
Ontology Reconciliation for Service-Oriented Computing
Jingshan Huang, Jiangbo Dang, and Michael N. Huhns

Computer Science & Engineering Dept., University of South Carolina, Columbia, SC 29208, USA
{huang27, dangj, huhns}@engr.sc.edu

Abstract

Service-oriented computing (SOC) is viewed as the
computing paradigm of the near future, allowing for the
dynamic interaction of services provided by distributed
business partners. Being a declarative knowledge
representation model, ontologies serve as a foundation for
SOC. Due to the heterogeneous nature of independently
designed ontologies, it is problematic for partners to
understand the concepts adopted in ontologies from other
sources. In order for partners to achieve seamless
collaboration of services, they need to reconcile their
ontologies with each other. During the alignment process
and the following service interactions, compatibility is an
important measurement that has been neglected in most
research work. We extend a vector system to encode
ontology compatibility. In addition, we present a new
model – probabilistic center ontology – for better recording
and maintenance of ontology alignment results. Our
precise and efficient approach is verified by both theoretic
proofs and experimental results.

1. Introduction
Service-oriented computing (SOC) is the emerging

cross-disciplinary paradigm for distributed computing: it is
changing the way business applications are designed,
architected, delivered, and consumed so as to better support
interoperability and dynamism in meeting changing
business needs. Initially, business automation required that
partners predefine the terminology of their interaction using
EDI and XML standards, such as ebXML. In this sense, the
automation activities were tightly coupled, which is a major
disadvantage if we would like to enable sharing tasks and
automating processes. In contrast, services are autonomous
and platform-independent computational elements that can
be described, published, discovered, orchestrated, and
deployed using standard protocols (UDDI for discovery,
WSDL for description, BPEL4WS for coordination, and
SOAP for communication). Through the methodology
proposed by SOC, we are able to build networks of
collaborating applications distributed within and across
organizational boundaries. By providing the automated
support needed for e-business collaboration and integration
both at the data and business logic levels, the visionary
promise of SOC is a world where application components
are assembled with little effort into a network of loosely
coupled services spanning organizations and computing
platforms.

Ontologies serve as a declarative knowledge
representation model and form a foundation for SOC.
However, because it is impractical to have an agreed-upon,
unique, and global ontology that includes every concept
that is or might be adopted as part of the services,
distributed partners typically have heterogeneous semantics
in services rendered. Due to this basic characteristic,
partners need to align their ontologies and form a mutual
understanding among each other automatically. Only in this
sense are partners able to integrate the information from
different sources autonomously, and then facilitate service-
based application interoperability.

During the ontology alignment process and the
following service interactions, quality is an important
measurement in selecting partners with which to
communicate, especially in cases where resources are
limited. In addition, compatibility is an important
component of quality. Communicating partners have
ontologies of different compatibility, in that those partners
with high compatibility ontologies are more likely to
understand and be understood by other partners, and this
kind of mutual understanding is the prerequisite for
interoperation. Notice that the quality of the service
provided by partners is a separate research topic not
covered in this paper. Based on the above insight, we
extend a vector system in [12] to support ontology
compatibility encoding. In addition, we introduce a new
model – a probabilistic center ontology – for more suitable
recording and maintenance of ontology matching results.

This paper advances the state of the art by (1)
introducing ontology quality issues into QoS, (2) exploring
the use of a compatibility system to speed up the discovery
of the partner(s) of interest, and (3) proposing a
probabilistic ontology model for aligning ontologies. In the
rest of our paper, Section 2 introduces related work,
Section 3 discusses ontology heterogeneities in SOC and
outlines our solution, Section 4 presents a schema-based
ontology merging algorithm, Section 5 introduces the
probabilistic center ontology and an extended vector
system, Section 6 reports on the experimental results and
Section 7 concludes with future work.

2. Related work
2.1. Related work in ontology matching

The need for the automatic or semi-automatic mapping,
matching, and merging of ontologies from different sources
has prompted considerable research. All of the following
systems take a schema-based approach, except for GLUE
[2], which is an instance-based system.

3

jmao
Text Box
0-7695-2670-5/06 $20.00 © 2006 IEEE

PROMPT [5] is a tool that makes use of linguistic
similarity matches between concepts for initiating the
merging or alignment process, and then uses the underlying
ontological structures of the Protégé-2000 environment to
inform a set of heuristics for identifying further matches
between the ontologies. PROMPT has a good performance
in terms of precision and recall. However, user intervention
is required, which is not always available in real world
applications.

Similarity Flooding [7] utilizes a hybrid matching
technique based on the idea that similarity spreading from
similar nodes to the adjacent neighbors. Before a fix-point
is reached, alignments between nodes are refined
iteratively. This algorithm only considers the simple
linguistic similarity between node names, leaving behind
the node property and inter-node relationship.

Cupid [4] combines linguistic and structural schema
matching techniques, as well as the help of a precompiled
dictionary. But it can only work with a tree-structured
ontology instead of a more general graph-structured one.
As a result, there are many limitations to its application.

COMA [3] provides an extensible library of matching
algorithms, a framework for combining results, and an
evaluation platform. According to their evaluation, COMA
is performing well in terms of precision, recall, and overall
measures.

The work in [6] investigates a probabilistic framework
for ontology mapping. Ontologies are first translated into
Bayesian networks, and then the concept mapping is
realized as evidential reasoning. The probabilities needed in
both translation and mapping can be obtained by using text
classification programs.

S-Match [8] is a modular system into which individual
components can be plugged and unplugged. The core of the
system is the computation of relations. Five possible
relations are defined between nodes: equivalence, more
general, less general, mismatch, and overlapping. Like
Cupid, S-Match uses a tree-structured ontology.

GLUE introduces well-founded notions of semantic
similarity, applies multiple machine learning strategies, and
can find not only one-to-one mappings, but also complex
mappings. However, it depends heavily on the availability
of instance data. Therefore, it is not practical for cases
where there is not a significant number of instances or no
instance at all.

2.2. Related work in QoS
Quality of service (QoS) is becoming a significant factor

with the widespread deployment of Web services. By QoS,
we refer to the non-functional properties of services, such
as reliability, availability, and security. [9] proposes a
Service Query and Manipulation Language (SWSQL) to
maintain QoS attribute ontologies and to publish, rate, and
select services by their functionality as well as QoS
properties. Based on SWSQL, a UDDI registry is extended
to a service repository by combing a relational database and
the attribute ontology.

Zhou et al. [10] provide a DAML-QoS ontology as a
complement to a DAML-S ontology in which multiple QoS
profiles can be attached to one service profile. In addition, a
matchmaking algorithm for QoS properties is presented.

One widely used QoS attribute is user rating, but it is
subjective to the perception of the end user and is limited
by the lack of an objective representation of the
performance history. Kalepu et al. [11] introduce
reputation, a composition of user rating, compliance, and
verity as a more viable QoS attribute. Ontologies are
applied to QoS-aware service selection, execution, and
composition. A selected ontology itself can adopt some
QoS measures to facilitate mutual ontology understanding,
as discussed in this paper.

3. Ontological heterogeneity and our solution
3.1. Ontological heterogeneity in SOC

In order to collaborate with the services rendered by
other partners, a business partner must first be able to
comprehend the descriptions about those services. Being a
formal knowledge representation model, ontologies can aid
in this comprehension by providing the necessary
semantics during collaboration.

An example scenario of the interaction within a SOC
environment is envisioned as follows.
1. A number of business partners form a SOC community
(SOCC) within which services provided by different
partners might be integrated into a single equivalent service
that is more complete and functional. This integration
requires the mutual understanding of the individual
ontology underlying each partner.
2. The partners outside this SOCC can request help from
the community and make use of its services, either the
original ones or the integrated one. This request requires
not only an understanding of the related ontologies, but also
the ability to choose suitable service provider(s), especially
under the situations where resources are limited.

Because there is no global, common, and agreed-upon
ontology, any partner can base its service on an ontology
that reflects its own conceptual view of the world.
Consequently, ontological heterogeneity among different
partners becomes an inherent characteristic of a SOCC. The
heterogeneity can occur in two ways: (1) different
ontologies could use different terminologies to describe the
same conceptual model, and (2) even if two ontologies use
the same name for a concept, its corresponding properties
and relationships with other concepts can be different.
Therefore, two major problems must be confronted: (1)
during the formation of a SOCC, how can it be ensured that
all partners within the community have no problem in
understanding each other’s ontology? And (2) how can an
external partner seeking collaboration with a SOCC select
those partners that understand its ontology best?

3.2. Overview of our solution
In order to solve the first problem – mutual

understanding of ontologies within a SOCC – we need an

4

approach to reconcile ontologies from different partners
through an alignment process. By this means, concepts
from communicating partners can be related, and possible
integration of related services can be achieved. Our main
idea is to form a center ontology by merging all original
ones during the generation of a SOCC. The center ontology
serves as a reference through which the original ontologies
are able to align with each other.

To tackle the second problem – the correct selection of
partners that are most closely aligned with the ontology of
an external partner – we introduce compatibility vectors as
a means of measuring and maintaining ontology
compatibility. By setting up the compatibility for each
partner during the formation of a SOCC, not only a better
mutual understanding of ontologies within the SOCC is
obtained, but also the partners outside this community are
able to select the best partner(s) with ease.

4. Schema-based ontology merging algorithm
Our goal is to develop a methodology for constructing a

merged ontology from two original ones. The methodology
can then be applied iteratively to merge all ontologies
within a SOCC. Our methodology, based on the ontology
merging algorithm presented in [1], is summarized next.

4.1. Top-level procedure
Ontology merging is carried out at the schema level.

Internally we represent an ontology using a directed acyclic
graph G (V, E), where V is a set of ontology concepts
(nodes) and E is a set of edges between concepts, i.e., E =
{(u, v) | u and v belong to V and u is a superclass of v}. In
addition, we assume that all ontologies share Thing as a
common root. To merge two ontologies, G1 and G2, we
relocate each concept from one ontology into the other. We
adopt a breadth-first order to traverse G1 and pick up a
concept C as the target to be relocated into G2.
Consequently, at least one member of C’s parent set
Parent(C) in the original graph G1 has already been placed
into its proper location in the destination graph G2 before
the relocation of C itself. The pseudocode below describes
this procedure, whose time complexity is O(n2), with n the
number of concepts in the merged ontology.

Input: Ontology G1 and G2
Output: Merged Ontology G2
begin
 new location of G1’s root = G2’s root
 for each node C (except for the root)in G1
 Parent(C) = C’s parent set in G1
 for each member pi in Parent(C)
 pj = new location of pi in G2
 relocate(C, pj)
 end for
 end for
end

Top-level procedure for ontology merging

4.2. Relocate function
The relocate function in the top-level procedure is used

to relocate C into a subgraph rooted by pj. The main idea is:

try to find one of three relationships (equivalentclass,
superclass, or subclass) between C and pj’s direct
child(ren). If we cannot find any, the only option is for us
to let C be another direct child of pj.

5. Center ontology and compatibility vectors
All original ontologies are merged into a center ontology,

which has built-in probabilities recording the similarity
degrees for concepts. We use compatibility vectors to
represent the compatibility of the constituent ontologies.
Compatibility vectors are stored in the center, encoding a
measure of distance from an original ontology to the center.
The distances can be adjusted efficiently during and after a
SOCC is formed. Based on the information contained in the
vectors, partners can straightforwardly understand
ontologies from each other. In addition, the partners from
outside this community will be able to choose the partner(s)
with more compatible ontologies. We adopt compatibility
instead of reputation when choosing suitable services,
because the former is based on an objective calculation,
thus avoiding the drawbacks of subjective reputation.

5.1. Probabilistic center and ontology distance
5.1.1. Center formation and its role in ontology
matching. The center ontology is generated by merging all
original ontologies, step by step, as each new partner joins
a SOCC. Initially, when there is only one partner, its
ontology is regarded as the center ontology. Each time a
new partner joins the community, the new ontology is
merged with the current center to obtain the new center
ontology. If there is no center ontology, we need 2

)1(−nn
pairwise alignments among n ontologies. In addition,
whenever an original ontology changes, new alignments are
needed between this modified ontology and all remaining
ones. After the construction of a center ontology, an
alignment will be built between each original ontology and
the center, so only n alignments are required. For any pair
of original ontologies, the related alignment against the
center is able to provide enough information for these two
ontologies to align with each other. Moreover, in cases
when modifications are made in original ontologies, only
the comparison between the center and the modified
ontology is necessary.
5.1.2. Probabilistic center. We introduce the idea of a
probabilistic center ontology, i.e., a concept C in one
original ontology (e.g., ontology_1) is equivalent to a
concept C' in the center by some probability p. Therefore,
C is a child of the parent of C' by p. This creates a center
ontology with probabilities in parent-child hierarchy.

Initially no ambiguity would result, because ontologies
are often created by definition. For example, there is no
doubt that a lion is a mammal, because biologists have
defined it to be that way. However, ambiguity can arise in
two ways.

(1) Object Classification – a given object (instance)
might or might not be a member of a class (concept). For

5

example, the animal one sees walking through the bushes
might or might not be a lion.

(2) Ontology Merging – a concept C in ontology_1
might be equivalent to a concept C' in the center. Even an
ontology expert cannot always be completely sure about
such an equivalence, let alone an automated procedure.
Therefore, we need a measure of equivalence; and
probability can record a degree of similarity.

The ambiguity from object classification belongs to the
problem domain of instances, and will not be considered in
our solution, which deals with ontology schemas alone.

For the ambiguity resulting from ontology merging,
there are two possible solutions. The first solution is an
instance-based one. The similarity degree between two
concepts can be measured by the instances that are
members of both concepts versus those instances that are
members of just one concept. For example, the concepts
BrownFurryAnimals and DangerousAnimals would have
all of the lions in common, but a brown furry dog is not
dangerous and a rattlesnake is dangerous but not brown
and furry. The second solution is a schema-based one,
which is essentially the same as the instance-based one, just
from a different viewpoint. For example, the facts that “a
brown furry dog is not dangerous” and “a rattlesnake is not
brown and furry” result from the different properties in the
concepts BrownFurryAnimals and DangerousAnimals.
Therefore, instead of counting the instances, we can
represent this difference by properties at a higher level –
the schema level. Basically, if we could enumerate
exhaustively all associated instances, the percentage of
common properties over the union of properties should be
represented by the ratio of corresponding instances. For
example, suppose in the center ontology there is a concept
B_D_Animals which includes all and only the properties
from both BrownFurryAnimals in ontology_1 and
DangerousAnimals in ontology_2. Furthermore, suppose
that these two original concepts contribute 70% and 75%
respectively for the properties of B_D_Animals; then we
are 70% and 75% sure, respectively, that
“BrownFurryAnimals is equivalent to B_D_Animals” and
“DangerousAnimals is equivalent to B_D_Animals”. In this
sense, the merged center ontology is a probabilistic one
with probabilistic alignment for each original ontology.

5.1.3. Concept distance. The center ontology contains
information from all original ontologies, because the
former is the result of the merging of the latter. Therefore,
with respect to whether a specific original ontology
understands each concept in the center ontology or not,
there are two situations. One situation is that for one
specific concept in the center, the original ontology can
understand it, but possibly with less accurate information.
The other situation is that the original ontology is not able
to recognize that concept at all. In either case, the concept
distance is represented by the amount of information
missing, i.e., the number of relationships not known in the
original ontology. The following equation formalizes the
concept distance, dconcept:
dconcept = w1 * nsub-super + w2 * nother, with (w1 + w2
= 1).
nsub-super is the number of sub/superclass (isa) relationships
not known in the original ontology, and nother is the number
of other relationships not known in the original ontology.
wi is the weight given to different relationship types,
including subclass, superclass, equivalentclass,
disjointWith, parts, owns, contains, and causes. Because
the sub/superclass relationship is the most important one in
an ontology, w1 will be given a greater value than w2.

Figure 1. Merged center ontology

Consider the ontology in Figures 1. Suppose the center
is merged from ontology_1 and others. The relationships
from ontology_1 are represented by solid lines, while those
from others are represented by dashed lines and circled.
Thus, the concept distance from Intangible in ontology_1
to Intangible in the center is (w1 * 2 + w2 * 1). From
another viewpoint, concept distance can also be encoded as
the similarity degree between concepts from the original
and center ontology.
similarity degree = w1 * psub-super + w2 * pother,
with wi having the same meaning as in equation for
concept distance.

6

psub-super is the percentage of sub/superclass relationships
known in the original ontology over those in the center, and
nother is the percentage of other relationships.

5.1.4. Ontology distance. After each concept distance has
been calculated as shown above, we can continue to figure
out the ontology distance, dontology, between the original
ontology and the center.

dontology = ∑
=

n

i 1
wi * dconcepti, where dconcepti is the distance

between a pair of concepts, n is the number of concepts in
the center, and wi is explained next.

Recall that the concept set of the original ontology is a
subset of that of the center, and the concept distance is
encoded by the missing relationships in the original
ontology compared to the center. The above equation
shows that the ontology distance is obtained by the
weighted sum of the concept distances between two
ontologies. How much a concept contributes to the
ontology distance is determined by the importance of that
concept in its ontology. We use the percentage of the
number of relationships to represent this measurement. For
example, if ontology_1 has 100 relationships in total, and
concept Spatial has 15 relationships, then the weight for
this concept in ontology_1 is 0.15.

Figure 2. Compatibility vectors

5.2. Compatibility vectors
We extend the vectors presented in [12]. Inside the

center, there is a set of compatibility vectors, one for each
original ontology. A compatibility vector consists of a set
of dimensions, each corresponding to one concept in the
center. Therefore, all compatibility vectors have identical
number of dimensions (the number of the concepts in the
center). Each dimension has four sub-dimensions. The 1st
sub-dimension encodes the similarity degree, associated
with two numbers (the number of sub/superclass
relationships and the number of other relationships in the
original ontology); the 2nd sub-dimension records the
concept name in the original ontology if the latter does

recognize that concept; and the 3rd and 4th sub-dimensions
keep track of the numbers of sub/superclass relationships
and other relationships in the center, respectively. An
example of compatibility vectors is shown in Figure 2.

For the first concept (Spatial) in the center, partner_1
knows it as Spatial and has a similarity degree of 0.7;
partner_3 also understands this concept, but with a different
name (Space) and a smaller similarity degree of 0.5; neither
partner_2 nor partner_m recognizes concept Spatial,
therefore, they have the same similarity degree (0.0).

5.3. Dynamic adjustment of ontology distance
5.3.1. During the formation of a SOCC. As mentioned
above, when there is only one partner in a SOCC, its
compatibility is perfect. In the compatibility vectors stored
in the center, each similarity degree has a value of 1.0.
However, with the addition of new partners into the SOCC,
the compatibilities for existing partners might be changed
because newly joined partners could contain more accurate
information.

An example is shown in Figure 3, demonstrating the
dynamic adjustment of the ontology distance (encoded in
compatibility vectors) along with the formation of a SOCC.

Figure 3. Dynamic adjustment of ontology distance

After ontology_1 and ontology_2 are merged to
generate center_1, the compatibility vectors of these two
ontologies in center_1, v1 and v2, are calculated. Upon the
joining of ontology_3 and the generation of center_2, the
compatibility vector of center_1 in center_2, vcenter1, is
calculated and then integrated with v1 and v2 to form the
compatibility vectors of ontology_1 and ontology_2 in
center_2.

Before the distance adjustment, there are two
compatibility vectors in center_2: one for ontology_3, and
the other for center_1. The former will remain as is; while
the latter will be replaced by two new vectors. The
following procedure describes the generation of a new
vector.

7

Input:
- compatibility vector v for center_1

in center_2
- compatibility vector u for partner_i

in center_1
Output:
- compatibility vector w for partner_i

 in center_2
begin
for each dimension d in v
sd = d’s 1st sub-dimension’s value
nm = d’s 2nd sub-dimension’s value
n1 = d’s 3rd sub-dimension’s value
n2 = d’s 4th sub-dimension’s value

create a new dimension nd in w
nd’s 3rd sub-dimension = n1
nd’s 4th sub-dimension = n2

if sd > 0
find in u the dimension od for concept nm
sd_old = od’s 1st sub-dimension’s value
nm_old = od’s 2nd sub-dimension’s value
nd’s 1st sub-dimension = getSD(sd_old, n1, n2)

 nd’s 2nd sub-dimension = nm_old
else (sd = 0)
nd’s 1st sub-dimension = sd
nd’s 2nd sub-dimension = nm

end if
end for

end

Pseudocode for new vector generation

Figure 4. Example of new vector generation

The time complexity for the above procedure is
O(nlogn), because there are n dimensions in each vector,
requiring n steps for the loop. Within each loop, all steps
take constant time, except for the one finding dimension in
u. Suppose in u the dimensions are indexed by the concept
names, then a binary search is able to locate a specific
dimension within O(logn). Figure 4 exemplifies the
operation of the above pseudocode.

5.3.2. After a SOCC is created. In cases where existing
original ontologies change their schema information after a
SOCC is created, we need to modify the compatibility
vectors accordingly. There are several situations.
1. One or more new concepts are added.
2. No new concept is added, but new relationships are

added.
3. No new concept is added, but existing relationships

are removed.

4. No new concept is added, but existing relationships
are modified.

An outline of our solution to the dynamic adjustment of a
SOCC is as follows.
1. For case 1, a subgraph of the modified ontology needs

to be merged with the center. A subgraph consists of
the new concept and all its ancestors and descendants,
together with all concepts having relationships with
the new concept. After this merging, we relocate the
new concept in the center. If the concept already
exists in the center and no new information
(relationship) is added, then only the compatibility
vector for the modified ontology needs to be updated;
otherwise all vectors need to be updated.

2. For case 2, if the new relationships already exist in the
center, then only the compatibility vector for that
modified ontology needs to be updated; otherwise all
vectors need to be updated.

3. For case 3, if the removed relationships come from
both the modified ontology and other original
ontologies, then only the compatibility vector for this
modified ontology needs to be updated; otherwise all
related vectors (for those ontologies providing the
removed relationships) need to be updated.

4. Case 4 is a combination of cases 2 and 3.

5.4. Features of compatibility vectors
When a partner from outside a SOCC requests partner(s)

to collaborate with, it would like to choose those
understanding its ontology best. The requesting partner first
compares its own ontology with the center, and then
searches in the compatibility vectors to find all partners
understanding the concept of its interest and/or having a
small ontology distance. If there is more than one candidate,
the collaboration request will be sent to those with good
qualities. Because the compatibility vectors are stored and
maintained by the center, partners have no way to modify
or manipulate the vectors. In this sense, the selection of
partner(s) is objective and done with no bias.

5.4.1. Correctness of compatibility vectors – a precise
approach. In this section, we prove that our approach
obtains a correct compatibility for each partner. To record
and maintain the proper compatibility of each partner inside
a SOCC, the key is to obtain a correct center by which to
evaluate the distance from it to each original ontology, and
thereby acquire the corresponding compatibility vector.
When a new partner and its associated ontology join the
SOCC, instead of communicating with each existing
partner, it only talks with the center. Therefore, if we can
prove that the newly merged ontology is a correct new
center, the correctness of compatibility vectors is
guaranteed.

Lemma 1. When we merge two ontologies A and B using
the algorithm in Section 4, the result is the same regardless
of whether we merge A into B or B into A.

8

Proof by induction:
1. Base Case: when both A and B contain two concepts,

i.e., besides the common root, Thing, A contains C1
and B contains C2.

If we merge A into B according to the merging
procedure in Section 4, Thing in A is considered
equivalent to Thing in B; then C1 is compared with all
the direct children of the root in B, in this case C2, to
determine where to put C1 in B. This is based on the
relocate function. On the contrary, if we merge B into
A, Thing in B is considered equivalent to Thing in A;
then C2 is compared with C1 to determine where to
put C2 in A. Obviously, we obtain the same merged
ontology in both cases.

2. Induction: Assume that Lemma 1 holds for all cases
where the number of concepts contained in A and B
are less than (i+1) and (j+1), respectively. Now
consider the case where A and B contain (i+1) and
(j+1) concepts, respectively.

Suppose the superclass set of the (i+1)th concept in
A, Ci+1, is PA(Ci+1) and suppose the location of
PA(Ci+1) in merged ontology M is PM(Ci+1). The
position of Ci+1 in M is determined by the
relationships between Ci+1 and all the direct children
of PM(Ci+1). From the inductive hypothesis we know
that PM(Ci+1) is identical no matter whether we merge
A into B or merge B into A. Therefore, the position of
Ci+1 in M will be the same in both situations. That is,
Ci+1, the (i+1)th concept in A, will be put into the
same position in M for both merging orders.
Similarly, the (j+1)th concept in B will also be put into
the same position in M for both merging orders. So in
the case where A and B contain (i+1) and (j+1)
concepts, respectively, we have the same resultant
ontology regardless of the merging order taken.

Theorem 1. The result of merging a number of ontologies is
identical no matter by which order the ontologies are
merged using the algorithm in Section 4.

Proof by induction:
1. Base Case: there are two ontologies to be merged.

According to Lemma 1, when we merge two
ontologies A and B, the result is the same no matter
whether we merge A into B, or merge B into A.

2. Induction: Assume that Theorem 1 holds for all cases
where the number of ontologies to be merged is less
than (n+1). Now consider the case where we merge
(n+1) ontologies. Let the indexes of these ontologies
be: 1, 2, …, (n+1).

Consider two arbitrary orders by which we merge
these (n+1) ontologies: order_1 and order_2. Suppose
the last index in order_1 and order_2 is i and j,
respectively.

 If i equals j, then the first n indexes in order_1 and
order_2 are the same, just in different orders. We
merge the first n ontologies to get Mergedn.

According to the inductive hypothesis, Mergedn in
order_1 is identical with Mergedn in order_2. Then
we merge Mergedn with the last ontology in both
order_1 and order_2 and get the same result.

 If i does not equal j, we mutate the first n indexes in
order_1 and make the nth index be j; then mutate the
first n indexes in order_2 and make the nth index be i.
Now the first (n-1) indexes in both orders are the
same (possibly in different orders), and the last two
are (j, i) and (i, j), respectively. Notice that this kind
of mutation will not affect the merging result of the
first n ontologies according to our inductive
hypothesis. We then merge the first (n-1) ontologies
to get Mergedn-1. According to the hypothesis,
Mergedn-1 in order_1 is identical with Mergedn-1 in
order_2. Finally we merge Mergedn-1 with the last two
ontologies in both orders and get the same result.

5.4.2. Complexity of compatibility vectors – an efficient
approach.

(1) The time complexity of establishing a SOCC, along
with the achievement of a mutual understanding of
ontological concepts, is on the order of O(mn2), with n the
number of the concepts in the center, and m the number of
original ontologies. The process of creating a SOCC is one
of generating a merged center ontology. For the ontology
merging, O(mn2) is needed, because we need to merge m
ontologies, and each merging procedure takes time O(n2) as
described in Section 4.

(2) In order to dynamically update the compatibility
vectors during the formation of a SOCC, extra time will be
spent. According to the previous analysis, O(nlogn) is
needed for updating one partner, so the extra time for all
partners is O(mnlogn). Therefore, the total time complexity
of establishing a SOCC becomes O(mn2 + mnlogn), which
is still on the order of O(mn2).

(3) For the update after a SOCC is formed, the time
complexity is only O(n2), because only one merging
process is carried out.

(4) For partner selection, the time complexity is O(n2),
because we only need to compare the ontology from the
requesting partner with the center ontology.

6. Experimental results
6.1. Experiments on merging algorithm itself

Due to limited space, the experimental results for our
merging algorithm are not shown in this paper. Please refer
to [1] for details. Briefly, the resultant merged ontology has
a promising performance in both precision and recall
measurements (0.93 and 0.81 respectively).

6.2. Experiments with compatibility vectors
6.2.1. Correctness of compatibility vectors. We simulated
a SOCC out of 16 ontologies [1]. Based on calculated
compatibility vectors, we sorted the original ontologies

9

with regard to their qualities (encoded by ontology
distance). We then asked two experts to rank the qualities
of these ontologies manually; the result is the same as the
one from our system.

6.2.2. Efficiency of compatibility vectors. A set of
experiments has been conducted. We first fixed one of the
original ontologies as the one requesting interaction, and
simulated a SOCC out of the remaining 5, 10, and 15
ontologies as three experiment settings; then for each
SOCC setting we did the following in two groups. In the
first group the requesting ontology always interacted with
the ontology with the best compatibility, while in the
second group the interaction happened with a randomly
chosen ontology. We compared the resultant merged
ontologies from the two groups. The result is shown in
Figure 5. It is clear that, after adopting our compatibility
vectors, both precision and recall measurements have been
improved. Therefore, in cases where sufficient resources
are not available and only a certain number of business
partners can be chosen for collaboration, our approach
increases the efficiency by choosing more suitable partners.

Figure 5. Improvement with Compatibility Vectors

7. Conclusion and future work
Service-oriented computing is a new paradigm for

computing that supports the dynamic interaction of services
from distributed business partners. Ontologies can help
partners to understand the semantics of services from each
other. However, alignments among ontologies are
necessary to handle the inherent heterogeneity in
individually developed ontologies. Ontology compatibility
is an important issue during such an alignment process and
the interaction among partners thereafter. To tackle this
emerging challenge, we extend a previously proposed
vector system to encode ontology compatibility. In addition,
we present a probabilistic center ontology model for better
recording and maintenance of ontology alignment results.
We prove that our approach is a precise and efficient one;
and show utility by a set of experiments.

We envision the following future work: (1) How to
propagate the probabilities in the merged center ontology;
(2) How to handle the vulnerability issue inherent in the

centralized solution introduced by our use of a center
ontology; and (3) What kind of mechanism is suitable if we
simultaneously consider qualities of both ontologies and
services.

8. References
[1] Huang, J., Zavala Gutiérrez, R., Mendoza, B., and Huhns, M.

N. Sharing Ontology Schema Information for Web Service
Integration, In: Proceedings of 5th International Conference
on Computer and Information Technology (CIT 2005),
Shanghai, China, 2005.

[2] Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., and
Halevy, A. Learning to match ontologies on the Semantic
Web. In: The VLDB Journal, Vol. 12. Springer-Verlag 303 –
319, 2003.

[3] Do, H. H., Melnik, S., Rahm, E. Comparison of schema
matching evaluations. In: Proceedings of workshop on Web
and Databases, 2002.

[4] Madhavan, J., Bernstein, P. A., and Rahm, E. Generic
Schema Matching with Cupid. In: Proceedings of the 27th
VLDB Conference, Springer-Verlag, 2001.

[5] Noy, N. F., Musen, M. A. Anchor-PROMPT: Using Non-
Local Context for Semantic Matching. In: Workshop on
Ontologies and Information Sharing at the Seventeenth
International Joint Conference on Artificial Intelligence
(IJCAI). Seattle, WA, 2001.

[6] Pan, R., Ding, Z., Yu, Y., and Peng, Y. A Bayesian Network
Approach to Ontology Mapping. In: Proceedings of the 4th
International Semantic Web Conference. Springer, 2005.

[7] Melnik, S., Garcia-Molina, H., and Rahm, E. 2002.
Similarity Flooding: A Versatile Graph Matching Algorithm
and its Application to Schema Matching. In: Proceedings of
the 18th International Conference on Data Engineering.
IEEE Computer Society Press, 2002.

[8] Giunchiglia, F., Shvaiko, P., and Yatskevich, M. S-Match: an
algorithm and an implementation of semantic matching. In:
Proceedings of the 1st European Semantic Web Symposium,
Vol. 3053. Springer-Verlag 61 – 75, 2004.

[9] Bilgin, A. S. and Singh, M. P. A DAML-based repository for
QoS-aware semantic web service selection. Presented at
IEEE International Conference on Web Services, 2004.

[10] Zhou, C., Chia, L.-T., and Lee, B. S. DAML-QoS ontology
for web services. Presented at IEEE International Conference
on Web Services, 2004.

[11] Kalepu, S., Krishnaswamy, S., and Loke, S. W. Reputation =
f(user ranking, compliance, verity). Presented at IEEE
International Conference on Web Services, 2004.

[12] Huang, J., Dang, J., and Huhns, M. N. Ontology Alignment
as a Basis for Mobile Service Integration and Invocation,
submitted to International Journal of Pervasive Computing
and Communications (JPCC).

10

