em(A)) md3 = MD(em(id_N)) md4 = MD(em(B))

md5 =MD(em(C))

ek_from_A = ePN(KA) dek(A) = ePTTP(ek_from_A)

ek_from_C = ePN(KC) dek(C) = ePTTP(ek_from_C)

ek_from_B = ePN(KB) dek(B) = ePTTP(ek_from_B)

Message digest of eks_from_TTP

N’s signatures sSN(t id | md1 | md3 | md4 | md5), and sSN(MD(ek_from_TTP))

TTP’s signatures dSTTP(dek(A)), dSTTP(dek(B)) and dSTTP(dek(C)),and its log information

to get signature.

 60

Senders A, B and C will win the dispute if all the checks are positive. Senders will

win even if it is unable to provide log information of TTP as in last check. So it is not

required the presence of TTP at the time of dispute.

Repudiation of Origin:

If A, B and C denies sending messages mA, mB, and mC respectively, the N can

present evidence in the form of treble signature of A, double signature of B and double

signature of C plus (tid, em(A), em(B), em(C), dek(A), dek(B), dek(C), md1, md3, md4,

md5, KA, KB, KC, mA, mB, mC, eks_from_TTP) to arbitrator. The arbitrator will compare

the tid and check

em(A) = eK(mA) em(B) = eK(mB) em(C) = eK(mC)

md1 = MD(em(A)) md3 = MD(em(id_N)) md4 = MD(em(B))

md5 =MD(em(C))

ek_from_A = ePN(KA) dek(A) = ePTTP(ek_from_A)

ek_from_C = ePN(KC) dek(C) = ePTTP(ek_from_C)

ek_from_B = ePN(KB) dek(B) = ePTTP(ek_from_B)

A’s signature sSA(t id | md1 | md2 | md3) B’s Dual signature C’s Dual signature

TTP’s signatures dSTTP(dek(A)), dSTTP(dek(B)) and dSTTP(dek(C))

Recipient N will win the dispute if all the checks are positive.

4.7.5 Security Requirements:

Important security requirements are as follow.

Fairness of Protocol:

 61

This protocol has the ability to send messages from involved entities to the

recipient N and also among involved entities using the double encrypted key and PKI

respectively without the loss of fairness.

There is no violation of fairness if the protocol ends at step1, step 4 and step 5

because of any misbehavior or miscommunication. At this time the intermediate nodes or

the recipient N has an encrypted messages and double encrypted keys but they cannot get

access to those messages until TTP decrypt the key. If any intermediate node tries to get

access to the secret key, he needs to identify himself by decrypting id_message and this is

not possible because id_message is encrypted with public key of the recipient N.

 The recipient N gets access to the entire original message after step 9. After this

step N can misbehave in two ways. Recipient N does not take step 10. TTP detects the

misbehavior of the recipient when timeout has been reached and TTP does not receive the

recipient N’s signature. In this case TTP sends sSN(t id | md1 | md3 | md4 | md5) and

eks_from_TTP to the A. The originator A proves the misbehavior by presenting t id,

em(s), id_message and dek(s) and showing that the em(s) and the id_message are

matched to sSN(t id | md1 | md3 | md4 | md5) and dek(s) are matched to eks_from_TTP.

The recipient N can also misbehave by deliberately signing on a fake key in step

10 to reject the transaction later. In this case the originator A can show dishonesty of the

recipient by showing that the keys sent at step 1, step 4, and step5 are matched with

eks_from_TTP at step 9 but not with the signature2 of the N in step 10.

The protocol also prevents the originator A or intermediate nodes from sending an

invalid message or denying sending a message. In the final step, sender can get a receipt

in the form of digital signature. However, final step cannot be reached if the originator A

 62

or intermediate nodes has sent an invalid message because the recipient N can check the

integrity of message by comparing the message digest of encrypted messages and double

encrypted keys with the their signatures. If the recipient N did not receive the encrypted

message and double encrypted key correctly, it would not give the first signature. The

Recipient N would not send the second signature if it cannot access the encrypted

messages with the secret keys. In court, the recipient N can present these keys, message

digests of keys that he received and signatures of the originators. There is no way that the

originator A or intermediate nodes can deny having sent message or double encrypted

keys because of their signatures. If they deny from these encrypted messages or double

encrypted keys and claim that they sent different encrypted messages and double

encrypted keys (which is different from the original encrypted messages and double

encrypted keys received by the recipient N), the recipient N can clear his position and

disprove their claim by showing their signatures on em(s), dek(s) and id_N that has been

received.

Consider the situation when the TTP and the originator team up against the

recipient N. On receiving the double encrypted key, TTP does not send the encrypted key

to the receiver and claims it did. Now the receiver already gets the signatures of senders

so that it can have partial evidence on the double encrypted key. The TTP cannot argue

that it gave encrypted key without giving it to the receiver, because the receiver would

not give the second signature until it get the encrypted key.

Protection and integrity of Message:

In this protocol there are two types of message, one is only for the recipient N and

other is among the involved entities. We used PKI in order to protect the messages

 63

among involved entities. Every entity sends the message to the recipient N and wants that

no one else can access this message. This type of message is encrypted with the double

encrypted key.

The protocol generates a new transaction id (tid) for every new transaction to

protect from replay attacks.

Confidentiality of transaction:

The protocol provides the confidentiality so that, no one including the TTP can

access the original contents of messages but the recipient N. The recipient N needs to

identify itself by sending id_message to TTP. Even the intermediate nodes are involved

in the protocol but cannot get access to the messages. The only way to access the

messages is through the secret keys that encrypt the messages.

Timeliness:

Protocol achieves timeliness as each involved entity can terminate the protocol at

any time at his own judgment while maintaining fairness.

4.7.6 Building the BPEL Processes; Case 2:

In above protocol there are five processes, two for the producer A and C, one for the

shipper B, one for the buyer N, and one for the TTP.

Producer Process A:

The producer accepts the order and sends the information to the buyer’s preferred

shipper B. The process A has two partners process B and Process TTP. The sequence of

producer process A is as follow.

Begin sequence

• Invoke the process B and send all information.

 64

• Invoke the process TTP to send the encrypted id_message.

• Receive the signatures from TTP.

• Send signatures to the process B.

End sequence

Shipper Process B:

Sequence of the shipper process B is as follow.

Begin sequence

• Receive the message from the producer process A.

• Invoke the producer process B and send message of the process A to the process C.

• Receive the message from the producer process C.

• Invoke the buyer process TTP to send all messages from the producer process A, all

messages from the producer process C and its own message.

• Receive the signature form the process A.

End sequence

Producer process C:

Sequence of the producer process C is as follow:

Begin sequence

• Receive message from the shipper process B.

• Invoke internal process to decrypt the message.

• Reply to the shipper process B with information for the buyer process N.

• Receive signatures of the buyer from the process B.

End sequence

Buyer Process N:

 65

Sequence of the buyer process is as follow.

Begin sequence

• Receive the information from the shipper process.

• Assign the id_message to the container to be use in the invoke activity.

• Invoke the process TTP and send the id_message.

• Receive the acknowledgement from the process TTP.

• Assign double encrypted keys and signature1 to the container.

• Reply to the process TTP and send the double encrypted keys and signature1.

• Receive the encrypted keys from the process TTP.

• Reply the process TTP and send signature2.

End sequence

Process TTP:

The fourth BPEL process place at the TTP and its sequence of activities is as follow:

Begin sequence

• Receive id_message from the producer process A.

• Receive id_message from the buyer process N.

• Invoke internal process to compare id_message for identification.

• Reply with the acknowledgement to the buyer process N.

• Receive double encrypted keys and signature1 form the buyer process N.

• Reply with encrypted key to the buyer process N.

• Receive the signature2 from the buyer process N.

• Reply the producer process A to send the signatures of the buyer process N.

End sequence

 66

4.8 Non-repudiation Protocol for Multiple Entities:

The protocol presented in pervious sections established non-repudiation in chain

linked business transactions. However, in real-time scenarios, messages (same or

different) are sent to the multiple entities. There is a chance of communication bottleneck

created at the TTP. We propose a multi-entities non-repudiation (MENR) protocol, as an

extension of our non-repudiation protocol, such that the sender is able to send different or

identical messages to multiple recipients using a single key.

Actual Scenario:

Producer A produces different products and needs to send different messages to

multiple receivers. Producer A receives an order from a company to send different

products to their different departments Ni. Producer A accepts the order and sends

different order fulfillment note including the price, number of units, shipping data of

products (size, weight etc) and dates for shipment to the relevant department and does not

want anyone else to know this information.

Flow for this multiple entities scenario is as follow.

N1

A N2

N3

Issues:

• What factors determine to which recipients should the originator A send the

message and the key?

 67

• What factors determine to which recipients should TTP send the encrypted key?

• How does same key open different messages and no one else but the particular

recipient can read message?

• How does the originator A know that recipients get the key and hence the original

message? etc.

We propose a new non-repudiation protocol in which originator can send different

messages to multiple nodes.

4.8.1 Design and Approach:

An extension by Kremer et al. [24] of a low weight notary protocol for two

entities [3] is the first non-repudiation protocol in the literature dealing with multiple

entities. This protocol supports a one-to-many topology in which the originator aims to

send the same message to multiple recipients. This protocol broadcasts a message among

several entities and provides evidence only to those entities who behave honestly during

the protocol run, using the same key for encryption. Nevertheless, it is not possible to

send different messages to different recipients [23]. We design an optimal protocol

named MENR in which originator can send different message to multiple recipients using

same key.

Some useful notation in the protocol description is as follows.

A an originator

Ni set of intended recipients

Ni
’ subset of Ni that replied to A with the evidence of receipt

Mi message being sent from A to a recipient Ni

ni random value generated by A

 68

vi ePNi’(ni) : encryption of ni with Ni
’’s public key

k key being selected by A

Ki k xor ni: a key for Ni
’ use to decrypt message

em EKi(Mi): encrypted message for Ni
’ with key Ki

ek_from_A = ePNi’(k)

dek = ePTTP(ek_from_A)

ek_from_TTP = dSTTP(dek)

id_Ni
’ message to identify Ni

’

md1 MD(em): message digest of encrypted message

md2 MD(dek): message digest of double encrypted key

md3 MD(vi): message digest of encrypted ni

md4 MD(id_Ni
’): message digest of id_Ni

’

Ni
’’ = Ni

 – Ni
’: a subset of Ni with which A wants to cancel the exchange

Cancelreq sSA(tid | TTP | Ni
’’): evidence of request of cancellation issued by the

originator to the TTP

CancelNi’’ sSTTP(tid | Ni
’’ | Cancelreq): evidence of cancellation issued by the TTP to

the Ni’’

 69

Figure 4.9: Multiple-Entities Non-repudiation Protocol

Step 1: Originator A broadcasts the encrypted message Mi and his signature on the

message digest of the encrypted message to the Ni

A Ni : t id | A | TTP | Ni | em | md1 | sSA(tid | md1)

Step 2: The subset of the recipients wants to receive that message send their public key

and signature on their own public key and message digest of the encrypted message.

Ni
’ A : t id | A | Ni

’ | PNi’ | sSNi’ (tid | A | TTP | Ni
’ | PNi’ | md1)

Where Ni
’ є Ni

Step 3: originator A sends id_Ni
’ for identification of the Ni

’, double encrypted key,

signature and vi to the Ni
’.

A Ni
’ : t id | A | TTP | Ni

’ | vi | ePNi’(id_Ni
’) | dek | md2 | md3 | sSA (tid | md2 | md3)

Step 4: The originator A sends encrypted id_Ni
’, signature on Ni

’, and Cancelreq to the

TTP in order to identify the recipients Ni
’ and decrypt the key only for correct recipients.

A TTP : t id | A | TTP | ePTTP(id_Ni
’) | sSA (tid | Ni

’) | Cancelreq

Step 5: The recipients Ni
’ send the double encrypted key, signature and the id_Ni

’ to the

TTP. So the TTP first identify them and then decrypts the key.

 70

Ni
’ TTP : t id | A | TTP | Ni

’ | ePTTP(id_Ni
’) | dek | md4 | sSNi’ (tid | md4)

Step 6: The TTP checks the identification of each the recipient N and do actions as

follow.

TTP: FOR (all Ni
’ є Ni)

 IF (N є Ni
’
) THEN

 TTP N : tid | N | ek_from_TTP | sSA (tid | id_Ni
’) | sSNi’ (tid | md4) |

Retrieve signature sSN(MD(ek_from_TTP)) from N

 ELSE

 TTP Ni
’’ : tid| Ni

’’ | negative Acknowledgement | Cancelreq | CancelNi’’

Step 7: The recipients Ni
’ submit signature to the TTP on a digested secret key.

Ni
’ TTP : tid | sSNi’(MD(ek_from_TTP)) | sSNi’ (tid | md4)

Step 8: Protocol ends when the originator A fetches signatures of all the recipients (Ni
’)

from the TTP.

 A TTP : tid | sSNi’(MD(ek_from_TTP)) | sSNi’ (tid | md4)

4.8.2 Dispute Resolution:

As we have mentioned, two kinds of disputes can arise. Now we discuss their

resolution.

Repudiation of Recipient:

If Ni denies receiving message ‘Mi’, A can present evidence in the form of

signatures sSNi’ (tid | A | TTP | Ni
’ | PNi’ | md1), sSNi’ (tid | md4) and

sSNi’(MD(ek_from_TTP)) plus (tid, em, dek, id_Ni
’, vi, ni, Mi, k, Ki, md1, md4, PTTP, PNi’,

ek_from_TTP) to arbitrator. The arbitrator will compare the tid and check

vi = ePNi’(ni)

 71

Ki = k xor ni

ek_from_A =eP Ni’(k)

dek = ePTTP(ek_from_A)

em = EKi(Mi)

md1= MD(em)

md2= MD(dek)

md4=MD(id_Ni
’)

Message digest of ek_from_TTP

N’s signatures sSNi’ (tid | A | TTP | Ni
’ | PNi’ | md1), sSNi’ (tid | md4) and

sSNi’(MD(ek_from_TTP))

TTP’s signature dSTTP(dek) and his log information to get signature.

Sender A will win the dispute if all the checks are positive. Sender A will win

even if he is unable to provide log information of TTP as a last check. So it is not

required the presence of TTP at the time of dispute. The arbitrator may further interrogate

Ni using Cancelreq and CancelNi’’ to check the cancellation list from A.

Repudiation of Origin:

If A denies sending message ‘Mi’, Ni can present evidence in the form of

signatures sSA (tid | md1) and sSA (tid | md2 | md3) plus (tid, em, dek, id_Ni
’, vi, ni, Mi, k,

Ki, md1, md2, md3, PTTP, PNi’, ek_from_TTP) to arbitrator. The arbitrator will compare

the tid and check

vi = ePNi’(ni)

Ki = k xor ni

ek_from_A =eP Ni’(k)

 72

dek = ePTTP(ek_from_A)

em = EKi(Mi)

md1= MD(em)

md2= MD(dek)

md3=MD(vi)

Message digest of ek_from_TTP

A’s signatures sSA (tid | md1) and sSNi’ (tid | md2 | md3)

TTP’s signature dSTTP(dek)

Recipient N will win the dispute if all the checks are positive.

4.8.3 Security Requirements:

Important requirements of non-repudiation services are as follow.

Fairness of Protocol:

This protocol has the ability to send different messages to different entities using

the same key for encryption without the loss of fairness.

There is no breach of fairness if the protocol ends at step1 because of any

misbehavior or miscommunication. The originator already sent the encrypted message

em = EKi(Mi) but still holding the key ‘k’ and ‘ni’ which is use to decrypt that message. If

any recipient other than accepted recipients tries to get access the secret key, he needs to

identify himself by decrypting id_Ni
’ and this is not possible because id_Ni

’ is encrypted

with public key of the recipient Ni
’. The recipient Ni

’ gets access to entire original

message after step 6. After this step Ni
’ can misbehave in two ways. Recipient Ni

’ does

not take step 7. TTP detects the misbehavior of receiver when timeout has been reached

and TTP does not receive recipient’s signature. In this case TTP sends sSNi’ (tid | md4) and

 73

ek_from_TTP to the originator A. Originator A proves the misbehavior by presenting tid,

em, id_ Ni
’, PNi’, ni and dek and shows that ‘em’ is matched to the sSNi’ (tid | A | TTP | Ni

’ |

PNi’ | md1) and id_ Ni
’ is matched to sSNi’ (tid | md4) and dek is matched to ek_from_TTP.

Recipient Ni
’ can also misbehave by deliberately signing on a fake key in step 7 to

refuse the transaction later. In this case the originator A can proves dishonesty of receiver

by showing that key sent at step 1 matched with ek_from_TTP at step 6 but not with the

signature of the Ni
’ in step 7.

The protocol also prevents the originator A from sending an invalid message or

denying sending a message. In the final step originator can get a receipt in the form of

digital signature. However, final step cannot be reached if the originator A has sent an

invalid message because the receiver Ni
’ can check the integrity of message by comparing

the message digest of encrypted message after step 1. If Ni
’ did not receive the encrypted

message correctly, he would not give the signature and public key. Recipient Ni
’ can

check the integrity of key by comparing the message digest of double encrypted key after

step 3 and if there is some problem, he would not execute next step. Recipient Ni
’ would

not send the signature on digested key if he cannot access the encrypted message with the

secret key. In court, the recipient N can presents that key and message digest of the key

that he received in step 3 and show that key correspond to its message digest but unable

to unlock the message. There is no way the originator A can deny having sent message

and double encrypted key because of his signature. If originator A denies and claims that

he sent different message and double encrypted key (which is different from original

encrypted message and double encrypted message received by Ni
’) to the recipient Ni

’,

the Ni
’ can clear his position and disprove that claim by showing A’s signatures sSA (tid |

 74

md1) on the ‘em’ and sSNi’ (tid | md2 | md3) on the dek and the id_ Ni
’, that has been

received.

Now consider the case where the TTP and the originator team up against the recipient Ni
’.

If the TTP does not send the encrypted key to the receiver in step 6 and claims that he

did. Now the recipient already got sSNi’ (tid | md2 | md3) so that he can have an evidence

on the double encrypted key. TTP cannot argue that he gave the encrypted key without

really giving it to the recipient, because recipient would not give

sSNi’(MD(ek_from_TTP)) until he gets the encrypted key.

If the recipient Ni
’’ claims that he sent the public key and an acceptance to receive

the message and did not get any response from the originator. Originator A can disprove

it by showing the list of Ni
’’, Cancelreq and TTP’s signature CancelNi’’ which show that the

subset of Ni with which the exchange has been cancelled.

Verifiability of Third Party:

If the TTP misbehaves, resulting in the loss of fairness for an entity, the victim

can show the reality in a dispute [23].

Confidentiality of transaction:

The protocol provides the confidentiality so that, except the particular recipient no

one else including the TTP can access the original contents of message. Even the Ni
’’

involved in the protocol and get a chance to receive the encrypted message but he is

unable to open it because he needs the key k and ni to decrypt that message. If the Ni
’’

gets the key k from some other recipient but he cannot access the message because he

needs ni to compute Ki.

Protection and integrity of Message:

 75

Protection and integrity of the message is provided in same way as in pervious

protocols. Further protection is provided by generating different ‘ni’ and hence Ki for

particular recipient Ni so that no one else can access the key Ki and hence the message

even if he knows the key k.

4.8.4 Efficiency:

We compare our protocol with the one where an n-instance of a two-party

protocol [20] is used in order to send different messages to the intended parties. For this

comparison, we use the following operations:

• encryption and decryption

• signature generation and verification

• modular equation computation

• random numbers generation

• store and fetch actions

Depending on which algorithm is used for each of these operations, the bit

complexity of each of the participants will change but the relation going between them

remains.

We denote [23]:

 ≈ roughly equal

> or < greater or smaller

>> or << much greater or much smaller

 76

Table 4.1

 TTP’s computation complexity

n-instanced two parties Comparison Our Approach

Decryption o >> Decryption of one key f n of keys

Hence we can see in Table 1 that efficiency of the TTP is improved when it is

generalized to multiple entities.

Table 4.2

 A’s computation complexity

n-instanced two parties Comparison Our Approach

Generating n keys >> Generating one key

Double encrypting n keys >> Encrypting one key

No generation of n and i

encrypting it

Generation of ni and

encrypting it
<<

n signatures on message digest
N dual signatures ≈

of em, dek and vi

No identification required <<
Ge d neration of id_ Ni

’ an

encrypt it with PNi’

n fetches operation to get

sSN(M TP))

One fetch operation to get

sSNi’(MD(ek_from_T
>>

D(ek_from_TTP))

Above table shows that A’s efficiency is improved. In n-instances of two parties

protocol, the misbehavior of the recipients disclose when they already get the key and

 77

hence the message. In this case all computations of the T ocol,

the N can get the key only after identification which reduce

ightly increased because of er if

the recipient and the originator have pervious strong rela he

cret, then the identification and encryption of ni could be avoided in each protocol run

though

TP get wasted. In our prot

s the loss.

Computation of Ni
’ sl identification and ni, howev

tional and they may share t

se

 it should be still included in evidence.

Table 4.3

 N’s computation complexity

n-instanced two parties Comparison Our Approach

Signature sSNi’(tid | A | TTP | Ni’

| PNi’ | md1)
Signature 1 =

Signature 2 =
sSNi’(MD(ek_from_TTP)

Signature

No signature on id_Ni’ < Signature on id_Ni’ <

Obtained encrypted key

it

rypted key from TTP

 it to get k plus

 Obtain enc

from TTP and decrypt < and decrypted

decrypt ni and compute Ki

Our protocol is extremely efficient such that it exchange different messages

among multiple recipients using only one key for evid ing the

computation for the originator and the TTP. We get this t increase

in cost and decryption of cient

than any other two-party protocols, since it allow to ltiple

ence distribution and reduc

new feature with sligh

 of public key encryption ni and id_Ni
’. This protocol is effi

 send different messages to mu

 78

entities in a confidential way as well as to cancel the pient Ni
’’.

In addition it provides timeliness, as each entity can terminate the protocol at any time

while m

i

of the encrypted message to the recipient processes.

Begin s

 waiting for suitable message to arrive or for a time

so that originator can receive message from the recipients and

n

ted key, signature and vi to the recipient

 Ni
’ through the same channel of invoke activity.

 Cancelreq.

End seq

Recipient Process N:

protocol for a group of reci

aintaining the fairness.

4.8.5 Building BPEL processes for the MENR Protocol:

In this protocol number of processes depend on the number of recipients

participated in protocol. At least there are three processes with one recipient process,

originator process and TTP process.

Originator Process A:

Originator process starts when he broadcasts the encrypted message M and his

signature on the message digest

Sequence of originator process is as follow.

equence

• Invoke recipient processes to send encrypted message and signature.

• Use pick construct that allows

out alarm to go off

if he does not receive anything from any recipient with in that time out alarm the

originator process able to send cancel request to the TTP process.

• Send encrypted id_Ni
’, double encryp

processes

• Invoke the TTP process to send encrypted id_Ni
’, signature on Ni

’, and

• Receive signature from the TTP process.

uence

 79

Sequence of the recipient process is as follow.

equence Begin s

• ature.

the TTP process to send encrypted id_Ni
’, double encrypted key, and

•

 TTP process with his signature on digested key.

End q

TT P

Begin s

• crypted id_Ni
’ , double encrypted key, and signature from the recipient

ere id_Ni
’ matches

se send Cancelreq. So switch activity can be use to perform this step.

construct so that if he does not receive anything from any of the

TP process able to show misbehavior

ipient process(es).

• Receive encrypted message and signature from the originator process.

Reply to the originator process with his public key and sign

• Receive encrypted id_Ni
’, double encrypted key, signature and vi from the

originator process.

• Invoke

signature.

Receive encrypted key from the TTP process.

• Reply the

 se uence

P rocess:

Sequence of the TTP process is as follow.

equence

• Receive information from the originator process as shown in figure 4.7.

Receive en

processes.

• Reply to the recipient processes with the encrypted key if th

otherwi

• Use pick

recipients with in that time out alarm then T

of the rec

• Reply to the originator process with the signatures of recipients.

 80

End q

4.9 Non-repudiation Protocol for chain-linked Multiple Entities:

linked ent

inv i ferent

messag

multi-e ENR) protocol, is the extension of our non-

rep a multiple

gh intermediate nodes.

is

We design an optimal protocol named CLMENR in which originator can send

different message to multiple recipients and we are introducing intermediate node IN

which does play the role of a hub and reducing load on the originator.

 se uence

The protocol presented in pervious sections established non-repudiation in chain

business transactions in which the originator can send a message to the recipi

olv ng some intermediate nodes. In some cases the originator needs to send dif

e to the recipients through the intermediate node. We propose a chain-linked

ntities non-repudiation (CLM

udi tion protocols, such that the sender is able to send different to the

recipients throu

Actual Scenario:

Scenario is same as in chain linked business transaction but supplier A wants to

send different messages to multiple recipients and does not want anyone else to know th

information.

Flow for this chain-linked multiple entities scenario is as follow.

N1

A
N2

N

IN

3

4.9.1 Design and Approach:

 81

Most of the notations are same as in MENR except following.

Dual signature = t id | md1 | md2 | sSA(tid | md1| md2)

md1 MD(em): message digest of encrypted message

md2 MD(dek): message digest of double encrypted key

md3 MD(vi): message digest of encrypted ni

md4 MD(id_N ’): message digest of id_Ni
’

i

repudiation protocol

ssage Mi, double encrypted key and dual

ation to the Ni.

ssage send their public key and

of the encrypted message.

 | PNi’ | md1)

Step 4: The intermediate node IN forward these signatures plus encrypted id_Ni
’ and his

signature on md4 to the originator A.

Figure 4.10: Chain-linked multiple entities Non-

Step 1: The Originator A send the encrypted me

signature to the IN.

A IN : t id | IN | A | TTP | Ni | em | dek | Dual signature

Step 2: The intermediate node IN broadcasts all this inform

IN Ni : t id | IN | A | TTP | Ni | em | dek | Dual signature

Step 3: The subset of recipients requests to receive that me

signature on their own public key and message digest

Ni
’ IN : t id | A | TTP| Ni

’ | IN | PNi’ | sSNi’ (tid | A | TTP | Ni
’

 82

IN A : t id | A | Ni
’ | | ePA(id_Ni

’) | md4 | sSIN (tid | md4) | sSNi’ (tid | A | TTP | Ni
’ | PNi’ |

md1)

Step 5: The intermediate node IN sends encrypted id_Ni
’ and his signature on md4 to the

o the TTP first identify them and then decrypts the key.

P checks the identification of each the recipient N and do actions as

TTP N : tid | N | ek_from_TTP | vi | md3 | sSA (tid | md3 | md4) |

SE

sted secret key.

recipients Ni
’.

IN Ni
’ : t id | Ni

’ | ePNi’(id_Ni
’) | md4 | sSA (tid | md4)

Step 6: The originator A sends vi, encrypted id_Ni
’ , his signature on md3 and md4 and

Cancelreq to the TTP in order to identify Ni
’ and decrypt the key only for correct

reci ts. pien

A TTP : t id | A | TTP | Ni
’ | vi | md3 | md4 | ePTTP(id_Ni

’) | sSA (tid | md3 | md4) |

Cancelreq

Step7: The recipients Ni
’ send the double encrypted key, signature and the id_Ni

’ to the

TTP. S

Ni
’ TTP : t id | A | TTP | Ni

’ | ePTTP(id_Ni
’) | dek | md4 | sSNi’ (tid | md4)

Step 8: The TT

follow.

TTP: FOR (all Ni
’ є Ni)

 IF (N є Ni
’
) THEN

Retrieve signature sSN(MD(ek_from_TTP)) from N

 EL

 TTP Ni
’’ : tid| Ni

’’ | negative Acknowledgement | Cancelreq | CancelNi’’

Step 9: The recipients Ni
’ submit signature to the TTP on a dige

Ni
’ TTP : tid | A | TTP |sSNi’(MD(ek_from_TTP)) | sSNi’ (tid | md4)

 83

Step 10: Protocol ends when the originator A fetches signatures of all the recipients

from the

(Ni
’)

 TTP.

D(ek_from_TTP)) | sSNi’ (tid | md4)

.9.2 B sses r the CLMENR Protocol:

n the

number of recipients participa one

inator process, intermediate process and TTP process.

nature.

ure from the intermediate

•

:

Seq .

 A TTP : tid | sSNi’(M

4 uilding BPEL proce fo

In CLMENR protocol like MENR protocol, number of processes depend o

ted in protocol. At least there are four processes with

recipient process, orig

Originator Process A:

Sequence of originator process is as follow.

Begin sequence

• Invoke intermediate process to send encrypted message, double encrypted key and

dual sig

• Receive encrypted id_Ni
’, Ni

’s signatures and IN’s signat

process.

Invoke the TTP process to send encrypted id_Ni
’, cancelreq and signature.

• Receive signatures of recipient from the TTP process.

End sequence

Intermediate Process IN

uence of the intermediate process is as follow

Begin sequence

• Invoke recipient processes to send encrypted message double encrypted key and

dual signature.

 84

• Use pick so that intermediate process can receive message from the recipients and

if he does not receive anything from some of the recipients with in that time out

ipients

crypted id_Ni
’, and IN’s signature to the recipient processes Ni

’ through

oke activity.

 encrypted id_Ni
’, signature on Ni

’,

n signature.

End q

Recipient Process N:

Begin s

•

• nature from the intermediate process.

 encrypted key from the TTP process.

cess with his signature on digested key.

End seq

Sequence of the TTP process is as follow.

alarm then intermediate process able to send cancel request from those rec

to the originator process.

• Send en

the same channel of inv

• Reply the originator process in order to send

and his ow

 se uence

Sequence of the recipient process is as follow.

equence

Receive encrypted message, double encrypted key and dual signature from the

intermediate process.

• Reply to the intermediate process with his public key and signature.

Receive encrypted id_Ni
’ and IN’s sig

• Invoke the TTP process to send encrypted id_Ni
’, double encrypted key, and

signature.

• Receive

• Reply the TTP pro

uence

TTP Process:

 85

Beg s

• om the originator process as show in figure 4.8.

he recipient

s

end cancelreq. So switch activity can be use to perform this step.

e anything from any of the

 to show misbehavior

cipient process(es).

the originator process with the signatures of recipients.

End seq

in equence

Receive information fr

• Receive encrypted id_Ni
’, double encrypted key, and signature from t

processes.

• Reply to the recipient processes with the encrypted key if there id_Ni
’ matche

otherwise s

• Use pick construct so that if he does not receiv

recipients with in that time out alarm then TTP process able

of the re

• Reply to

uence

 86

Chapter 5

Conclusion

In this era of globalization Web Services are considered as a future of internet.

PEL is a way of integrating those web services in order to get the best, simple, and

conomical service in B2C as well as in B2B transactions. With the increase of World

ide Web usage it is necessary that there are some efficient and fair approaches of

curity. Non repudiation is special technique in which the scope of the system is

particularly wide, as it includes agents outside the communication exchange. Getting a

protocol right involves taking account of many great possible loopholes. There are

several publications that address Non-repudiation dilemma using various levels of trust

and dependency on a third party and with different weaknesses.

The Non-repudiation protocols developed and specified in BPEL are based on a

protocol which possesses several new fferent scenarios. In our approach,

the trus

al

d

odify it

B

e

W

se

 challenges in di

ted third party signature is not considered as evidence therefore TTP availability

is not required at the time of dispute resolution. We extended this protocol to some re

time scenarios. In chained linked transactions no one else but the recipient accesses the

message because he needs to identify himself before proceeding. One of our propose

protocols has a uniqueness in which intermediate nodes can access message and m

according to the requirements. We also proposed a protocol that has an ability to send

 87

different messages to several recipients using a single key that reduces the load of

generating the key by the originator and decrypting that key by the TTP. We also

enhanced this protocol and reduced the communication load on the originator by

introdu

e

 a

lity.

el,

cing an intermediate node that is responsible to interact with the recipients.

Protocols are analyzed so that they fulfill the security and non-repudiation requirements

in efficient manner. We used Petri nets to validate the flow of protocols.

In the multiple entities non-repudiation protocols the number of recipients may

vary, so as the number increases there is a chance that the entities are unstable under the

load and system may crash resulting in the productivity loss, user frustration, delays,

system outage, and data loss/corruption.

Future works include situations where two or more entities can team-up to caus

problems for other entities. Since the role of TTP is very important, there should be

protocol that involves multiple trusted third parties for economical TTP(s) availabi

Since the protocols are based on the assumption of reliable communication chann

protocol independent of reliable communication channels is needed.

 88

References

] J. Zhou, “Non-repudiation in Electronic Commerce,” Artech House, Computer

ecurity Series, 2001.

] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D.

oller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. “Business Process

xecution Language for Web Services”, May 2003 Published on the World Wide Web by

EA Corp., IBM Corp., Microsoft Corp, SAP AG and Siebel Systems, Version 1.1,

ages 8-111, 2003.

[1

S

[2

R

E

B

P

http://www-128.ibm.com/developerworks/library/ws-bpel/

nd D. Gollmann. “A Fair Non-repudiation protocol”. In Proceeding of 1996

IEEE Symposium on Security and Privacy (S & P ‘96), Oakland, CA, Pages 55-61, IEEE

Computer Society Press, Los Alamito

n

rotocol,” In Proceeding of 1999 ICPP Workshops on Security

bservices/library/ws-rose4/

[3] J. Zhou a

s, CA, 1996.

[4] K. Kim, S. Park, and J. Baek, “Improving fairness and privacy of Zhou-Gollman

Fair Non-repudiation P

(IWSEC), Pages 140- 145 IEEE computer Society, 1999.

 [5] S. Masud, “Building Reliable Asynchronous Processes with BPEL4WS” IBM

Developer Works, Use Rosetta Net-based Web Services, Part 4: BPEL4WS and Rosetta

Net, 2003.

www-106.ibm.com/developerworks/ we

 89

[6] C. Peltz. ”A look at WSCI and BPEL4W,”In Web services Journal, WSJ feature,

2004.

http://www.sys-con.com/webservices/articleprint.cfm?id=592

oreo_html/p768-khalaf.htm

Research Center, NY, 2002.

awarana et.al.

l

 on writing business processes with BPEL4WS.

l

f the

and

ng of Web Services”, Master Degree Thesis at

7

[7] R. Khalaf, N. Mukhi, and S. Weerawarana. “Service-Oriented Composition in

BPEL4WS” IBM T.J Watson Research Center, NY, 2003

http://www.www2003.org/cdrom/papers/alternate/P768/ch

[8] F. Curbera, M. Duftler, R. Khalaf, N. Mukhi, W. Nagy, and S. Weerawarana.

”Business Process Execution Language for Web Services Java Runtime (BPWS4J)”, IBM

T.J Watson

[9] N. Mukhi, R. Khalaf, W. Nagy, M. Duftler , F. Curbera, S. Weer

“Business Process with BPEL4WS: All Columns” (developerWorks) offers additiona

insight

http://www-128.ibm.com/developerworks/webservices/library/ws-bpelcol.htm

[10] T. Murata, “Petri Nets: Properties, Analysis and Applications”, Proceedings o

IEEE, Vol. 77, NO. 4, Pages 541-580 April 1989.

[11] J.P. Thomas, N. Nissanke, and K.D. Baker, “A Hierarchical Petri Net Framework

for the Representation and Analysis of Assembly”, IEEE Transactions on Robotic

Automation, Vol. 12, NO. 2, Pages 268-279, April 1996.

[12] A. J. Muhammad. “Petri Net Modeli

Computer Science department, Oklahoma State University, Ch. 4, April 2003.

[13] J. Zhou and D. Gollmann. Evidence and Non-repudiation “Journal of Network and

computer Applications” 20(3): Pages 267-281, July 199

 90

[14] B. Crispo, S. Etalle, and W. J. Fokkink, “Accountability in Electronic Commerce

Protocols”. In Preceding Research Proposal Computer Science open Competition 2003.

er, J. Klein, B. LaMachia, P.

.

ing of workflow systems: An

ter

, 2001.

 and Practical

rmation Management, Integration

ity 8, Pages

209-240, 2000.

[15] S. Yang, Stanley Y. W. Su, and H. Lam, “A Non-Repudiation Message Transfer

Protocol for E-commerce”. Proceeding of the IEEE International Conference on E-

commerce (CEO’03), IEEE Computer Society, 2003.

[16] H. Adams. “Asynchronous Operations and Web Services part 3”, Add business

semantics to Web services Oct, IBM T.J Watson Research Center, NY, 2002.

www-106.ibm.com/developerworks/webservices/library/ws-asynch3

[17] B. Atkinson, G. Della-libera, S. Hada, P. Hallam-Bak

Leach, J. Manferdeelli, H. Maruyama, A. Nadalin, N. Nagaratnam, H. Prafullchandra, J

Shewchuk, D. Simon, “Web Services Security(WS-security)” version 1.0 Developer

works by IBM, Microsoft, and VeriSign, April 2002.

http://www-106.ibm.com/developerworks/webservices/library/ws-secure/

[18] K. Salimifard, M. Wright, “Petri net-based model

overview”, Management Science Department, Lancaster University, Bailrigg, Lancas

LA1 4YX, UK. European Journal of Operational Research 134, Pages 664-676

[19] K. Jensen, “Colored Petri Nets: Basic Concepts, Analysis Method

Use”, Vol. 1: Basic concepts, EATCS Monograph on Theoretical Computer Sciences,

Springer, Berlin, 1992.

[20] V. Atluri, W. Huang, “A Petri net Based Safety Analysis of Workflow

Authorization”, MSIS Department and Center for Info

and Connectivity, Rutgers University, Newark. Journal of Computer Secur

 91

[21] V. Atluri, W. Huang, “An Authorization Model of Work Flows”, In proceeding

the fifth European Symposium on research in Computer Science Security, Pages 44-64,

1996.

 of

 Computer and Informations, Seokyeong University, Seoul

or Infocomm Research, Singapore, Computer Communications 27,

nd J. Lopez, “A multiparty non-repudiation

s of IEEE Conference on Electronic Commerce, IEEE

WS4J” Developers Work, IBM, Version 2.1, 2002

[22] S. Hong, K. Kim. “A Reliability Analysis of Distributed Programs With Colored

Petri Nets” ISDN Call Processing Section. ETRI 16 1 Kajong-Dong,Yusong-Gu,Taejon

305-350, Department of

Korea, IEEE, Pages 3975-3980, 1997.

[23] J. Onieva, J. Zhou, J. Lopez. “Non-repudiation protocols for multiple entities”

Computer Science Department, E.T.S. Ingenieria Informatica University of Malaga,

Spain, Institute f

Pages 1608–1616, 2004.

http://www.elsevier.com/wps/find/journaldescription.cws_home/525440/description#des

cription

[24] S. Kremer, O. Markowitch, “A multi-party non-repudiation protocol”, In:

Proceedings of 15th IFIP International Information Security Conference, Kluwer

Academic Publishers, Dordrecht, Pages 271–280, 2000.

[25] J. Onieva, J. Zhou, M. Carbonell, a

protocol for exchange of different messages”. In Proceedings of 18th IFIP International

Information Security Conference, Athens, Greece, Pages 37-48, May 2003.

[26] J. Onieva, J. Zhou, M. Carbonell, J. Lopez, “Intermediary Non-repudiation

Protocols”, In Proceeding

Computer Society Press, Silver Spring MD, Pages 207–214, 2003.

 [27] “BP

 92

http://www.alphaworks.ibm.com/tech/bpws4j

 93

GLOSSARY

Glossary A

BPEL and Web services Terminologies

Binding: Describes the protocol being used to carry the Web Service communication;

bindings currently exist for SOAP, HTTP GET, HTTP POST, and MIME.

BPEL4WS: Business process execution language for web services is a language for the

formal specification of business processes and business interaction protocols.

Service Link Type: The service link types of the WSDL document represent the

interaction between the order service and each of the parties with which it interacts.

SOAP: Simple Object Access Protocol is a platform-independent protocol that uses

XML to make remote procedure call over HTTP

SOAP message—an XML message contain all the information necessary to process its

contents.

es

. Each call and response is packaged in a

Web Services: A web services is a class store on the machine that can be accessed on

another machine over a network.

WSDL: Web Services Description language, an XML document that describes how a

web services behave. A WSDL defines the methods that the web services mak

available and the way in which client can interact with those methods.

 94

WS-Security: Web services security language or WS-Security is designed to be used

the basis for the construction of a wide variety of security models including PKI,

Kerberos, and SSL. Specifically WS-Security provides support for multiple security

tokens, mu

 as

ltiple trust domains, multiple signature formats, and multiple encryption

 The <receive> construct allows the business process to do a blocking wait for

a matching message to arrive.

 to a

 a

 a request-response operation on the WSDL portType for the process.

Invoke: The <invoke> construct allows the business process to invoke a one-way or

request-response operation on a portType offered by a partner.

Assign: The <assign> construct can be used to update the values of variables with new

data. An <assign> construct can contain any number of elementary assignments

 Throw: The <throw> construct generates a fault from inside the business process.

technologies.

BPEL Activities:

The executable actions take place with in BPEL process is called activities. There are

following BPEL activities [2].

Receive:

Reply: The <reply> construct allows the business process to send a message in reply

message that was received through a <receive>. The combination of a <receive> and

<reply> forms

 95

Wait: The <wait> construct allows you to wait for a given time period or until a certain

time has passed. Exactly one of the expiration criteria must be specified.

Empty: The <empty> construct allows you to insert a "no-op" instruction into a business

Sequence: The <sequence> construct allows you to define a collection of activities to be

Switch: The <switch> construct allows you to select exactly one branch of activity from

me-out alarm to go off. When one of these triggers occurs, the associated

activity is performed and the pick completes.

to specify one or more activities to be

performed concurrently. Links can be used within concurrent activities to define arbitrary

control structures.

Scope: The <scope> construct allows you to define a nested activity with its own

associated variables, fault handlers, and compensation handler.

process.

performed sequentially in lexical order.

a set of choices.

While: The <while> construct allows you to indicate that an activity is to be repeated

until a certain success criteria has been met.

Pick: The <pick> construct allows you to block and wait for a suitable message to arrive

or for a ti

Flow: The <flow> construct allows you

 96

Compensate: The <compensate> construct is used to invoke compensation on an inner

scope that has already completed normally. This construct can be invoked only from

within a fault handler or another compensation

 handler.

 Non-repudiation ensures that the originator of a message cannot

the

Double encrypted Key: A twice-encrypted secret key that is first encrypted with the

Non-repudiation of Receipt (NR ed to protect the originator from the

recipient falsely denying h

 is provided the originator with the evidence

cret key, nobody else. It is

Glossary B

Non-repudiation Terminologies

Non-repudiation:

deny having sent the message or receive of a message cannot deny having received

message.

receiver public key and then with the public key of TTP.

Non-repudiation of origin (NRO): is considered to protect the recipient from the

originator falsely denying having sent the message.

R): is consider

aving received the message.

Non-repudiation of Delivery (NRS): is provided the originator with the evidence

that message has been submitted for delivery to the recipient.

Non-repudiation of Delivery (NRD):

that message has been sent from delivery agent to the recipient.

Secret Key: symmetric = receiver or transmitter share se

randomly generated at runtime.

 97

Glossary C

Petri Net Terminologies

m(p): it is used to denote distinct color e.g. m(p) = g + r represents place p containing a

token of color g and a token of color r, i.e., CR(m(p)) = {g, r}.

CR(p)MS : Represents the set of multi set or bags over CR(p) e.g. given a set CR(p) =

{a, b, ….}, the multi sets a, a+b, a+2b are members of CR(p).

 98

VITA

Muhammad Bilal

Candidate of the Degree of

Master of Science

Thesis: ‘FAIR’ BPEL PROCESSES TRANSACTION USING NON-REPUDIATION
PROTOCOLS

Major Field: Computer Science

Biographical:

Personal Data: Born in Lahore, Pakistan, on August 23, 1974, son of Mr. and Mrs.

Muhammad Mukhtar

 Education: Received the Bachelor of Mechanical Engineering Degree from

University of Engineering and Technology, Lahore, Pakistan in May 2000.
Completed the requirements for the Master of Science Degree in Computer
Science at the Computer Science Department at Oklahoma State University
in May, 2004.

 Experience: Employed by Lah-soft Pak, Lahore, Pakistan, as Web Developer, January

1999 to July 1999; employed by Office Automation Services, Karachi,
Pakistan, as Software Engineer, January 2000 to July 2000: employed by
Accenture, NY, USA as a QA Software Analyst, March 2004 to September
2004.

Name: Muhammad Bilal Date of Degree: May, 2005

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: ‘FAIR’ BPEL PROCESSES TRANSACTION USING NON-
REPUDIATION PROTOCOLS

Pages in Study: 98 Candidate for the Degree of Master of Science

Major Field: Computer Science

Scope and Method of Study: The single most important invention that has completely
revolutionized how business transactions are conducted is the internet. The fast paced
technological advancement of web services standards and its tools have transformed the
world wide web from information sharing platform to an extremely powerful and open
ecosystem of e-services that not only delivers the information but also provide decision
support, transactions and applications. There is a need for powerful protocols to achieve
universal interoperability among web services and to provide a fair and secure and
accountable environment. BPEL provides a language for the formal specification of
business processes and business interaction protocols. In business transactions Non-
repudiation is a serious and troublesome security issue in which any involved party
denies having participated in a transaction. In this thesis – we propose and verify novel
non-repudiation protocol specification in BPEL.

Findings and Conclusion: We model non-repudiation protocols in BPEL and analyze
those using Petri Nets. We also propose new Non-repudiation protocols for chain-linked
business transactions. In a business transaction there may be more then one recipient and
different messages to each of them. We therefore also propose protocols for multiple
recipients. We show that the proposed protocols meet the security requirements and are
terminated when anyone of the transactions fails, without losing fairness. Our proposed
protocols fulfill the requirements of security, fairness, protection and timeliness in
different scenarios. Computation load of originator and trusted third party are also
reduced using these approaches. These protocols are modeled as Color Petri Nets to
verify the reliability of the protocols. BPEL processes have been specified using these
protocols.

ADVISOR’S APPROVAL: Johnson Thomas

	Title and Approval Page.doc
	Table of contents + List of Tables and Figures.doc
	A Novel Non-repudiation Protocol for a chain of Business Transactions..........31

	ADP8C.tmp
	4.6 A Novel Non-repudiation Protocol for a Chain of Business Transactions:

	VITA.doc
	Abstract.doc

