

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-04-25T06:09:40Z

Some rights reserved. For more information, please see the item record link above.

Title
A Scenario-View Based Approach to Analyze External
Behavior of Web Services for Supporting Mediated Service
Interactions

Author(s) Zhou, ZhangBing; Bhiri, Sami; Shu, Lei; Vasiliu, Laurentiu;
Hauswirth, Manfred

Publication
Date 2008

Publication
Information

ZhangBing Zhou, Sami Bhiri, Lei Shu, Kaizhu Huang,
Laurentiu Vasiliu, Manfred Hauswirth "A Scenario-View
Based Approach to Analyze External Behavior of Web
Services for Supporting Mediated Service Interactions",
Application and Industry Track at IEEE International
Conference on Services Computing (SCC 2008), IEEE, 2008.

Publisher IEEE

Item record http://hdl.handle.net/10379/701

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

A Scenario-View Based Approach to Analyze External Behavior of Web Services
for Supporting Mediated Service Interactions

Zhangbing Zhou, Sami Bhiri, Lei Shu, Laurentiu Vasiliu and Manfred Hauswirth
Digital Enterprise Research Institute, National University of Ireland at Galway, Ireland

{firstname.lastname}@deri.org

Kaizhu Huang
Computer Science and Engineering Dept, The Chinese University of Hong Kong, Hong Kong

kzhuang@cse.cuhk.edu.hk

Abstract

Web service interactions have triggered the initiative to
identify and solve mismatches from a behavioral aspect.
Current approaches are limited since they mainly focus on
control-flow but largely ignore data-flow. In this paper, we
propose an approach to automatically generate scenarios
and views for describing external behavior of Web services,
i.e. the public process, considering both control-flow and
data-flow. We define a scenario as a set of complete exe-
cution paths for a public process. Data dependencies are
presented as a dependency graph, which is optimized into
a minimal dependency graph. Then, a view is generated to
describe a scenario for analysis purposes, and external be-
havior of a Web service is described as a finite set of views.
Our approach is very useful for service modelers and users
to better understand the external behavior of Web services,
to identify and solve mismatches from a behavioral aspect,
and thus to facilitate Web service interactions.

1. Introduction

A Web service interaction can be described as a flow of
messages, which contain a set of data, exchanged among
Web services. Because of the inherent autonomy and het-
erogeneity of Web services, messages are often different in
format and granularity, and public processes [7] are often
diverse in activities and messages in terms of form and se-
quence. Thus, it is difficult, if not impossible, to find two
Web services that are completely compatible [3] from either
functional, or behavioral, or both aspects, and a Web service
interaction is normally carried out with the help of data or
process mediators [7]. A service interaction with the help of
mediators is called as a mediated service interaction. Since
many methods, e.g. [6, 8, 12], have analyzed Web services

from a functional aspect, we focus on a behavioral aspect.
Since the internal implementation of Web services does not
contribute to the analysis of service interactions, we focus
on external behavior of Web services, which is typically de-
scribed by a public process from control-flow and data-flow
aspects [7]. Current methods for facilitating service inter-
actions, e.g. [20, 21, 23], focus on control-flow and largely
ignore data-flow, and are limited to identify and solve be-
havioral mismatches among Web services. They are insuf-
ficient to support mediated service interactions. Thus, from
the perspective of supporting mediated service interactions,
what is external behavior of Web services considering both
control-flow and data-flow?

Current approaches for analyzing external behavior of
Web services include: Control-flow based methods [9, 18]
focus on control-flow and largely ignore data-flow. De-
pendency based methods [13, 22] analyze dependencies
from data, control and other aspects. View based methods
[4, 16, 24] investigate the relation of private and public pro-
cesses from a control-flow aspect. Thus, current approaches
focus on either a control-flow or a data-flow aspect and are
limited to answer our question. An improved approach is
necessary to analyze external behavior of Web services for
supporting mediated service interactions.

To address these problems, we present a novel approach
including: (1) We generate all scenarios for a public pro-
cess. A scenario is a set of complete execution paths [3]
for a public process. (2) Data dependencies are represented
by a data dependency graph, which presents a finite set of
mandatory or optional data dependencies in a public pro-
cess or a scenario. However, a data dependency is redun-
dant and can be safely removed if it is implicitly specified
by other data dependencies. A minimal data dependency
graph is generated where there are no redundant data de-
pendencies. (3) We propose three reduction rules to identify
and remove unnecessary control dependencies specified by

sequence, And and Loop blocks in a scenario. (4) With the
help of a minimal data dependency graph, we generate a
view for a scenario by applying three reduction rules recur-
sively. A public process can be described as a finite set of
scenarios. A scenario has a corresponding view represent-
ing this scenario for analysis purposes. External behavior
of a Web service can be described as a finite set of views.

As far as we know, our scenario-view based approach is
the first study to analyze external behavior of Web services
considering both control-flow and data-flow. Its immediate
benefits include: (1) it can help service modelers and users
for a better understanding on external behavior of Web ser-
vices, and (2) it can provide valuable instructions for fa-
cilitating Web service creation or evolution. In addition, it
is the base for (3) checking compatibility of Web services
from a behavioral aspect, (4) identifying behavioral mis-
matches among Web services and generating process me-
diators, and (5) facilitating mediated service interactions.

Here is the outline of this paper. A motivating example is
presented in Section 2. A definition and graphical notations
for a public process are shown in Section 3. Afterwards,
scenarios are generated for a public process, data depen-
dencies are discussed, and a view is generated for a scenario
in Section 4, 5 and 6. Finally, related work is discussed and
a conclusion is made in Section 7 and 8.

2. A motivating example

Figure 1-a and 1-b show the public processes of two Web
services for a toy shop and a requestor, which want to inter-
act for achieving a goal: buying toys. The public processes
can be coded in BPEL4WS [1], and a definition of public
processes are presented in Section 3. The pricing strategy of
the toy shop is flexible: a discount is applied at the children
day if the requestor is a child, or a normal price otherwise.
Thus, the toy shop expects toy items and customer informa-
tion before deciding the price although customer informa-
tion is optional for pricing. Due to the privacy concern, the
requestor expects the price firstly. If the price is acceptable,
he/she pays and provides customer information for delivery
purposes. We assume that no heterogeneity exists at a data
level, since it is out of the focus of this paper and much
research has been conducted at this aspect [14].

From a control-flow aspect, since the toy shop expects
customer information and then provides the price, and the
requestor expects the price and then provides customer in-
formation, they cannot carry out a direct service interaction.

Current approaches for checking compatibility of work-
flows, e.g. [3, 11, 17, 21], are based on control-flow and as-
sume that the toy shop and the requestor are incompatible.
Current approaches for process mediation, e.g. [2, 5, 15],
aim to identify and solve behavioral mismatches from a
control-flow aspect. They regard this kind of mismatches

Start R: Toy
Items

R: Customer
Information S: Price Message? cancel R: Cancel

R: Payment
pay

S: DeliveryEnd Fail
ure

Start S: Toy
Items R: Price Accept?

S: CancelFail
ure

n

And-
Split

S: Payment

S: Customer
Information

And-
JoinR: Delivery

y

End

(a)

(b)

Figure 1. Public processes for a toy shop and
a requestor Web services

as unresolvable [5, 7] and this interaction should fail.
However, if there is a process mediator in the middle

considering both control-flow and data-flow, the toy shop
and the requestor can carry out an interaction successfully.
Since the pricing strategy of the toy shop is flexible, it can
give a normal price if it is notified by the process media-
tor that the requestor will not provide customer information
before receiving the price. Thus, the messages exchanged
between the toy shop and the requestor can form a mediated
service interaction leading from their Start nodes to their
End nodes. Figure 2 shows how this mediated service inter-
action is carried out. For simplicity, the activities which do
not contribute to this interaction are not presented.

This example indicates that current approaches, which
check behavioral compatibility at a control-flow level, can
support direct service interactions only. Current process
mediators aim to solve behavioral mismatches at a control-
flow level, and are limited to support mediated service in-
teractions. Their major shortcomings are:

• Generally, only a part of activities in a public process
will involve in a given interaction. A concept: sce-
nario, is introduced to represent a complete execution
path for a public process. A further discussion on how
to generate all scenarios for a public process is pre-
sented in Section 4.

• Current approaches for process mediation and behav-
ioral compatibility are control-flow based, while data-
flow is largely ignored although data-flow is implic-
itly specified in a public process. To apply data-flow
for supporting mediated service interactions, a con-
cept: data dependency graph, is introduced to repre-
sent data-flow of a public process or a scenario. A
further discussion on data-flow is shown in Section 5.

• Current approaches assume that the activities in a pub-
lic process or a scenario must be executed following
the order specified by its control-flow. In real appli-
cations, the execution order of some activities may be

Start

R: Toy Items (2)

R: Customer
Information (4)

S: Price (2)

pay

S: Delivery (4)

End

Start

R: Delivery (5)

End

Message?

R: Payment (4)

S: Toy Items (1)

R: Price (3)

Accept?

S: Payment (3)

And-
Split

S: Customer
Information (3)

And-
Join

y

Toy shop: T Requestor: R

[R] S: Toy Items (1)
After Step 1

[R] S: Toy Items (1) (2-C)
After Step 2

[T] S: Price (2)

[R] S: Toy Items (1) (2-C)
[R] S: Payment (3)
[R] S: Customer
Information (3)

After Step 3

[T] S: Price (2) (3-C)

[R] S: Toy Items (1) (2-C)
[R] S: Payment (3) (4-C)
[R] S: Customer
Information (3) (4-C)

After Step 4

[T] S: Price (2) (3-C)
[T] S: Delivery (4)

[R] S: Toy Items (1) (2-C)
[R] S: Payment (3) (4-C)
[R] S: Customer
Information (3) (4-C)

After Step 5

[T] S: Price (2) (3-C)
[T] S: Delivery (4) (5-C)

Finish

Messages exchanged for this
mediated service interaction

Note:
(1) The number (1), …, (5) indicates five steps of this mediated service interaction.
(2) [T] S: msg means that the requestor receives a message from the toy shop, while
[R] S: msg means that the toy shop receives a message from the requestor.
(3) There may have 2 postfixes in a message like (n1) (n2-C), where n1 means the step
that the message is received, n2 means the step that the message is consumed, and C is
an abbreviation of consumption.

(a) (b)

Figure 2. A successful mediated service interaction between the toy shop and the requestor

changed if there are no mandatary data dependencies
among them. A concept: checkpoint, is introduced to
represent a finite set of contiguous activities that can
be executed in any order, and another concept: view,
for a sequence of checkpoints in a scenario. A further
discussion on how to generate a view for a scenario is
presented in Section 6.

3. Modeling a public process

Below we give a definition for a public process in which
messages and guard functions are the first-class elements.

Definition 1 (Public Process). A public process p
is the five-tuple (MSG, ACT, CNT, GRD, ARC), where
MSG={msg} is is a finite set of messages, ACT={act} is
a finite set of activities for sending or receiving messages,
CNT={Start, Failure, End, Xor Split, Xor Join, And Split,
And Join} are control elements, GRD={grd} a finite set of
guard functions, and ARC={arc} a finite set of arcs that
connect activities and control elements.

We follow [3] for the function Polarity(msg) to specify
whether a message is received if Polarity(msg)=R or sent if
Polarity(msg)=S. For simplicity but without loss of gener-
ality, we assume that a message contains one data. Both
activities and control elements are the nodes in a public
process. We model a public process as a structured work-
flow [10]. Figure 3-a to 3-f shows six basic graphical no-

R/S: receiveing/
sending

Check?
And/
Xor-
Split

And/
Xor-
Join

(a) start (b) failure or end (c) activity

(d) branch (e) and/xor split (f) and/xor join

Start
Failure
/End R/S: ...

(h) loop

R/S: ...

R/S: ...

(g) sequence

Check?

Figure 3. Graphical notations for modeling a
public process

tations for modeling a public process. These notations are
supported by JGraphPad 1, based on which our prototype
is implemented. Six ordering structures: sequence, And-
Split/Join, Xor-Split/Join and Loop are defined by WfMC 2.
And-Split/Join and Xor-Split/Join can be modeled directly
by Figure 3-e and 3-f. Sequence and Loop are complex
structures and can be modeled by our basic notations as
shown in Figure 3-g and 3-h.

4. Generating scenarios for a public process

A Xor block in a public process is a sub-process delim-
ited by a Xor-Split with its Xor-Join. Only one path can

1http://www.jgraph.com/jgraphpad.html.
2http://www.wfmc.org/standards/docs.htm.

be enabled in a given execution depending on the status of
guard functions. Branch control elements are used for two
purposes: specifying an exclusive relation or modeling a
loop. In this section, only Branch control elements that con-
tribute to exclusive relations are considered. Similarly, after
a Branch control element, only one of its branches can be
enabled in a given execution. Exclusive paths or branches
are called as alternative paths to each other. A finite set of
scenarios can be generated for a public process where each
scenario includes only one alternative path in a Xor block
or after a Branch control element.

Regarding to other control elements in a public process,
such as And blocks and Branch control elements for mod-
eling loops, since either none or all of their activities will
be executed in a given execution, they are inherited by one
or several scenarios. However, these activities may be ex-
ecuted following different orders in different executions.
This suggests that a scenario may include several complete
execution paths.

Definition 2 (Scenario). A scenario sce is a set of
complete execution paths for a public process p, which
is defined by the five-tuple (MSGsce, ACTsce, CNTsce,
GRDsce, ARCsce) generated from those of p. For any node
in a scenario except Start, Failure/End, And Split, And Join,
and Branch control elements for modeling loops, it has only
one entering and one leaving edge.

There are two scenarios for the toy shop service, and Fig-
ure 2-a shows one of them. There are two scenarios for the
requestor service, and Figure 2-b shows one of them.

5. Optimizing data dependencies into a mini-
mal data dependency graph

Data dependencies of a public process can be extracted
from its specification in terms of a BPEL process [13].
We record data dependencies as mandatory or optional. A
mandatory data dependency means that it must be held dur-
ing execution phases. An example is ”R: Toy Items” to ”S:
Price” in Figure 2-a. An optional data dependency means
that it may, or may not, be held during execution phases.
An example is ”R: Customer Information” to ”S: Price” in
Figure 2-a. All data dependencies in a public process form
a directed, connected, and acyclic graph, where nodes are
the data and directed links indicate the dependency relations
among data.

Definition 3 (Data Dependency Graph). A data de-
pendency graph dg for a public process (MSG, ACT, CNT,
GRD, ARC) is a directed, connected and acyclic graph,
which is defined by the two-tuple (DATAdg , DEdg), where
DATAdg = {data} is a finite set of data generated from
MSG, which are the nodes in this graph. DEdg = DE

(M)
dg ∪

DE
(O)
dg a finite set of edges, which are the direct links in

this graph specifying the dependency relations among data.
DE

(M)
dg is for mandatory dependencies, and DE

(O)
dg is for

optional dependencies.
A data dependency graph defines a finite set of partial-

order relations for data. These relations are asymmetric,
irreflexive and transitive. One data is regarded as manda-
torily (or optionally) dependent on another data if (1) a di-
rect link, which specifies a mandatory (or optional) depen-
dency relation, connects them (called directly dependent),
or (2) several direct links, all of which are mandatory (or
optional) dependency relations, form a path leading from
one data to another (called indirectly dependent). It is pos-
sible that a data is both mandatory and optional dependent
on another data. This suggests that a data dependency graph
can be represented as a finite set of mandatorily or option-
ally dependent relations. A data dependency graph is called
functionally equivalent to another data dependency graph
if any mandatory or optional dependency relation in one
graph can exist in another graph directly or indirectly. In
a data dependency graph, some dependencies may impose
same dependent relations. If any mandatory (or optional)
dependency relation cannot be specified by other manda-
tory (or optional) dependency relations, a data dependency
graph is called minimal.

Definition 4 (Minimal Data Dependency Graph).
A minimal data dependency graph dgmin: (DATAmin,
DEmin) is generated from a data dependency graph (DATA,
DE), where DATAmin = DATA, DEmin ⊆ DE, and
(DATAmin, DEmin) is functionally equivalent to (DATA,
DE), but ∀ de ∈ DEmin∶ (DATAmin, (DEmin−{de})) is
not functionally equivalent to (DATA, DE).

R: Toy Items R: Customer
Information

S: Price

R: Cancel

R: Payment

S: Delivery

M1** O2**

M3

M4**
M5*

M6**

M7**

Figure 4. (Minimal) data dependency graphs
for the toy shop service and its scenario

Figure 4 shows a data dependency graph for the toy shop,
where the edge O2 shows an optional dependency. A data
dependency graph of a scenario is generated from that of a
public process by removing (1) data that are not related to
this scenario and (2) edges if an edge connects to any data
that is not related to this scenario. In Figure 4, a data depen-
dency graph for a scenario shown in Figure 2-a is marked
with one or two ∗, and its minimal data dependency graph

is marked with ∗∗.

6. Generating a view for a scenario

In this section, we firstly introduce the concepts of check-
point and view. Then, we propose three reduction rules to
identify and remove redundant control dependencies in a
scenario, and thus to generate checkpoints. Finally, we pro-
pose our genView algorithm to generate a view for a scenario
using reduction rules recursively with the help of a minimal
data dependency graph.

6.1. What is a view?

Before introducing the concept of view, we present a re-
lated concept: checkpoint.

Definition 5 (Checkpoint). A checkpoint cp includes a
finite set of contiguous activities in a scenario in which data
dependencies among them are not mandatory. A check-
point is defined by the four-tuple (label, ACT, DATA, GRD),
where label for its label. ACT for activities, DATA for re-
quired data, and GRD for guard functions, are generated
from those of the scenario.

Required data can be generated with the help of the min-
imal data dependency graph of a scenario. For example,
M1 in Figure 4 suggests that the data: ”R: Toy Items”, is
required for ”S: Price”. However, since the data depen-
dency O2 for ”R: Customer Information” and ”S: Price”
is optional, ”R: Customer Information” is not required for
”S: Price”. Table 1 3 shows lists six checkpoints for the
scenario shown in Figure 2-a.

label ACT DATA
cp0 Start
cp1 Receive Toy Items

Receive Cust. Info.
cp2 Pick Price data(Receive Toy Items)
cp3 Receive Payment data(Pick Price)
cp4 Invoke Delivery data(Receive Cust. Info.)

data(Receive Payment)
cpf End

Table 1. Checkpoints for the scenario shown
in Figure 2-a

Definition 6 (View for a Scenario). A view vw for a
scenario (MSGsce, ACTsce, CNTsce, GRDsce, ARCsce)
is the five-tuple (MSGvw, CP, cp0, cpf , DEvw), where
MSGvw = MSGsce, CP={cp} is a finite set of check-
points, cp0 is the initial checkpoint, and cpf is the final one,

3Guard functions are not presented in this table.

while DEvw = {de} is a finite set of direct links connecting
checkpoints to specify data dependencies among them.

A checkpoint is a point in a view in which the verification
is conducted for analysis purposes.

6.2. Reduction rules

Control-flow structures of a scenario specify execution
orders of activities. However, the execution of some ac-
tivities may not follow these orders. An example is ”R:
Toy Items” and ”R: Customer Information” in Figure 2-
a since they are not data dependent on each other. Thus,
in this section, three reduction rules are presented to iden-
tify and remove redundant control dependencies specified
by Sequence, And and Loop blocks. Since only one alter-
nate path is enabled for a Xor block and a Branch control
element that specifies an exclusive relation, they are func-
tionally equivalent to Sequences.

We follow previous report [19] for the function: fold, for
replacing several contiguous nodes by a single node. Data
dependencies and guard functions of these nodes are inher-
ited by the folded node. We call a folded node a virtual
node, which is shown as a rectangle with dashed lines after-
wards. Three reduction rules introduced in this section can
be applied to a scenario recursively until no (virtual) nodes
can be folded into a virtual node anymore.

Act1 Act3Act2
(a) (b)

Figure 5. Reduction rules for Sequences

Rule 1 (Sequence). A sequence of activities are folded
into a virtual node if data dependencies among them are not
mandatary.

This rule is shown by Figure 5. Sequence in Figure 5-
a indicates that Act1 should be executed before Act2. It is
actually a control dependency: Act1 should happen before
Act2. However, this control dependency is inappropriate if
Act2 is not data dependent on Act1. An example for this
rule is the activities ”R: Toy Items” and ”R: Customer In-
formation” in Figure 2-a.

And-
Split Act2

Act1 Act1

Act2

Act2

Act1
≈≈And-

Join

Act3

Act3 Act4
Act1 Act2

Act2
Act1

Act1-3

(a)

(b)And-
Split

And-
Join

And-
Split

And-
Join

Act2-4
(c)

Figure 6. Reduction rules for And blocks

Rule 2 (And). An And block with its And Split and
And Join is folded into (1) a virtual node if all activities in
each path can be folded into a virtual node or (2) a sequence
of virtual nodes otherwise.

An And block indicates that all its paths should be exe-
cuted in parallel. However, there are no control and data de-
pendencies among activities of different paths. This means
that an And block can be converted into a sequence of ac-
tivities as shown in Figure 6-c.

The rule for And block is presented by Figure 6-a and
6-b. Figure 6-a shows a case that, for any path in an And
block, all nodes can be folded into one virtual node. This
And block can be folded into a single virtual node. An ex-
ample is the And block: ”S: Payment” and ”S: Customer
Information”, shown in Figure 2-b.

Another case is shown in Figure 6-b. At least one of its
paths has more than one activity with mandatary data de-
pendencies among them. Thus, at least one path cannot be
folded into a virtual node. This And block can be translated
into a sequence of virtual nodes.

n

y

Act1

Act1(1..n)

n

y

Act1 Act2
(b)(a)

Check?

Act1-1 Act2-1

Act1-n Act2-n...

Act1(1..n) Act2(1..n)

(i)

(ii)

(iii)

Check?

Figure 7. Reduction rules for Loop blocks

Rule 3 (Loop). A Loop block is folded into (1) a virtual
node if the Loop body can be folded into a virtual node or
(2) a sequence of virtual nodes otherwise. Guard functions
are defined in the last virtual node for specifying the exit
conditions of the Loop block. There are possibly multiple
instances for a virtual node during execution phases.

This rule is shown by Figure 7. A Loop block iterates
over one or several nodes until its exit conditions are sat-
isfied, but it doesn’t iterate forever in real situations. As
suggested by [21], a Loop block can be simulated as a se-
quence of at most N repetitions of the Loop body, where N
depends on a given execution. As shown in Figure 7-a, if all
nodes in a Loop body can be folded into one virtual node,
this Loop block can be simulated as a single virtual node.
Guard functions are defined in this virtual node to specify
the exit conditions of this Loop block.

Another case is shown in Figure 7-b. If data dependen-
cies are mandatary and thus a Loop body cannot be folded
into one virtual node, the Loop block can only be simulated
as a sequence of virtual nodes as shown by Figure 7-b-(ii).
Since n is nondeterministic for analysis purposes, we trans-
fer the sequence from Figure 7-b-(ii) to Figure 7-b-(iii) for
facilitating the analysis of the Loop block. However, the

sequences shown by 7-b-(ii) and Figure 7-b-(iii) are not se-
mantically equivalent. Figure 7-b-(ii) specifies dependen-
cies for (1) Act2-i and Act1-(i+1), (2) Act1-i and Act1-(i+1),
and (3) Act2-i and Act2-(i+1). In Figure 7-b-(iii), the first
kind of dependencies is preserved, but the latter two are lost.
However, the latter two are implicitly satisfied in Figure 7-
b-(iii) if the exit conditions of the Loop block are satisfied.
Thus, it is reasonable to analyze the Loop block following
the sequence as shown in Figure 7-b-(iii).

6.3. Generating a view for a scenario

We propose our genView algorithm to generate a view for
a scenario, which applies three reduction rules upon a sce-
nario recursively until no (virtual) nodes can be folded into
a virtual node anymore (line 3-9). Afterwards, checkpoints
are generated (line 11) and a view is derived (line 10-14).
The time complexity of this algorithm is O(n2), where n
is the number of nodes in a scenario, because in the worst
case, two (virtual) nodes can be folded into one virtual node
at each iteration. This procedure repeats until there are three
nodes left, in which one for the initial and another for the fi-
nal checkpoints. A view for a scenario includes a sequence
of checkpoints leading from its initial checkpoint to its final
checkpoint.

7. Related work

Related work can be categorized into three types:
control-flow, dependency, and view based analysis.

Control-flow based analysis. In [18], the authors recog-
nized that different parts in a process model are often not
equally important. Thus, they checked process similarity
in terms of typical behaviors, which are typical executions
extracted from an event log. This method does not fit for
new processes where no event logs can be used for identi-
fying their typical behaviors. Another work [9] presented a
framework for supporting workflow intelligence and qual-
ity improvement using workcases generated from a work-
flow, and execution cases discovered from event logs. The
workcase is a concept similar to our scenario. In Summary,
control-flow is the focus, and data dependencies are largely
ignored. These approaches contribute to the generation of
scenarios for a workflow only.

Dependency based analysis. Dependency, which speci-
fies an ordering and synchronization relation between activ-
ities, is an important and well-studied method for program
analysis and optimization. However, few studies have ap-
plied dependency for workflow analysis. One work is [22]
which proposed data, control, service and cooperation de-
pendencies for describing constraints in a business process.
All dependencies are optimized into a minimal dependency

Algorithm 1: genView
in :
- sce ∶ (MSGsce, ACTsce, CNTsce, GRDsce,
ARCsce): A scenario
- dgmin ∶ (DATAmin,DE

(M)
min ∪DE

(O)
min) for sce

out : view ∶ (MSGvw,CP, cp0, cpf ,DEvw) for sce
data: - ND: a set of nodes in sce which form a

Sequence, a Flow block or a While block
- NDSeq: a sequence of nodes
func:
- foldSce(ND,sce): to fold ND in sce into one or a
Sequence of nodes: NDSeq, using reduction rules
- isSeq(ND,sce), isF low (ND, sce), isWhile(
ND, sce): a boolean function to check if a Sequence,
Flow or While block satisfies reduction rules
- getData(nd, sce): to get data from the message
related to a node nd
- foldMinDG(getData(nd, sce), dgmin): to fold a
dgmin by replacing several data generated from
getData(nd, sce) as a data set
- genReqData(getData(nd, sce), dgmin): to
generate required data for a node nd
- genCP (nd,{data}): to generate a checkpoint from
a node nd with required data {data}
- insCP2V iew(cp, view): to insert a checkpoint cp
into a view view

begin1

MSGvw ←MSGsce; scecur ← sce; do ← false2

while do = false do3

do ← true4

if ND ⊂ ACTscecur ∪CNTscecur and5

(isSeq(ND,scecur) = true or
isF low(ND,scecur) = true or
isWhile(ND,scecur) = true) then

NDSeq, scetmp ← foldSce(ND,scecur)6

for ndi ∈ NDSeq do7

dgmin ← foldMinDG(8

getData(ndi, scetmp), dgmin)

scecur ← scetmp; do ← false9

for ndcur ∈ ACTscecur ∪ CNTscecur do10

cptmp ← genCP (ndcur, genReqData(11

getData(ndcur, scecur), dgmin))

view ← insCP2V iew(cptmp, view)12

cp0 ← cptmp ⇐ ndcur is Start node of scecur13

cpf ← cptmp ⇐ ndcur is final node of scecur14

end15

set for supporting high concurrency and minimal mainte-
nance cost. Control dependencies in this work are function-
ally equivalent to our guard functions. [13] proposed to ex-

tract data dependencies from BPEL processes. These work
benefits much to our analysis of dependency graphs. How-
ever, the authors did not consider possible conflicts among
different kinds of dependencies. For the sake of autonomy
and privacy, service and cooperation dependencies may not
be available. This effort may unfit for Web service domain.

View based analysis. A process view is an abstract pro-
cess to support interaction, security, and privacy. A view
[4] was proposed to support cross-organizational workflow
execution. Workflows and resources can be partially visible
to potential partners and thus provide a powerful method
for inter-organizational workflow configuration. This view
is similar to the public process. Based on the tracking struc-
ture of a relative workflow model, a view [24] was proposed
to perform workflow tracking across organizational bound-
aries. Different views can be generated for different organi-
zations based on a pre-existing collaborative business pro-
cess. This work follows a top-down approach and is not
suitable to Web service domain. Another view [16] aimed
to selectively hide the details of private processes, to sup-
port state-oriented communication, and to facilitate cross-
organizational workflow execution. Two types of interac-
tions are supported: unmediated and mediated. A media-
tor presented in this paper is not designed to solve possi-
ble mismatches, but to route messages among processes. It
actually acts like a gateway or a message broker. There-
fore, a view based approach is promising to support cross-
organizational workflow cooperation. However, they inves-
tigate more to the relation of public and private processes,
rather than to what a public process is.

Taken together, current approaches are helpful for an-
swering our question to some extent but cannot provide a
complete solution. To the best of our knowledge, our study
is the first effort to integrate these three aspects to analyze
external behavior of Web services for supporting mediated
service interactions.

8. Conclusion and future work

We have discussed that current approaches of check-
ing behavioral compatibility and process mediation are lim-
ited to support mediated service interactions, because they
mainly focus on control-flow but largely ignore data-flow.
We have proposed a scenario-view based approach to an-
alyze external behavior of Web services considering both
control-flow and data-flow. A scenario is a set of complete
execution paths for a public process. Data dependencies of
a public process or a scenario are presented as a data depen-
dency graph, which is optimized into a minimal data depen-
dency graph. A view, which is a sequence of checkpoints, is
generated to represent a scenario for analysis purposes. Ex-
ternal behavior of a Web service can be described as a finite
set of views for supporting mediated service interactions.

This study is our first step towards the support of medi-
ated service interactions, where we check compatibility of
Web services from a behavioral aspect. In this direction,
we are taking this work further to identify behavioral mis-
matches and to generate process mediators for solving these
behavioral mismatches among Web services, and thus to fa-
cilitate mediated service interactions.

Acknowledgments

The work presented in this paper was supported (in part)
by the EU funded TripCom Specific Targeted Research
Project under Grant No. FP6-027324, and (in part) by the
Lion project supported by Science Foundation Ireland un-
der Grant No. SFI/02/CE1/I131.

We thank Brahmananda Sapkota, Hak Lae Kim, Ke Ning
and Xia Wang for their valuable comments.

References

[1] S. Askary, B. Bloch, F. Curbera, Y. Goland, N. Kartha,
S. Commerce, C. K. Liu, S. Thatte, P. Yendluri, and A. Yiu.
Web services business process execution language version
2.0. Technical report, OASIS. Available at http://www.oasis-
open.org/apps/org/workgroup/wsbpel/, 2005.

[2] B. Benatallah, F. Casati, D. Grigori, H. R. M. Nezhad, and
F. Toumani. Developing adapters for web services integra-
tion. Proceedings of International Conference. of Advanced
Information System Engineering (CAiSE’05), 2005.

[3] B. Benatallah, F. Casati, and F. Toumani. Representing,
analysing and managing web service protocols. Data and
Knowledge Engineering, 58(3):327–357, 2006.

[4] I. Chebbi, S. Dustdar, and S. Tata. The view-based approach
to dynamic inter-organizational workflow cooperation. Data
and Knowledge Engineering, (2):139–173, 2006.

[5] E. Cimpian and A. Mocan. Wsmx process mediation based
on choreographies. Proceedings of the first International
Workshop on Web Service Choreography and Orchestration
for Business Process Management at the BPM 2005, 2005.

[6] J. de Bruijn, C. Bussler, and J. Domingue. D2v1.3.
web service modeling ontology (wsmo). In
WSMO Final Draft 21 October 2006. Available at
http://www.wsmo.org/TR/d2/v1.3/, 2006.

[7] D. Fensel and C. Bussler. The web service modeling frame-
work wsmf. Electronic Commerce Research and Applica-
tions, pages 113–137, 2002.

[8] U. Keller, H. Lausen, and M. Stollberg. On the semantics
of functional descriptions of web services. Proceedings of
the 3rd European Semantic Web Conference (ESWC’06).
Budva, Montenegro, 2006.

[9] K.-H. Kim. Control-path oriented workflow intelligence
analysis on enterprizeworkflow grids. Proceedings of the
1st International Conference on Semantics, Knowledge and
Grid (SKG’05), 2005.

[10] R. Liu and A. Kumar. An analysis and taxonomy of unstruc-
tured workflows. Proceedings of International Conference
on Business Process Management (BPM’05), 2005.

[11] A. Martens. Analyzing web service based business pro-
cesses. Proceedings of International Conference on Fun-
damental Approaches to Software Engineering (FASE’05),
Part of the 2005 European Joint Conferences on Theory and
Practice of Software (ETAPS’05), 2005.

[12] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDer-
mott, S. McIlraith, S. Narayanan, M. Paolucci, B. Parsia,
T. Payne, E. Sirin, N. Srinivasan, and K. Sycara. Owl-
s: Semantic markup for web services. Draft available
at http://www.ai.sri.com/daml/services/owl-s/1.2/overview/,
2006.

[13] S. Moser, A. Martens, K. Gorlach, W. Amme, and
A. Godlinski. Advanced verification of distributed ws-bpel
business processes incorporating cssa-based data flow anal-
ysis. Proceedings in IEEE International Conference on Ser-
vices Computing (SCC’07), 2007.

[14] M. Nagarajan, K. Verma, A. P. Sheth, J. Miller, and
J. Lathem. Semantic interoperability of web services - chal-
lenges and experiences. Proceedings of the 4th IEEE Inter-
national Conference on Web Services (ICWS’06), 2006.

[15] H. R. M. Nezhad, B. Benatallah, A. Martens, F. Curbera,
and F. Casati. Semi-automated adaptation of service inter-
actions. Proceedings of the 16th international conference
on International World Wide Web Conference (WWW’07),
2007.

[16] K. A. Schulz and M. E. Orlowska. Facilitating cross-
organisational workflows with a workflow view approach.
Data and Knowledge Engineering. Special issue: Contract-
driven coordination and collaboration in the internet con-
text, 51(1):109–147, 2004.

[17] W. M. P. van der Aalst. Inheritance of interorganizational
workflows to enable business-to-business e-commerce.
Electronic Commerce Research, 2(3):195–231, 2002.

[18] W. M. P. van der Aalst, A. A. de Medeiros, and A. Weijters.
Process equivalence: Comparing two process models based
on observed behavior. Proceedings of International Confer-
ence on Business Process Management (BPM’06), 2006.

[19] W. M. P. van der Aalst and K. B. Lassen. Translating
unstructured workflow processes to readable bpel: Theory
and implementation. Information and Software Technology,
50(3):131–159, 2008.

[20] W. M. P. van der Aalst and M. Weske. The p2p approach
to interorganizational workflows. Proceedings of The 13th
International Conference on Advanced Information Systems
Engineering (CAiSE’01), 2001.

[21] A. Wombacher. Decentralized establishment of consistent,
multi-lateral collaborations. PhD thesis, Facultiy of Infor-
matics, Technical University Darmstad, 2005.

[22] Q. Wu, C. Pul, A. Sahai, and R. Barga. Categorization and
optimization of synchronization dependencies in business
processes. Proceedings in IEEE 23rd International Confer-
ence on Data Engineering (ICDE 2007). Istanbul, Turkey.,
2007.

[23] J. Zdravkovic. Process Integration for the Extended Enter-
prise. PhD thesis, Royal Institute of Technology, 2006.

[24] X. Zhao and C. Liu. Tracking over collaborative business
processes. Proceedings of International Conference on Busi-
ness Process Management (BPM’06), 2006.

