
Checking e-service consistency using Description Logics

Luigi Dragone
CM Sistemi S.p.A.

via Simone Martini, 126 – 00146 Roma – Italy
luigi.dragone@gruppocm.it

Riccardo Rosati
DIS, Univ. di Roma “La Sapienza”

via Salaria, 113 – 00198 Roma – Italy
rosati@dis.uniroma1.it

Abstract

We propose a new framework for the analysis of func-
tional properties of e-services supporting the development
of Cooperative Information Systems. The framework aims
at extending and integrating different approaches providing
both a rich domain specification and a suitable operational
semantics of the e-service contract, on which we define
functional consistency properties. It allows for specifying
complex e-services based on the IOPE paradigm, in which
the static properties of the modeled system are specified us-
ing a Description Logic knowledge base, as assumed in Se-
mantic Web applications. Moreover, it enforces a minimal-
change semantics for the axiomatization of the update op-
erator and also includes the ability to reason about update
repairing w.r.t. the domain constraints, thus allowing for in-
complete service specification. On this foundation, we for-
mally devise several consistency and validity properties of
services, providing decidable checking procedures.

1 Introduction

The service-oriented computing paradigm [2] has gained
in recent years a lot of interest from the industrial and sci-
entific communities in the field of information technology,
in general, and in the design and implementation of in-
formation systems, in particular. This paradigm is based
upon the metaphor of service (or e-service) as a mean to to-
tally encapsulate software application features, in order to
make them openly available to highly decoupled clients, im-
plementing a flexible machine-to-machine interaction and
building a complex network of dynamically interacting ac-
tors (service providers and requestors). Such a kind of net-
work is the milieu on which new applications are built in
terms of composition of available services (service orches-
tration and synthesis) and users look for services suitable
to their needs (service discovery and binding). A service
provided in such a way should not only hide implementa-
tion details, but also aim at offering a higher level of ab-
straction to the client, closer to the end-user’s perception
in terms of granularity of the system representation. On

the other hand, there is a strong requirement on the well-
foundedness of the service contract specification between
involved actors, like in composition-oriented software de-
velopment and design-by-contract frameworks ([14]). Gen-
erally, the adoption of a highly expressive language, as
First-Order Predicate Logic (FOL), for modeling dynamic
systems makes the verification of e-services formal proper-
ties very hard or even unsolvable. So, in order to devise a
suitable expressive language for e-service functional mod-
eling, preserving the computability of the associated rea-
soning problems, we turn our attention to the family of De-
scription Logics (DL) [3]. Such a family of logics (which
are mainly fragments of FOL) has been explictly defined
with the main aim of constituting an optimal trade-off be-
tween representational abilites and computational proper-
ties of reasoning. We basically adopt expressive DL lan-
guages (i.e., ALCQI and ALCQIO [3]) to describe the
static world properties, but since we need to cope with some
dynamic, and non-deterministic, features like updates, we
need to extend the language adequately in order to formu-
late our problems in terms of computable reasoning tasks.
In particular, our proposal relies upon the decidable frag-
ment of FOL C2 ([17]): function-free predicate logic with at
most two variables and counting quantifiers. The main goal
of this work is to design an e-service modeling framework
that allows for analyzing functional properties at a high
level of abstraction, based on a formal semantic character-
ization, in order to devise development and execution sup-
port tools in the construction of service-oriented solutions.
More specifically, in this paper we present the following
contributions: (1) the analysis of semantic based properties
of e-services, which turn out as relevant in the development
of a service-oriented solution in the field of e-government
and cooperative information systems; (2) from the semantic
side, the formalization of the dynamic model underlying a
suitable semantics of e-services; (3) from the computational
side, a first set of results on the decidability and complexity
of the automatic verification of the above properties. The
rest of the document is organized as follows: in Sec. 2 we
introduce our reference scenario and some related works re-
garding the so-called semantic web-services. In Sec. 3 we
provide the basic definitions of the various notions subse-

2007 IEEE International Conference on Services Computing (SCC 2007)
0-7695-2925-9/07 $25.00  © 2007



quently employed to lay out the framework. In Sec. 4 and
5 we present a first axiomatization of a typical kind of e-
services that we are able to model, and we analyze various
consistency properties related to update, keeping also into
account a feasible (in term of decidability) repair strategy
that allows for incomplete effect specification. The full ver-
sion of the paper is available in [8].

2 Scenario and Related Work

The considered computing environment is a community
of distributed software agents that provide, or request, func-
tionalities exposed by means of e-services in order to im-
plement cooperative integration, as it is generally assumed
in service-oriented architectures [2]. This is a general in-
tegration model that is applicable in many business sce-
narios like: e-government, EIS, B2B integration, etc., and
that leverages on strong encapsulation to decouple (possi-
bly autonomous) implementations. Starting from this as-
sumption, there is a general agreement upon the adoption
of a modeling paradigm based on the elicitation of which
(not how) information is exchanged during the enactment
between requestor and provider, which are the admissible
states of the world before the enactment and which are the
possible world states after the correct completion of the ser-
vice execution. In other words, in order to characterize an
e-service we need to specify its own inputs, outputs, precon-
ditions and effects (IOPE)1. Despite this large agreement,
formal assumptions done by different authors can vary not
negligibly on several modeling aspects, so the approaches
are not easily directly comparable. More specifically, most
of these approaches lack the formalization of some intu-
itive and, in our opinion, interesting notions, like, for exam-
ple: consistency (are the given services consistently defined
w.r.t. the domain knowledge/constraints?), functional sim-
ilarity/replaceability (are two or more services acting in a
quite similar manner? are they doing the “same” thing? can
a service replace another faulting one?), functional equiva-
lence w.r.t. the invocation context (are two or more services
similar, abstracting from the invocation scope? E.g., given
two tax payment services, are they actually the “same” ser-
vice, despite they are servicing different user communities,
have potentially been specified independently, and do not
expose the same interfaces?). In our intentions, the ser-
vice specification should be intended as the formalization
of the service contract. Under a fairness assumption, we
suppose that agents act according to domain constraints,
which means that they prevent inconsistent evolutions of
the world’s state and that they enforce service contracts.
Despite many recent works deal with the problem of mod-
eling and inventorying e-services, both from the technical
perspective (e.g., [9]) and from the formal one (i.e., [18]),

1The IOPE paradigm has been adopted by the semantic web-services
community in the definition of modeling languages and related standards
(i.e., OWL [18]) and has been generally assumed by most approaches in
this area.

the approaches proposed so far are not entirely satisfactory.
Given a knowledge representation language (i.e., a Seman-
tic Web language), it is always possible to build a classifi-
cation model of available services (a so-called service on-
tology), but most of such kind of approaches (e.g.,[15]) es-
sentially ignore dynamic features. Several planning-based
approaches (e.g., [13]) share with our framework the em-
phasis on the operational nature, but while these ones aim
at verifying if the available services are sufficient to achieve
a specific goal, we are essentially interested in the charac-
terization of the suitability of a set of available services for
a class of abstract goals, not only ground ones. Some lim-
itations of the applicability of the planning paradigm are
analyzed in [6]: generally speaking, while (conditional)
planning algorithms are devised to compute an actual ac-
tion scheduling for achieving goals, service aggregation re-
quires the ability to derive application specifications com-
bining available functionalities (i.e., software reuse). Such
a problem is addressed in works like [5], which provides an
algorithm suitable for automatic e-service synthesis. The
problem of complex service verification and analysis w.r.t.
the evolution of the world state is also addressed in similar
works based upon the notion of relational transducers ([7]).
However, in such kind of works, a single complex service,
that operates on a relational database, is analyzed in order
to derive some correctness properties. Like in the present
paper, an operational semantics based on the update of the
relational theory is used, in [7] but constraints on the inter-
action are only based on state automata, services are gener-
ally accessible, and there is no way to enforce applicability.
Other verification approaches, based upon formal tools like
Model Checking, Process Algebra and Petri nets, are also
proposed for e-service applications by many authors (e.g.,
[12]). Such approaches are mainly focused on the analysis
of the interaction protocol among actors in various network
configurations, but generally they do not enforce any as-
sumption about the semantics of the performed operations.
On the other hand, the adoption of highly expressive pro-
cess languages (e.g., high level Petri nets [20]) allows for
the definition of arbitrary behavior constraints, but requires
high-order logical reasoning frameworks, in which many in-
teresting problems are undecidable.

3 The Framework

In this section we introduce the definitions of the primi-
tive constructs on which the proposed framework relies, as-
suming that the reader is familiar with Description Logics
and FOL. We assume that an infinite countable universe U
is given and that the system is described using an alphabet
composed of a finite set of unary predicate names (or con-
cept names) A, a finite set of binary predicate names (or
role names) P and a finite set of constant names (or object
names) O. We assume that object names are constantly in-
terpreted according to the standard names assumption on a
finite subset O ⊂ U of the given universe, i.e., by a bijec-

2

2007 IEEE International Conference on Services Computing (SCC 2007)
0-7695-2925-9/07 $25.00  © 2007



tive function ·I : O 7→ O. We assume that the modeled
system, or in other words, the application domain, can be
described in terms of static features/constraints using an ex-
pressive knowledge base formalism, which allows both to
define complex data structures and to easily include also
extensional specification elements.

Definition 1 (Domain specification). A domain specifica-
tion is a triple of finite mutually disjoint sets: (1) a concept
alphabet (A); (2) a role alphabet (P); (3) an object alphabet
(O).

A system state (or world state) is described using an in-
terpretation of the alphabet on the universe according to
standard set-based semantics. Since not every interpreta-
tion can be assumed to be a legal system state specification,
we introduce the ability to restrict the state space to the valid
ones by means of a constraint set, expressed using a suitable
language. A world state is legal if it is a suitable model for
the given specification, while a specification is consistent if
it admits at least a legal world state.

Definition 2 (World specification). A world specification
W is a knowledge base 〈T ,A〉 expressed on the alphabet
〈A, P, O〉 using the expressive DL ALCQI.

Given a domain specification, assuming, w.l.o.g., that
Top and New are new concept names, we define a knowl-
edge base K̃B composed by the instantiation of the ax-
iom schema2 reported in Tab. 1 for any any concept name
A ∈ A, role name P ∈ P and object name o ∈ O. Now,
we start to introduce our approach to deal with reasoning
tasks generally concerning dynamic features using a “tra-
ditional” logic language, in the sense that it does not pro-
vide native temporal primitives. The basic idea is to em-
bed a system state transition, described in terms of initial
and final states, parameter assignments, etc., into a single
interpretation structure on which we solve some reasoning
tasks (satisfiability or entailment) obtained by accordingly
encoding the e-service checking problem into a suitable set
of axioms. The link between original and “working” inter-
pretation structures is catched by the following definition:
it will be extended in the following as we go along, in order
to cope with various modeling refinements.

Table 1.

> v Top t New

Top u New v ⊥
A v Top

> v ∀P.Top

> v ∀P−.Top

o : Top

Definition 3 (Embedding relation). Let ω = 〈∆ω, ·ω〉 be an
arbitrary world state defined on an interpretation domain
∆ω ⊆ U, and let ω̂ = 〈U, ·ω̂〉 any interpretation over the

2We use axiom schemas as a useful notation shorthands: given an al-
phabet, the instantiated theory is obtained by replacing name placeholders
(e.g., A, P , o) with any compatible name.

alphabet 〈A ∪ {Top} , P, O〉. The world state is embedded
into the interpretation (ω  ω̂) iff the following conditions
hold: ∆ω = Topω̂, Nω = N ω̂ and oω = oω̂, for any
N ∈ A ∪ P and for any o ∈ O.

We can easily generalize the provided definition intro-
ducing a name mapping function that embeds the structure
using different concept or role names. We notice that using
different mapping functions, which means having mutually
disjoint co-domains (and possibly different embedded top
names), distinct arbitrary world states can be embedded into
an interpretation built over the union of mapped alphabets.
Now, we inductively define a translation function τ over the
concept expressions of the DL language ALCQIO, from
the alphabet 〈A, P, O〉 to the alphabet 〈A ∪ {Top} , P, O〉,
as follows: τ(A) , A, τ(C u C ′) , τ(C) u τ(C ′),
τ((./ n R C)) , (./ n R τ(C)), τ({o}) , {o}, and
τ(¬C) , Top u ¬τ(C).

Proposition 1. Let be ω and ω̂ be respectively a world state
and an arbitrary interpretation s.t. the world state is embed-
ded into the interpretation (ω  ω̂), then Cω = [τ(C)]ω̂
for any concept expression C and Rω = Rω̂ for any role
expression R built using ALCQIO over the domain speci-
fication 〈A, P, O〉.

Let KB = 〈T ,A〉 be an arbitrary knowledge base built
over the domain specification (i.e., a world specification
W), we define a new knowledge base τ(KB) over the ex-
tended alphabet s.t., for each general inclusion assertion
C v D in the TBox T , τ(KB) includes a new axiom of
the form τ(C) v τ(D); and for each ABox assertion o : C
in A, τ(KB) includes a new axiom of the form o : τ(C).

Theorem 1. The knowledge base KB is satisfiable on an
arbitrary interpretation domain ∆ ⊆ U iff the knowledge
base K̃B ∧ τ(KB) is satisfiable on U.

Since for the language ALCQI the disjoint union model
property holds, we are able to establish the computational
complexity of checking consistency of a world specifica-
tion3.

Corollary 1. Given anALCQI world specificationW , the
problem of checking if it is consistent is EXP-complete.

The system can dynamically evolve from a state to an-
other one, generally as the result of the execution of some
actions. These actions can essentially alter the extensional
level or, in other words, perform an update of the system
state specification. In our framework, world-altering actions
can be only carried out by means of provided e-services,
which we will describe in the following, but w.l.o.g. we
can assume that a service enactment can essentially perform
the following kinds of tasks: (1) create new objects, which
means add (to the active domain of the resulting state) el-
ements that are not included in the active domain of the

3Please refer to [16] for details about complexity classes.

3

2007 IEEE International Conference on Services Computing (SCC 2007)
0-7695-2925-9/07 $25.00  © 2007



initial state (assuming that U \ ∆ω 6= �), and that can
be viewed as new; (2) add or remove elements to/from a
concept extension; (3) add or remove links between ele-
ments. We point out that, while the extensional level can
be altered by the actions performed, the intensional level,
built essentially by the system specification and constraints,
must be assumed as immutable. The devised framework
allows for various complex primitives, generally available
in such kind of settings, like: variables (encoded as sin-
gleton concepts or nominals) and queries (encoded as ar-
bitrary ALCQIO-concept expressions involving also vari-
able names as parameters). Generally, an assignment binds
each variable name to a domain element. We employ the
variable construct also to model the object instantiation: in-
stantiation variables are bound to newly instantiated objects
or, in other words, their assignment is outside the current
active domain. Since each instantiation variable is a new
distinct object, the assignment function must map different
names to different instances, i.e., must be an injective func-
tion.

4 Simple e-services

A simple e-service is an atomic update operator, de-
scribed following the IOPE paradigm, that alters the world
state into a new one according to its own definition. In a
more general setting, an e-service can declare multiple pos-
sible effects non-deterministically chosen in order to mimic
the black-box behavior of the provider. However, in this
simple version we assume that an e-service has only one
possible effect defined in its specification, which is realized
once the service is invoked in a consistent way. For simple
e-services, we exclude the possibility of any side-effect, that
can potentially interfere with previous assumptions. How-
ever, we will remove this limitation in the following section.
The key idea is that it is possible to reify the update intro-
ducing new concepts and relations whose extensions corre-
spond to the ones in the state resulting from the update. In
order to achieve this result, we rely upon the notion of em-
bedding a world state structure, or a world state transition
specification, into an interpretation of an ad hoc built set
of formulas, stating a correspondence between the semantic
properties of such a kind of logical formalization and the
state transition system which is typically used to describe
the semantics of an e-service.

Definition 4 (Simple e-service). Given a domain specifi-
cation 〈A, P, O〉, and possibly a world specification W ex-
pressed using such alphabet, a simple e-service specifica-
tion is a quadruple formed by: (1) a (possibly empty) finite
set of input variable names XS; (2) a (possibly empty) finite
set of output or instantiation variable names YS; (3) a (pos-
sibly empty) finite set of invocation precondition constraint
PS; (4) a simple effect ES .

Informally, according to the IOPE paradigm, a service
is defined specifying the values required for its execution,

the values resulting from the execution itself, the conditions
under which it can be requested by a client, and the up-
dates performed, if any. Generally speaking, a precondi-
tion constraint is a conjunction of positive (resp. negative)
atomic conditions that are satisfied if the query result is not
empty (resp. empty) given an input variable assignment and
a world state. An atomic precondition is a pair 〈s,Q(X)〉
where: (1) s ∈ {+,−} is the sign of the precondition (pos-
itive or negative); (2) Q(X) is a parameterized query over
the domain specification in the variables X ⊆ XS . A simple
effect E is an arbitrary set of atomic concept and role ef-
fects built according to its variable names and domain spec-
ification. An atomic concept (resp. role) effect is a triple
〈s,A, a〉 (resp. a quadruple 〈s, P, l, r〉) s.t.: (1) s ∈ {+,−}
is the sign of the effect (insert or delete); (2) A ∈ A (resp.
P ∈ P) is the target concept (resp. role) name; (3) a (resp.
l and r) is the argument of the update (positive or nega-
tive) according to the sign of the effect. A positive (resp.
negative) effect argument is any element Y ∈ YS or any
parameterized query Q(X) over the domain specification in
the variables X ⊆ XS (resp. any parameterized query Q(X)
over the domain specification in the variables X ⊆ XS).
Roughly speaking, a simple effect specifies which elements
(or pair of elements) are inserted or removed from a set (or
a binary relation). Generally, each atomic effect can affect
more elements since its domain is denoted using queries4.

Example 1. Let W (Tab. 2) be an axiomatization of
a simple domain, where people interact with e-services
provided by public administrations. According to the

Table 2.

∃resIn−.> v Town

∃resIn.> v Citizen

∃regIn−.> v Town

∃own−.> v Citizen

Citizen v (= 1 resIn>)
Vehicle v (= 1 regIn>)
Goods v (≤ 1 own>)

Citizen u Town v ⊥
Citizen u Goods v ⊥
Goods u Town v ⊥

Vehicle v Goods

t1 : Town

t2 : Town

given axiomatization, each goods has an owner, while
vehicles must be registered to the local administrative
department. Suppose, for example, that there exists a
service S that allows a citizen to change its own residence
and to specify the new one. The preconditions can be
expressed as {{〈+, x1 u Citizen〉, 〈+, x2 u Town〉}},
while effects as

{
−resIn(x1,∃resIn−.x1),+resIn(x1, x2)

}
.

The input parameters x1 and x2 denote, respectively,
the citizen who is asking for the change and the new
residence town. This service is accessible by any citizen,
and allows to select any town as the new residence place.
The town t1 provides also the following version only to

4Moreover, an atomic effect can be more concisely written also using
the notation +A(a),−A(a), +P (l, r),−P (l, r).

4

2007 IEEE International Conference on Services Computing (SCC 2007)
0-7695-2925-9/07 $25.00  © 2007



its inhabitants that ask for a residence change that is
capable also to accordingly change the registration of
vehicles belonging to the requestor, in the sense that the
vehicles belonging to the requestor will be registered to
the authority of the new town. The preconditions are
{{〈+, x1 u ∃resIn. {t1}〉, 〈+, x2 u Town〉}}, while the ef-
fects are

{
−resIn(x1,∃resIn−.x1),+resIn(x1, x2)

}
∪

{−regIn(Vehicle u ∃own.x1, {t1})} ∪
{+regIn(Vehicle u ∃own.x1, x2)}.

A set of precondition constraints is interpreted as a dis-
junction of such constraints. Moreover, a service is accessi-
ble if there exists a legal world state and an assignment s.t.
it can be activated consistently with its preconditions.

Theorem 2. Given a world specification W and a simple
e-service S, both defined over the same domain 〈A, P, O〉,
let ω be a world state and σ be an input variable assign-
ment. Then, there exists a ALCQIO boolean knowledge
base KBP , having a length linearly bounded by the prob-
lem setting size, s.t. S is accessible from ω using σ iff there
exists a model ω̂ of KBP and the world state and the assig-
ment are embedded into it.

Informally, the result relies over an extension of the en-
coding previously devised, adding some axioms to enforce
the singleton semantics of variable names (for each vari-
able V , V v Top, ](V ) = 1) and to select only world
states that allow for the instantiation of at least n = ‖YS‖
new objects in the active domain (> v ∀aux.New, > v
∀aux−.New, and spy : New u (≥ n aux)), while the pre-
conditions are encoded adding the following boolean ax-
ioms

∨
P∈PS

∧
p∈P γ(p), where γ is a function defined as

γ(〈+, Q〉) , αp : τ(Q) and γ(〈−, Q〉) , τ(Q) v ⊥, be-
ing αp a new fresh constant name not appearing elsewhere.
The following property relies on a result reported in [19].

Corollary 2. Given a world specification W and a simple
e-service S, the problem of checking if it is accessible is in
NEXP.

Now, we introduce the formal definitions related to the
semantics of the state update adopted in our framework.
Generally speaking, we denote sets of elements or element
pairs affected by an update specification defined using the
syntax previously introduced. The following is the defini-
tion for concept extension update: the corresponding defi-
nition for role extension update is analogous.

Definition 5 (Concept update sets). Let E be an ser-
vice effect specification, A ∈ A a concept name,
ω a world state, σX and σ′

Y respectively an in-
put and output variable assignment. We define as
A+(ω, σX) =

⋃
〈+,A,Q〉∈E Qω(σX) \ Aω the insert

set, while A+(ω, σX, σ′
Y) =

⋃
〈+,A,Y 〉∈E {σ′

Y(Y )} ∪
A+(ω, σX) is the instantiation set and A−(ω, σX) =(⋃

〈−,A,Q〉∈E Qω(σX)
)
∩Aω the delete set.

In order to provide a consistent definition of service ef-
fects, we need also to verify that, for every concept or role,
the insert and delete sets are always distinct, as done in other
similar approaches (e.g., [4]). An effect is consistent if for
each legal world state ω and for each consistent assignment,
there is no element or element pair that belongs both to the
insert set and the delete set of some concept or role.

Example 2. Both services introduced in Ex. 1 are not con-
sistently defined: in fact their specification does not pre-
vent the ambiguous case when the current and new towns
are the same one. This is a typical case of idempotent op-
eration that is not allowed in our framework, unless it is
explicitly stated using an empty effect set, since it can po-
tentially lead to semantic inconsistencies. So in order to
provide a consistent service effect specification w.r.t. the
domain constraints, we need to adjust the service precondi-
tions introducing another negative atomic precondition as
〈−, x2 u ∃resIn−.x1〉 and 〈−, x2 u {t1}〉.

Since we are interested only in services that have no con-
tradicting effects, we need also to enforce such a kind of
constraint introducing some specific axioms. In particular,
we can state the following claim.

Theorem 3. Given a world specification W and a simple
e-service S, both defined over the same domain 〈A, P, O〉,
there exists a C2 sentence KBE , having a length polyno-
mially bounded by the problem setting size, s.t. the service
effect E is consistently defined iff for each concept name
A ∈ A we have that KBE ∧ τ(W) |= A+ u A− v ⊥ and
for each role name P ∈ P we have that KBE ∧ τ(W) |=
¬∃x, y.P+(x, y) ∧ P−(x, y).

In [8] we show an effective procedure that is able to build
KBE for an arbitrary problem instance. Given the previ-
ous definitions, we can finally introduce dynamic aspects,
defining the transition relation between system states result-
ing from the enactment of a service. As stated in the pre-
liminary assumption, we are ignoring any other source of
change of the system state: it cannot evolve autonomously
and there is no other interacting agent.

Definition 6 (Successor relation). Given a pair of world
states ω and ω′, an input and output variable assignments
σX and σ′

Y consistently defined w.r.t. ω, we say that ω′ is a
(potential) successor state of ω, resulting from the execution
of a simple e-service S according realizing the effect E and
instantiating the set Y, iff: (1) the interpretation domain
∆ω′

of the successor state is the smallest subset of U s.t.
∆ω∪cod(σ′

Y) ⊆ ∆ω′
; (2) the interpretation of object names

is preserved, i.e. oω = oω′
; (3) for each concept or role

name N ∈ A ∪ P, the insert set is included in the successor
state interpretation, i.e. Nω′ ⊇ N+(ω, σX, σ′

Y), and the
delete set is excluded, i.e. Nω′ ∩N−(ω, σX) ⊆ ∅.

The set of possible successor states obtainable from a
state ω, applying the effect E of a service using the as-
signment σX and σ′

Y is denoted as ΩE(ω, σX, σ′
Y), where

5

2007 IEEE International Conference on Services Computing (SCC 2007)
0-7695-2925-9/07 $25.00  © 2007



Y is the set of newly instantiated objects. Given a pair
〈Y, E〉, the output variables occurring in the definition of
the effect E must belong to the set Y. Among the potential
successor states resulting from the execution of a service
that realizes its effects, we are interested in the ones that
minimally differ from the initial state according to a no-
tion of minimal-change semantics. In particular, we adopt a
structure-distance metric based on the number of elements
whose interpretation changes from a structure to another, in
a similar way to some data reconciliation approaches ([11]),
based upon the set symmetric difference, applied to concept
and role alphabets A and P and denoted as d(·, ·).

Definition 7 (Transition relation). Let ω and ω′ be a pair
of world states, s.t. the latter is resulting from the execu-
tion of a simple e-service S in the state defined by the for-
mer, realizing the effect E. Given an input and an output
variable assignment σX and σ′

Y consistently defined, we say
that there is a system state transition from ω to ω′ using
the specified effect iff: (1) ω′ is a (potential) successor state
of ω w.r.t. the given assignments; (2) there does not exist
any other potential successor state ω′′ of ω, w.r.t. the same
assignments and service effect, s.t. d(ω, ω′′) < d(ω, ω′).

The service enactment set for a state ω and a consistent
input variable assignment σX, denoted as S(ω, σX), con-
tains all the pairs 〈ω′, σ′

Y〉 s.t.: (1) σ′
Y is a consistent instan-

tiation assignment w.r.t. ω; (2) ω and ω′ are in transition re-
lation w.r.t. the assignment and the service effect. Also the
embedding relation must be accommodated in order to deal
with the transition definition that involves multiple world
states (initial and final) and variable assignments. On such
foundation, as in the previous cases, we obtain the follow-
ing result:

Theorem 4. Given a world specificationW and an accessi-
ble and consistently defined simple e-service S, both defined
over the same domain 〈A, P, O〉, there exists a C2 sentence
KBU , having a length polynomially bounded by the prob-
lem setting size, s.t., every quadruple 〈ω, ω′, σX, σ′

Y〉 embed-
ded into a structure ω̂ is an enactment 〈ω′, σ′

Y〉 ∈ S(ω, σX)
of S, iff ω̂ |= KBU .

As in the previous case, we can exhibit a procedure to
actually build KBU for a given service specification. The
following claim enables us to extend the reasoning frame-
work to any arbitrary enactment. Notice that the number of
possible enactments is uncountably infinite, due to the non-
deterministic choice on the instantiation assignment: how-
ever, it turns out that they are actually indistinguishable un-
der the constraint language ALCQI ([10]).

Proposition 2. Let ω be a world state, σX a consistent input
variable assignment, S a simple e-service accessible in ω
using σX. If 〈ω′

1, σ
′
1〉 and 〈ω′

2, σ
′
2〉 are two enactments in

S(ω, σX), then they are isomorphic.

The devised definition of consistency for service effects
is a necessary but not sufficient condition in order to ensure

the correctness of an e-service acting in a world subject to
a constraint set represented by the specification knowledge
base W . In fact, this is a kind of internal effect consistency,
since it simply assures that the enactment effects are per
se not contradictory. On the other hand, we are also inter-
ested in the property of a service that always acts consis-
tently with the specification of the system, and at the same
time is able to fulfill its contract everytime it is activated
consistently. In other terms, given a legal state where the
service preconditions hold, the service invocation must re-
sult into a legal state where the declared effects are real-
ized. The service contract is defined presuming that the in-
vocation preconditions are sufficient in order to obtain one
of the declared service effects by a service enactment. This
assumption is fundamental for the verification of the consis-
tency of service specifications, since it allows for providing
a complete contract specification, excluding external world
altering events. We remark that the service contract imposes
to the service provider that, whenever the client is conform-
ing to the preconditions, it must not fail: we are essentially
ignoring reliability implementation and communication is-
sues and we are meaning failure in purely functional terms.

Definition 8 (Valid simple e-service). Let E be the effect of
a simple e-service S, we say that the service is valid w.r.t.
a world specification W iff: (1) the effect E is consistent;
(2) for each legal world state ω, for each consistent input
assignment σX, s.t. the service is accessible in ω using it,
there exists a legal state ω′ in the enactment.

Example 3. Given the specification of Ex. 1, con-
sider the following e-service that allows a customer to
buy a new vehicle (i.e., to become the owner): 〈X =
{x} , Y = {y} ,P = {{〈+, x1 u Citizen〉}} , E =
{+Vehicle(y),+own(y, x)}〉. Despite the service is acces-
sible and its effects are consistently defined, it is not valid
since its enactments violate the domain constraints: a vehi-
cle must be recorded to the town authority. A valid version
of the service effects is the following: E = {+Vehicle(y)}
∪ {+own(y, x),+Goods(y),+regIn(y,∃resIn.x)}

Theorem 5. A consistent and accessible simple e-service S
is valid w.r.t. a world specification W iff the following im-
plication holds: KBU∧τ(W) |= τ̄(W), where τ̄ is a trans-
lation function defined w.r.t. the name mapping m(x) , x̄.

Based on the above property, since the complexity of rea-
soning in C2 ([17]), we are able to provide the following
complexity upper bound:

Corollary 3. Given a world specification W and an ac-
cessible and consistent simple e-service S, the problem of
checking if S is also valid is in coNEXP.

5 Incomplete Specifications and Repairs

Differently from other approaches, so far we have as-
sumed that the effect specification of a service is completely

6

2007 IEEE International Conference on Services Computing (SCC 2007)
0-7695-2925-9/07 $25.00  © 2007



defined: in other words, there is no left space for any kind
of collateral effects. Now, we remove this limitation, al-
lowing for a non-deterministic update repair capability in
order to enforce a consistent behavior. In the field of up-
date theory, the notion of repair is old at least as the notion
of update itself ([21]). However, the problem of repairing
even a simple update in the presence of a complex inten-
sional knowledge base (or a complex constraint set) turns
out to be very hard, since, given the complexity of the ax-
iom language, non-local repair side-effects may arise. This
means that, in order to enforce consistently an update, we
are required to retract a relevant part of the previous knowl-
edge base. Some authors have addressed the problem limit-
ing the constraint language to a simpler form (e.g., acyclic
or definitorial TBox), but in the general case the problem
is undecidable both in DL ([4]) and in relational database
schemas ([1]). Generally speaking, since we can reduce,
using some adjustments, our framework to the proposal of
[4], the problem is also undecidable, but, if we renounce
to the completeness of the repair search, limiting to a re-
stricted, and finite, set of possible repairs, we can regain
decidability. The devised approach relies on the syntacti-
cal generation of repairing additional effects starting from
singleton values (like variables and constants) mentioned in
the problem setting, performing a kind of local search in
the space interpretation structure w.r.t. the set symmetric
distance.

Example 4. Given the following world specification of Ex.
1 and the following service specification: 〈X = ∅, Y =
{y} ,P = ∅, E = {+Vehicle(y)}〉, it is trivial to observe
that the service is not valid, since the insertion of a new
element in the extension of the concept Vehicle violates var-
ious axioms. In order to enforce this constraint, a repair
like {+Goods(y),+regIn(y, {t1})} is enough.

A simple repair R for a simple e-service S is an arbitrary
set of atomic concept and role repairs, possibly empty, s.t. it
does not contain any pair of conflicting atomic repairs (i.e.,
atomic repair differing only by the sign ). An atomic repair
is a special kind of atomic effect, which arguments range
over any nominal introduced in the specification. Restrict-
ing our attention to simple repairs, we can assume, as repair
search space for a given e-service S, a set RS s.t.: (1) it
includes the null repair (∅); (2) given any non-empty repair
R ∈ RS , each subset R′ ⊂ R s.t. ‖R‖ = ‖R′‖ + 1 is also
included in RS .

Proposition 3. Given a domain specification 〈A, P, O〉 and
a simple e-service S = 〈XS , YS ,PS , ES〉, there are at

most O
(
2‖A‖·n+‖P‖·n2

)
distinct simple repairs, where n =

‖O‖+ ‖XS‖+ ‖YS‖.

The number of different repairs, or, in other words, the
size of the search space, is finite and exponentially bounded
by the number of alphabet elements (in terms of names),
while they are substantially independent of the complexity

of the world specification axioms and service effect state-
ments. Given a service with the update repair capability
previously introduced, we need to refine the definitions re-
lated to system dynamics, in order to keep into account also
the repairing step that, intuitively, follows the instantiation
and updating ones.

Definition 9 (Candidate repaired successor state). Given
a world specification W and an enactment 〈ω′, σ′

Y〉 ∈
S(ω, σX) of a simple e-service S, let R ∈ RS be a simple
repair. The associated candidate repaired successor state
ω′

R is an interpretation structure s.t.: (1) its interpretation
domain is the same as the interpretation domain of the suc-
cessor state (∆ω′

= ∆ω′
R ); (2) the interpretation of each

concept or role name N ∈ A∪ P is adjusted accordingly to
the repair; (3) the interpretation of each object name O ∈ O
is left unchanged (Oω′

R = Oω′
).

The provided definition is not complete: in fact, in order
to be useful and safe, a repair R should be s.t.: (1) it does not
“undo” the effects of the service (i.e., deleting an element
just inserted); (2) it actually updates the world state (i.e., it
should not insert an element already present into a set or just
inserted by the service enactment). Moreover, among multi-
ple repaired successor states , the repairing strategy selects
the one closest to the base successor state ω′, in terms of
symmetric difference between interpretation structures, in
order to enforce a kind of minimal-change repair.

Definition 10 (Repaired transition relation). Let ω and ω′
R

be a pair of world states, satisfying the world specification
W , s.t. the latter is resulting from the execution of the ef-
fect E of a simple e-service S in the state defined from the
former applying a repair R ∈ RS . Given an input and
an output variable assignments σX and σ′

Y consistently de-
fined, we say that there is a system state transition from ω
to ω′

R using the specified effect iff: (1) ω′
R is a repaired

successor state of the enactment 〈ω′, σ′
Y〉 ∈ S(ω, σX);

(2) d(ω′
R, ω′) ≤ d(ω′, ω′′) for any ω′

R′ s.t. R′ ∈ RS and R′

is consistent.

According to the repair approach, which assumes a re-
pair step following the service update, we need to refine the
embedding relation in order to keep into account also the in-
termediate transient state. We can employ a name mapping
function to cope with multiple repairs at the same time, us-
ing different names for each non-deterministic branch. So,
let Ri ∈ RS be a repair, a suitable name mapping func-
tion in the case of simple e-service is ni(x) , xi and
ni(Top) , T̄op. We show that we can extend our reason-
ing framework also to keep into account the devised repair
strategy.

Theorem 6. Given a world specificationW and an accessi-
ble and consistently defined simple e-service S, both defined
over the same domain 〈A, P, O〉, and a simple repair R∗ for
S, there exists a C2 sentence ∆KBR (R∗), having a length
polynomially bounded by the problem setting size, s.t. every

7

2007 IEEE International Conference on Services Computing (SCC 2007)
0-7695-2925-9/07 $25.00  © 2007



quintuple 〈ω, ω′, ω′′σX, σ′
Y〉 embedded into a structure ω̂ is

an enactment 〈ω′, σ′
Y〉 ∈ S(ω, σX) of S repaired applying

R∗ leading to state ω′′, iff ω̂ |= KBU ∧∆KBR (R∗).

Definition 11 (Repairable simple e-service). Let E be the
effect of a simple e-service S, and let RS be the set of re-
pairs, S is repairable w.r.t. a world specification W iff:
(1) the effect E is consistent; (2) for each legal world state
ω, for each consistent input assignment σX, s.t. the service
is accessible in ω using it, there exists a state ω′ in the en-
actment and a repair R ∈ RS s.t. the repaired state ω′

R is
legal.

Theorem 7. A consistent and accessible simple e-service S
is repairable w.r.t. a world specification W using a family
of repair RS = {R1, . . . , Rr}, iff the following implication
holds:

τ(W)∧KBU∧
r∧

i=1

∆KBR(Ri) |=
r∨

i=1

τi(W)∧∆KBC(Ri)

where τi is the translation function defined w.r.t. the name
mapping function ni and ∆KBC(Ri) is a suitable C2 sen-
tence that encodes the repair consistency constraints for a
given repair, having a length polynomially bounded by the
problem setting.

We have also devised an effective procedure to build both
∆KBR and ∆KBC for given service S and simple repair
R ∈ RS : please refer to [8] for details. Moreover, since an
exponential number of possible repairs must be accordingly
encoded, we obtain the following property:

Corollary 4. Given a world specification W and an ac-
cessible and consistent simple e-service S, the problem of
checking if it is also repairable is in co2NEXP.

The ability to deal with service effect repairs can be also
viewed as a form of allowing partially specified services:
a repairable service intentionally states only its primary ef-
fects, while its indirect effects (the ones implied by the pri-
mary effects and the domain constraints) are not specified.

6 Conclusions

The main contribution of this work is to show how an
expressive and suitable operational semantic model for e-
service, based upon the enforcing of the service contract,
can be traced to a logic characterization as a foundation for
the analysis of a number of relevant functional properties in
the design of a service-oriented integration solution. More-
over, the model accounts for both complete and incom-
plete specifications of e-services. To the best of our knowl-
edge, this is the only framework which is able to address
the following aspects: (1) allowing for effective reasoning
about action consequences w.r.t. a complex domain spec-
ification, without any significant limitation regarding the
constraint language; (2) adopting a semantics of minimal-
change; (3) taking into account more interesting, and se-
mantically well-founded, repairing options.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[2] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Ser-
vices: Concepts, Architectures and Applications. Springer-
Verlag, Berlin, Germany, 2004.

[3] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and
P. F. Patel-Schneider, editors. The Description Logic Hand-
book. Cambridge University Press, 2003.

[4] F. Baader, C. Lutz, M. Milicic, U. Sattler, and F. Wolter.
Integrating description logics and action formalisms for rea-
soning about web services. Technical report, Desden Uni-
versity of Technology, 2005.

[5] D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, and
M. Mecella. Automatic composition of transition-based se-
mantic web services with messaging. In Proc. of the 31st
VLDB Conference, Trondheim, Norway, 2005.

[6] M. Carman, L. Serafini, and P. Traverso. Web Service Com-
position as Planning. In Proceedings of ICAPS’03 Workshop
on Planning for Web Services, Trento, Italy, June 2003.

[7] A. Deutsch, L. Sui, and V. Vianu. Specification and verifica-
tion of data-driven web services. In Proc. of the PODS 2004
Conference, Paris, France, 2004. ACM.

[8] L. Dragone and R. Rosati. Modeling and reasoning about
e-services. Technical report, DIS, Università di Roma “la
Sapienza”, 2006.

[9] ebXML Technical Commitee. ebXML – electronic business
using XML. Specification, OASIS, Oct 2003.

[10] N. Immerman and E. Lander. Describing graphs: A first-
order approach to graph canonization. In Alan L. Selman,
Editor, Complexity Theory Retrospective, volume 1. 1990.

[11] J. Lin and A. Mendelzon. Merging databases under con-
straints. International Journal of Cooperative Information
Systems, 7(1):55–76, 1996.

[12] A. Martens. Usability of web services. In Proc. of the 1st
Web Service Quality Workshop. IEEE Press, 2003.

[13] S. A. McIlraith and T. C. Son. Adapting Golog for compo-
sition of semantic web services. In Proc. of the KR 2002
Conference, Toulouse, France, 2002.

[14] B. Meyer. Object-Oriented Software Construction. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1988.

[15] T. D. Noia, E. D. Sciascio, F. M. Donini, and M. Mongiello.
A system for principled matchmaking in an electronic mar-
ketplace. In Proc. of the WWW 2003 Conference, Budapest,
Hungary, 2003.

[16] C. H. Papadimitriou. Computational Complexity. Addison-
Wesley, 1994.

[17] I. Pratt-Hartmann. Complexity of the two-variable frag-
ment with counting quantifiers. J. of Logic, Lang. and Inf.,
14(3):369–395, 2005.

[18] M. K. Smith, C. Welty, and D. L. McGuinness. OWL web
ontology language guide. Recommendation, World Wide
Web Consortium (W3C), Feb 2004.

[19] S. Tobies. The complexity of reasoning with cardinality re-
strictions and nominals in expressive description logics. J.
Artif. Intell. Res. (JAIR), 12:199–217, 2000.

[20] W. M. P. van der Aalst. The application of Petri Nets to
workflow management. J. of Circuits, Systems and Com-
puter, 8(1), 1998.

[21] M. Winslett. Updating logical databases. Cambridge Uni-
versity Press, New York, NY, USA, 1990.

8

2007 IEEE International Conference on Services Computing (SCC 2007)
0-7695-2925-9/07 $25.00  © 2007


