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Abstract

Although Web services are intended for short term, ad
hoc collaborations, in practice many Web service compo-
sitions are offered longterm to customers. While the Web
services making up the composition may vary, the structure
of the composition is rather fixed. For companies managing
such Web service compositions, however, challenges arise
which go far beyond simple bilateral contract monitoring.
It is not only important to determine whether or not a com-
ponent (i.e., Web service) in a composition is performing
properly, but also to understand what the impact of its per-
formance is on the overall service composition. In this pa-
per we show which challenges emerge and we provide an
approach on determining the impact each Web service has
on the composition at runtime.

1. Introduction

Regarding the selection of Web services (WS) for a com-

position, both composition structure and individual char-

acteristics of the services are taken into account when de-

ciding on the most preferable configuration [15]. When

managing these compositions at runtime, the focus of ex-

isting approaches is on monitoring the quality of service

(QoS) provided by each single WS. Typically, composition

structure and dependencies between services are not taken

into account. However, due to growing complexity of WS

compositions, exactly this information is needed to assess

composition performance. This situation occurs in many

branches of industry besides in a Web service environment,

such as electronics companies, car manufacturers, and fur-

niture companies.

Composite service providers struggle to manage these

complex constellations. Different services are provided

with different quality levels. Services stem from differ-

ent providers, and have a different impact on the compo-

sition. Consider, for example, a service provider who al-
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lows financial institutes to check creditworthiness of poten-

tial customers. This service is composed of services query-

ing databases, and several payment services (e.g., PayPal

and credit card). The composition offered to financial insti-

tutes depends on all these services. To meet the Service

Level Agreement (SLA) with its customers the company

faces the challenge of managing its underlying services. For

each SLA violation the company determines its impact on

the composition, and it decides how to respond. Generally,

complexity of this decision process grows with the number

of services being involved in the composition.

The goal of MoDe4SLA [7] is to determine for each

service in the composition its impact on the composition

performance. The latter is measured by analyzing different

metrics (e.g. costs and response time) present in SLAs. Fur-

thermore, structural behavior can be enforced by the com-

pany or estimated by taking historical performance of ser-

vice providers into account. Through analysis of both de-
pendency structure and impact it becomes possible to mon-

itor composition performance taking dependencies between

services into account. The advantage of such an analysis is

possible identification of causes for bad performance.

Fig. 1 depicts the implementation of MoDe4SLA. At de-

sign time, we analyze relations between services and the

composition with respect to the agreed response time and

costs of the different providers (Step 1 in Fig. 1). The re-

sult of this dependency analysis constitutes the input for

a subsequent impact analysis (Step 2). During runtime,

event logs are analyzed using the event log model, filter-

ing events referring to services and their SLA statements

(Step 3). These results, together with impact analysis and

dependencies, constitute input for the monitoring interface

(Step 4). The latter enables time efficient composition man-

agement and maintenance (Step 5).

To support the informal approach presented in [7], this

paper introduces formalization of dependency analysis and

feedback models. The formalization is supported by a

proof-of-concept implementation. The latter provides a

means to analyze randomly generated Web service compo-

sitions at design time, and to monitor its dependencies and

impact during runtime. The innovation of this paper is a
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Figure 1. MoDe4SLA Approach

method that processes monitoring data to analyze impact

with regard to different (QoS) criteria (i.e., instance-based

monitoring) rather than monitoring each service invocation

independently.

In Section 2 we describe an informal summary of the

contribution after which we give an overview of our ap-

proach in Section 3. Sections 4, 5, and 6 describe the for-

malization process. In Section 7 we present our proof-of-

concept implementation. We conclude with related work

and a summary in Sections 8 and 9.

2. Impact Factors

To determine which service(s) cause SLA violations of

the composition, we determine the performance of each in-

dividual service and whether this influences the composi-

tion SLA, i.e., whether the service has an impact on the

composition. Each SLA consists of several Service Level

Objectives (SLOs). Common SLOs are agreements on re-

sponse time, availability, and costs. Intuitively, if a service

is invoked often and it has a high SLO value then it has a

high impact on the composition. In [7] we give an intuitive

description on how to combine the number of invocations

and realized SLO value by multiplication.

However, this intuitive notion of impact is not sufficient

to capture real-life complexity. Consider Fig. 2 representing

a service composition where each run invokes two services

in parallel: either S1 and S2, or S1 and S3. Intuitively, the

expected impact for S1 is 1 · 10 = 10 since it is invoked

every invocation (i.e., 1) and responds in 10 ms. S2 has an

impact of 0.5 · 20 = 10 and S3 of 0.5 · 30 = 15, assuming

both have 50% chance of being chosen per invocation.

However, in practice structure (i.e., expected number of

invocations) and performance (i.e., SLO value) do not suf-

fice to describe the realized impact. It can be expected that

most times, S1 finishes before the other service (faster re-

sponse time). Therefore, S1 does not contribute to overall

response time since this is done by the longer running ser-

vice. In fact, the setting in which the services run (e.g.,

running parallel with high response time services) should

be taken into account as well.

Figure 2. Service Composition Example

We calculate the impact factor (IF) of each service in the

composition as absolute value indicating the service impact
share of the composition for a specific SLO (e.g. response

time). By definition, the IFs of the different services add up

to 1.0, and are now determined by structure of the compo-
sition (e.g., parallel running services and estimated number

of invocations), performance of the particular service (e.g.,

expected response time), and performance of other services
in the composition.

3. Overall Approach

To automatically derive dependency relations from the

composition structure and the SLAs, we propose tree-based

formal transformations as depicted in Fig. 3. The compo-

sition structure is represented as the composition tree (cf.

Fig. 3 a). The structure could be derived, for example, from

a BPEL process model. Since composition performance is

dependent on the performance of the services, we analyze

per SLO the expected impact of each service. By combining

the structure and the agreed upon level of service, we cal-

culate for each considered SLO at design time the expected
impact tree (cf. Fig. 3 b). Since agreements are often vi-

olated, we monitor at runtime the realized impact on the

composition for each service. Necessary monitoring infor-

mation is abstracted from log files (cf. c). Together with the

composition this monitoring information is used to calcu-

late the realized impact tree (cf. d). The feedback model is

a performance indicator of the service composition since it

shows the difference between expected and realized values

(cf. e).

4. Design Time

At design time we analyze dependencies of the com-

position on its underlying services. We determine the ex-

pected impact of each service on the overall composition

for a specific SLO. A service composition is modelled as a
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Figure 3. Structural Approach

tree where the top vertex represents the service composition

(COMP) and the leafs represent Web services (WS). Con-

necting vertices and edges depict composition structure. Es-

timations on the number of invocations are captured by an-

notating vertices and edges with estimated or agreed upon

values. For example, two edges leaving an XOR vertex are

annotated with the probability an edge will be chosen. We

consider the most commonly used workflow patterns [1] as

constructs. Details on vertices are explained in the follow-

ing. Composition trees are defined as follows:

Definition 1 (Composition Tree) Let Vs be the set of
types for service vertices {WS, COMP} and let Vc

be the set of structural vertices: {AND, ANDDISC,

OR, XOR,ORDISC, LOOP, SEQ}. A composition tree is
a 6-tuple CT (Vc,Vs) = (V, E, ρ, μ, τ, σ), with

• V is a set of vertices,
• E : V → V is a set of directed edges,
• ρ : E → R the probability of selection compared to its

siblings,
• τ : V → Vc ∪ Vs specifies the vertex type,
• σ : {v ∈ V | τ(v) ∈ Vs} �→ R

n specifies the expected
SLO values for each SLO, where n indicates the num-
ber of SLOs, 1

• μ : {v ∈ V | τ(v) ∈ Vc} �→ (ε ∪ R)3 annotations of
structural vertices are 1) number of started services,
2) number of discriminative success, and 3) number of
iterations.

Based on the composition, expected runtime behavior

is calculated resulting in an expected impact tree. Such a

1We assume that all vertices are annotated with the same tuple of SLOs.

Composition Response Time Cost
AND max(total) sum(total)

AND DISC max(subset) sum(subset)

OR max(subset) sum(subset)

OR DISC max(subset) sum(subset)

XOR max(one) sum(one)

Loop sum(total∗) sum(total∗)

Sequence sum(total) sum(total)

Table 1. Vertex Matching between Trees

tree depicts for an SLO the expected impact of a service

per composition invocation. This supports identification of

services with high influence on composition behavior. The

type of considered SLO determines the transformation al-

gorithm. For example, revisit the example in Fig. 2. Each

invoked service has an impact on the composition costs.

However, only the slowest responding service influences the

composition response time. For each monitored SLO a tree

is created (e.g., one for response time and one for costs).

Table 1 shows the types of relations between services

per SLO (response time and cost) and construct. Although

there exist more SLOs to consider (e.g., availability), this

table suffices to demonstrate the principle of our approach.

A parallel AND split and AND join (cf. AND in Table 1)

succeeds after the slowest responding service finishes (i.e.,

max(total)), and its total cost is the sum of all invoked ser-

vices (i.e., sum(total)). For a parallel AND split with dis-

criminative join (AND DISC), a parallel OR split with a

discriminative join (OR DISC), and a parallel OR split with

normal join, the response time is determined by the slowest

invoked service (i.e., max(subset)) and the cost corresponds

to the sum (i.e., sum(subset)). For sequences (Sequence)

and for sequences executed more than once (Loop) both re-

sponse time and cost are summed up for all invoked services

(sum(total) and sum(total∗), where ∗ indicates the number

of iterations). For an XOR split and join the invoked service

contributes to response time and cost (i.e., max(one) and

sum(one)). expected impact trees are defined as follows:

Definition 2 (Expected Impact Tree) Let Vs be the set of
service vertices {WS, COMP} and let Vi be the set of de-
pendency vertices: {max(total), max(subset), max(one),

sum(total), sum(subset), sum(one), sum(total∗)}. An
expected impact tree is a 5-tuple EIT (Vi,Vs) =
(V, E, ρ, τ, σ), where

• V is a set of vertices,
• E : V → V is a set of directed edges,
• ρ : E → R the probability of contribution per compo-

sition invocation,
• τ : V → Vi ∪ Vs specifies the type of the vertex,
• σ : {v ∈ V | τ(v) = WS} �→ R × R Annota-

tions of Web service vertices are in the first dimension
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“estimated impact”, and in the second dimension “ex-
pected SLO value”,

• σ : {v ∈ V | τ(v) = COMP} �→ R annotation
of composed services specifies estimated SLO value
based on composition structure.

We only introduce algorithms for response time. Due

to lack of space, only parts of the algorithm are provided

formally (pseudo code), the remaining parts are described

verbally. The goal of the expected impact tree is threefold:

input : v ∈ V & Composition Tree

CT = {V, E, ρCT , μCT , τCT , σCT }
output : Expected average rt of the composition &

Expected Impact Tree EIT = {V, E, ρ, τ, σ}
switch τCT (v) do1

case COMP2
τ(v) = COMP ;3
eout = v → vy ∈ E;4
ρ(eout) = ρCT (eout);5
σ(v) =calc(vy);6
return σ(v);7

case AND8
τ(v) = max(total);9
rtmax = 0;10
vmax = v;11
ein = vy → v ∈ E;12
foreach eout = v → vy ∈ E do13

ρ(eout) = ρ(ein);14
rty = calc(vy);15
if RTy > RTmax then16

RTmax = RTy;17
Vmax = vy;18

foreach v → vy ∈ E\{v → Vmax} do19
reassign(vy, 0);

return rtmax;20

case WS21
τ(v) = WS;22
ein = vy → v ∈ E;23
impact(σ(v)) = ρ(ein) · rt(σCT (v));24
rt(σ(v)) = rt(σCT (v));25
return rt(σCT (v));26

Function 1 calc(v)

• Estimate the behavior of the overall composition based

on both the contracts (SLAs) with the different service

providers and the structure of the composition (i.e.,

calculate the σ-value).

• Estimate the impact (e.g., on response time) of each

subtree on the overall composition (i.e., calculate the

ρ-value for the edges).

• Estimate the impact (e.g., on response time) of each

Web service on the overall composition (i.e., calculate

the σ-value for the Web service).

All these estimations are based on contracts with the ser-

vice providers and on the structure of the composition. Both

expected QoS and structure determine estimated probabil-

ity that a service is invoked. As described, invocation of

a service does not necessarily mean it actually contributes
to, for example, the response time (e.g., in parallel running

branches only the longest running has an impact). There-

fore, Func. calc(v) determines the probability a service

gets invoked and it actually contributes to the overall com-

position.

input : v ∈ V and z = ρ of incoming edge v
ein = vy → v ∈ E;1
ρ(ein) = z;2
switch τCT (v) do3

case XOR4
foreach eout = v → vy ∈ E do5
reassign(vy, ρ(ein) · ρCT (eout));

case AND6
foreach v → vy ∈ E do reassign(vy, ρ(ein));7

Function 2 reassign(v, z)

Vertices V and edges E of the expected impact tree are

equal to vertices V and edges E of the composition tree.

The structure of both trees is equal, though annotation and

naming of vertices and edges differ. The function traverses

recursively through the composition tree, starting with the

composition (COMP ) vertex. Its calculations can be di-

vided in five steps.

Firstly, when traversing the tree the name of each vertex
(τ -value) is determined by its original type (cf. calc(v)

in line 3, 9, & 22). For example, a parallel split is named

max(total) in the expected impact tree for response time (cf.

Table 1). Secondly, the probability each edge gets invoked
(cf. calc(vy), ρ assignment line 5 & 14) is determined

by combining its local probability with the probability its

parent edge gets invoked. Now, each Web service “knows”

locally its probability to be invoked per composition invoca-

tion. Thirdly, each vertex determines its expected average
response time based on the expected response times of its

children (i.e., the expected response times of services in-

voked in that subtree). For example, in calc(v) lines 13-

15 an AND vertex determines its expected response time

based on the maximum response time of all its children.

Fourthly, each vertex determines which children branches

will have an impact if they are chosen (i.e., expected con-
tribution). For example, if an AND vertex has one fast

responding child compared to the other children then this

child will most likely not contribute to the composition re-
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sponse time since it finishes before the rest (cf. calc(v),

lines 16-18). Now, each vertex has global knowledge on

expected behavior of its children. Fifthly, this global in-

formation is propagated through the tree, annotating each

branch with the probability it contributes to the composi-

tion per invocation (cf. Func. reassign(vy, n) invoked

by calc(v) in line 19).

The calculation code is not shown for OR split with dis-

criminative join because the code is longer and the general

principal has been shown for the AND case (line 8). Infor-

mally, for each subset s of branches from the OR split we

calculate likelihood l of invocation and its response time.

Since it is a discriminative join, the expected response time

depends on the fastest responding subset s′. For example, if

four out of five branches are started, and three need to finish

for the discriminative join to succeed, the theoretical min-

imum response time can only be the response time of the

third-quickest service. Comparable calculations are done

for the remaining vertex types.

5. Runtime

At runtime we gather monitoring data from log files in

a log file model. To determine composition performance,

we analyze each composition invocation the impact of each

service on, for example, response time. Results are repre-

sented in the realized impact tree where average impact of

each service on the composition is depicted.

Log file model M is an abstraction of log files containing

data on composition invocations. Each invocation is repre-

sented as a list of invoked Web services for that composition

instance. Each element in the list is a 4-tuple containing a

time stamp (ts), the name of the invoked Web service (ws),

its costs (costs), and its response time (rt). It needs to be

determined which tuples (i.e., service invocations) in the log

file model belong to a specific service composition invoca-

tion. We accomplish this correlation by analyzing different

time stamps on the service invocations in combination with

the service composition structure. A detailed description

of this correlation of events is out the scope of this paper

(see [6]). The realized impact tree is defined as follows:

Definition 3 (Realized Impact Tree) Let Vs be the set of
service vertices {WS, COMP} and let Vi be the set of
dependency vertices {max(total), max(subset), max(one),

sum(total), sum(subset), sum(one), sum(total∗)}. A re-
alized impact tree is a 5-tuple RIT = (Vi,Vs) =
(V, E, ρ, τ, σ), where

• V is a set of vertices,
• E : V → V is a set of directed edges,
• ρ : E → R the average contribution per composition

invocation,
• τ : V → Vi ∪ Vs specifies the vertex type,

• σ : {v ∈ V | τ(v) = WS} �→ R × R annotations
of Web service vertices are in the first dimension: total
contributed SLO value, and in the second dimension:
total number of contributions,

• σ : {v ∈ V | τ(v) = COMP} �→ R × R annotations
of the composition node is in the first dimension: total
realized SLO value, and in the second dimension: total
number of invocations.

The goal of the realized impact tree is threefold:

• Determine realized behavior of the service composi-

tion over a specific period of time (i.e., calculate σ),

• Determine realized impact each subtree has on the

overall composition (i.e., ρ-value of the edges), and

• Determine realized impact of each Web service on the

composition (i.e., σ of the Web service vertices).

Vertices V and edges E of the realized impact tree are

equal to the vertices and edges in the composition. Alg. 3

shows implementation for response time. The code is only

shown for a subset of vertex types due to lack of space. As

argued before, not every Web service invocation eventually

contributes to the SLO value of the composition. There-

fore, Alg. 3 analyzes all entries in the log file model (line

3, Alg. 3) and determines, based on composition structure

and other services performance, which entries (i.e., which

Web service invocations) impact the composition. For this,

recursive Func. addWS(v) is invoked in line 5 of Alg. 3.

For example, the XOR split determines which children (cf.

line 20 of Func. addWS(v)) contribute to the overall re-

sponse time (cf. line 22-26) and returns all contributing

Web service invocations in the subtree (cf. confirm, line

27). These entries are added to the confirmed list (line 6,

Alg. 3). Secondly, all confirmed entries are used to update
total response time and total number of invocations (i.e., σ-

values) of the services (lines 7-10, Alg. 3).

As a last step, Alg. 3 determines contribution per com-

position invocation (i.e., ρ-value) for each edge by invok-

ing recursive Func. calcImpact(vcomp) in line 11. This

function determines the number of contributions per com-

position invocation for each edge (i.e., its ρ-value). Web

service leafs calculate ρ-value of the incoming edge (cf.

line 16-19 of Func. calcImpact) by comparing num-

ber of leaf node invocations with total number of compo-

sition invocations. For example, if the composition is in-

voked 6 times and the leaf node contributes 3 times then

it contributes on average 0.5 times to each composition in-

vocation. Each structural node combines information of its

outgoing edges and determines the ρ-value of the incoming

edge. For example, in an AND split the overall contribution

of the subtree is the summation of ρ-values of its outgoing

edges (cf. lines 11-14).
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input : Log File Model L and Composition Tree

CT = (V, E, ρCT , μCT , τCT , σCT )
output : Realized Impact Tree EIT = (V, E, ρ, τ, σ)
confirmed = ∅;1
vcomp = {v | τCT (v) = COMP};2
foreach l ∈ L do3

initially = l;4
(cf, rt, ts) = addWS(vcomp);5
confirmed = confirmed ∪ cf ;6

foreach tuple ∈ confirmed do7
v = ws(tuple);8
rt(σ(v)) = rt(σ(v)) + rt(tuple);9
contribution(σ(v)) + +;10

ρ = calcImpact(vcomp);11

Algorithm 3: realized impact

6. Feedback Model

The feedback model depicts deviations from agreed

upon SLA values by comparing estimated and realized im-

pact trees. Colors on edges and vertices are used to visualize

these deviations. Currently, red, green, yellow, darkgreen,

and colorless are used (i.e., θ-values) but these can be ex-

tended or changed in any preferred way. Intuitively, red and

yellow represent negative deviations while green and dark-

green represent positive deviations.

Definition 4 (Feedback Model) Let C be the set of colors
{red, green, yellow, darkgreen, no color}. A feedback model
is a 6-tuple FM(Vi,Vs, (C)) = (V, E, ρ, τ, σ, θ), where

• V is a set of vertices,
• E : V → V is a set of directed edges,
• ρ : E → R realized average contribution per composition

invocation,
• τ : V → Vi ∪ Vs specifies vertex type,
• σ : {v ∈ V | τ(v) = WS} �→ R specifies realized impact,
• θ : E → C specifies the deviation between realized and

estimated contribution,
• θ : {v ∈ V | τ(v) = WS} �→ C specifies the deviation

between average contributed value and agreed upon SLO
value,

• θ : {v ∈ V | τ(v) = COMP} �→ C specifies the deviation
between realized average value and agreed upon SLO value.

The goal of the feedback model is to support manage-

ment in identifying causes for badly performing composi-

tions. We accomplish this by giving feedback on:

1. Deviation between expected and realized behavior of

the composition regarding an SLO (i.e., its θ-value),

2. Deviation between expected and realized contribution

of each subtree to the composition,

3. Deviation between expected and realized contribution

of each Web service in the composition, and

input : v ∈ V
output : (confirm, rt, ts): the set of contributing tuples

confirm, with its overall rt, and the ts of the first

started tuple ∈ confirm
confirm = ∅;1
rt = 0;2
ts = Max;3
switch τCT (v) do4

case COMP5
v → vchild ∈ E;6
(confirm′, rt′, ts′) = addWS(vchild);7
rt(σ(v)) = rt(σ(v)) + rt′;8
invoc(σ(v)) + +;9
return (confirm′, rt′, ts′);10

case AND11
foreach v → vchild ∈ E do12

(confirm′, rt′, ts′) = addWS(vy);13
if rt′ > rt then14

rt = rt′;15
confirm = confirm′;16
ts = ts′;17

return (confirm, rt, ts);18

case XOR19
foreach v → vchild ∈ E do20

(confirm′, rt′, ts′) = addWS(vy);21
if confirm′ �= ∅ ∧ ts′ < ts then22

if confirm �= ∅ then23
initially = initially ∪ confirm;

rt = rt′;24
confirm = confirm′;25
ts = ts′;26

return (confirm, rt, ts);27

case WS28
foreach tuple ∈ initially, ws(tuple) = v do29

if ts(tuple) < ts then30
rt = rt(tuple);31
confirm = tuple;32
ts = ts(tuple);33

if confirm �= ∅ then34
initially = initially\confirm;35
return (confirm, rt, ts);36

else37
return (∅, 0, 0);38

Function 4 addWS(v)
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input : v ∈ V
vcomp = vx ∈ V, τCT (vx) = COMP ;1
ein = vy → v ∈ E;2
switch τCT (v) do3

case COMP4
τ(v) = COMP ;5
ρ =calcImpact(vchild);6
return ρ;7

case AND8
τ(v) = XOR;9
contribution = 0;10
foreach v → vchild ∈ E do11

ρchild = calcImpact(vchild);12
contribution = contribution + ρchild;13

ρ(ein) = contribution;14
return ρ(ein);15

case WS16
τ(v) = WS;17

ρ(ein) = contribution(σ(v))
invoc(σ(vcomp))

;18

return ρ(ein);19

Function 5 calcImpact(v)

4. Realized contribution per invocation of Web services

(i.e., σ-value) and subtrees (i.e., ρ-value).

Vertices V and edges E of feedback model are equal to

vertices V and edges E of estimated and realized impact

tree. Alg. 6 calculates the feedback model by computing

for each Web service vertex what its composition impact is,

e.g. line 5, Alg. 6. This depends on number of contributions

per composition invocation (i.e., ρ-value) and average SLO

when invoked (i.e., σ-value). Assume Web service S1 has

an average response of 10 ms, against 20 ms of the compo-

sition. If S1 contributes in fifty percent of the composition

invocations (i.e., ρ = 0.50) then the impact factor of S1 is
10
20 · 0.50 = 0.25. On average S1 determines 25% of the

composition response time.

Furthermore, the color of each Web service and compo-

sition is determined by invoking color(real, est) in line 6

and 7 of Alg. 6. This function determines deviation be-

tween realized and estimated values as depicted in Func. 7.

Each edge is annotated with the realized contribution per

composition invocation in line 9 and color θ is determined

by deviation between expected and realized contribution in

line 10.

7. Implementation

7.1. Generation and Execution

The generation of test compositions is performed with

an extended version of the SENECA simulation environ-

input : EIT (V, E, ρE , τE , σE) and

RIT (V, E, ρR, τR, σR)
output : FM(V, E, ρ, τ, σ, θ)
vcomp = v ∈ V, τE(v) = COMP ;1
foreach v ∈ V do2

τ(v) = τR(v);3
if τ(v) = WS then4

σ(v) = rt(σR(v))
rt(σR(vcomp))

· ρR(ein);5

θ(v) = color(σ(v), impact(σE(v)));6

if τ(v) = COMP then θ(v) =7

color( rt(σR(v))
invoc(σR(v))

, impact(σE(v)));

foreach e ∈ E do8
ρ(e) = ρR(e);9
θ(e) = color(ρ(e), ρE(e));10

Algorithm 6: feedback model

input : real: realized value, est: estimated value

output : color: the color of the edge or vertex

deviation = real−est
est

· 100;1
if deviation ≥ 10 then return red;2
if 10 > deviation ≥ 5 then return yellow;3
if 5 > deviation ≥ −5 then return green;4
if deviation < −5 then return darkgreen;5

Function 7 color(real, est)

ment [10]. This simulation environment implements a)

a structural model of service compositions and b) a QoS

model for the handling of QoS attributes of the services in

the composition. The generation of compositions is per-

formed randomly with particular input parameters. The pa-

rameters are the number of services in total and the range of

the planned QoS delivered. Then the software generates -

by using the standard random number generator of the Java

platform - the following two main parts.

Firstly, the structure of the composition. At a given point,

the generation software decides between placing a service

or a composition structure containing services, both with

equal probability. By this scheme, compositions can re-

sult in a flat sequence of services or contain nested struc-

tures forming a more sophisticated execution plan. There

are seven basic executions patterns [10] chosen from the

workflow patterns by Aalst et al. [1].

Secondly, the actual QoS delivered by the service. At the

beginning, this function was used to perform the optimisa-

tion simulations for optimising the QoS of service compo-

sitions [10]. The generation software has set particular QoS

attributes for different candidates in order to select the op-

timal set of services for the composition according to their

QoS. For MoDe4SLA, it is assumed that the selection has

taken place and accordingly only one (chosen) service with

a particular QoS is required. But in addition, the genera-
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tor will randomly generate a probability that is taken at run

time to decide whether a service should fail or not. By these

two elements, the generator builds up a data structure in ap-

plication memory that allows the environment to simulate

the execution of a service composition.

The simulation performs on the generated test service

composition with its QoS attributes as described in the sec-

tion above. The discrete event simulation simulates the pass

of a second (this is the unit of the simulated response time

SLO), and tracks the progress among the services of the

composition. If a service is finished, then the next service is

triggered according to the execution plan. Each service im-

plements the simulation to either start or finish the work as

planned. In addition, a random function allows to cancel the

execution or miss the planned QoS by running for a longer

time. The probability that a particular service fails or runs

longer is set at generation time. By this scheme, randomly

failing services are simulated. The simulation software gen-

erates a log output that tracks a failure of the service. This

log is used to perform the impact analysis.

7.2. Feedback Models

Service developers receive information on the compo-

sition performance through the graphical feedback model

as generated by the simulator (cf. Fig. 4). The informa-

tion can be used to evolute the composition by tuning the

structure or renegotiate SLAs of the services. A red col-

ored service indicates worse performance than agreed upon

in the SLA, while green indicates proper performance of

the service. Yellow indicates the service is not performing

perfectly but still within the boundaries set by the company,

and dark green indicates a service running even better than

the company anticipated. Uncolored services indicate that

these never contributed to the overall response time in the

considered log file. Therefore, their impact is zero. The

edges are colored in the same manner, for example, red indi-

cates the edge contributes more often than expected. Fig. 4

indicates that the SLO for response time of the composi-

tion is not met (i.e., it is colored red). Bad performance

in this case is caused by two factors. Firstly, Performance
of the services: together, services 1, 3, and 9 have an im-

pact factor (IF) of over 80% and each service responds on

average slower than agreed upon (i.e., yellow or red). Sec-

ondly, Structure of the composition: badly performing ser-

vices 3 and 9 are contributing more often than expected (i.e.,

red incoming edges). The impact and contribution factors

in combination with the coloring eases the identification of

bad performing services with a high impact so that manage-

ment of compositions with many services becomes more

straightforward.

In this case, we can derive that either badly performing

services should be replaced or renegotiated (e.g., service 1,

3, and 9), the SLA agreement with the customer has to be

tuned down (i.e., offer less performance), or the structure of

the composition has to be adapted so that it suits real-life

behavior. Furthermore, we can conclude that services 5, 7,

8, and 10 have no impact on the composition and therefore

do not need to be considered for a causal analysis of bad

performance, saving valuable analysis time.

Figure 4. Feedback Model

8. Related Work

The work of Casati et al. [13] aims at automated SLA

monitoring by specifying SLAs and not only considering

provider side guarantees but focus also on distributed mon-

itoring, taking the client side into account. Pistore et al. [3]

enable run-time monitoring while separating business logic

from monitoring functionality. For each instance a monitor

is created. Contribution of this approach is the ability to also

monitor classes of instances, enabling aggregation of im-

pact of several working instances. Smart monitoring [4] im-

plements the monitor functionality itself as service. Three

types of monitors handle different aspects of the system.

Their approach is developed to monitor contracts with con-

straints. Further work of Baresi et al. [5] presents an ap-

proach to dynamically monitor BPEL processes by adding

monitoring rules to them. In contrast, our approach does

not require modifications to the process descriptions and

thus requires less effort to apply to some application areas.

An interesting approach in this direction is work by [11]

which, as an exception, does consider the whole state of the

system. They aim at monitoring behavioral system deriva-

tions. Monitoring requirements are specified in event cal-

culus and evaluated with run-time data. Although many of

above mentioned approaches consider services provided by

third parties and allow abstraction of results for composite

services, none of them addresses how to create this abstrac-
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tion in detail. E.g., matching messages from different pro-

cesses where databases are used are not considered.

Menasce [12] presents response time analysis of com-

posed services to identify impact of slowed down services.

The impact on the composition is computed using a Markov

chain model. The result is a measure for the overall slow

down depending on statistical likelihood of a service not

delivering expected response time. As opposed to our ap-

proach, Menasce performs at design-time rather than pro-

viding an analysis based on analyzing runtime data. In ad-

dition, our work provides a framework to cover structures

beyond a fork-join arrangement.

A different approach with the same goal is virtual re-

source manager proposed by Burchard et al. [8]. This ap-

proach targets a grid environment where a calculation task is

distributed among different grid nodes for individual com-

putation jobs. If a grid node fails to deliver the promised

service level, a domain controller first reschedules the job

onto a different node within the same domain. If this action

fails, the domain controller attempts to query other domain

controllers for passing over the computation job. Although

the approach covers runtime, it follows a hierarchical auto-

nomic recovery mechanism. MoDe4SLA focusses on iden-

tifying causes for correction on the level of business opera-

tions rather than on autonomous job scheduling. Further,

in critical path analysis (CPA) for resource management

the preferred order of tasks is determined by analyzing the

graph containing all possible paths [14]. However, in CPA

each path shows one possible execution while in our analy-

sis the complete graph depicts one execution. Furthermore,

in MoDe4SLA we compare estimated with realized behav-

ior which is not done in CPA.

Another research community analyzes root causes in ser-

vices. Dependency models are used to identify causes of

violations within a company. For example, [2] determine

the root cause by using an approach based on dependency

graphs. Especially finding the cause of a problem when a

service has an SLA with different metrics is a challenging

topic. Also [9] uses dependency models for managing in-

ternet services, again, with focuss on finding internal causes

for problems. MoDe4SLA identifies causes of violations in

other services rather than internally. Furthermore, our de-

pendencies between different services are on the same level

of abstraction while in root cause analysis one service is

evaluated on different levels of abstraction.

9. Summary and Outlook

In this paper we describe a formal approach to support

management of composite services by analyzing impact

factors on service compositions. In continuation of previ-

ous work we have now shown the details and feasibility

of our approach. The algorithms in pseudo code serve as

a blueprint for our proof-of-concept implementation which

supports simulation of service composition runs and the

analysis of runtime results. In near future we plan to ex-

tend our approach by providing interpretation guidelines for

the feedback models to enhance decision making on service

composition management. We will use the impact factors

to provide reconfiguration suggestions.
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