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Abstract

Dynamic service composition is suitable for on-demand
business requests. For autonomic computing, service com-
position needs to deal with runtime environment faults, but
also with business constraint violations which result from
business requirements. We propose an approach for inte-
grated handling of business constraint violations and run-
time environment faults for dynamic service composition.
We introduce a loosely coupled implementation architecture
to maintain the platform-independent nature.

1 Introduction

Service Oriented Architecture (SOA) is an important
solution for Enterprise Application Integration. Business
components are exposed as platform-independent Web ser-
vices, which are then orchestrated using the Business Pro-
cess Execution Language (WS-BPEL or BPEL for short).
Dynamic service composition is a promising direction for
on-demand business requests [7, 2].

Faults can be caused by various reasons during the exe-
cution of a software system. However, there is no standard
approach that addresses fault tolerance for the Web services
environment [6, 9]. BPEL offers a fault handling mecha-
nism which can catch runtime faults. As a description and
execution language, BPEL does not provide any remedial
strategies for faults unless predefined by developers at de-
sign time. Some efforts have been made regarding reliable
service composition [9, 13, 10, 6, 15, 5]. However, firstly,
most do not address the problem of dynamic service com-
position. Concrete fault information can not be expected
at design time, i.e., remedial strategies are required to be
dynamically selected based on runtime fault analysis. Sec-
ondly, current work does not take into account that, in busi-
ness environments, business process developers frequently
add and change business rules on top process data flows to
address the requirements of successful semantic exchanges
[8, 14, 2]. Therefore, business constraint violations han-
dling is a must besides runtime environment fault handling.

BPEL is a de-facto standard for service composition.
Considering the platform-independent nature of SOA [9],
we need an engine-indepdent integrated handling of busi-
ness constraint violations and runtime environment faults.

We introduce an approach for the integrated handling
of business constraint violations and runtime environment
faults for dynamic service composition with BPEL with:

1. an intelligent mechanism for dynamic remedial strat-
egy selection. A fault taxonomy mapped to remedial
strategies is basis of the remedial analysis. The com-
prehensive taxonomy captures both business constraint
violations and technical runtime environment faults.

2. an instrumentation template for violation and fault
handling allows dynamically selected remedial strate-
gies to be applied within process execution. A BPEL
solution of this instrumentation offers fault handling
implementation loosely coupled to a BPEL engine.

Our prototype evaluation shows the instrumented BPEL
processes have no additional overhead compared to the
original business processes on default execution.

This paper is structured as follows. Section 2 introduces
fault monitoring with BPEL fault handlers. Section 3 illus-
trates our remedial knowledge base, which has been devel-
oped to focus on autonomic Web service composition. In
Section 4, we introduce our architecture and core compo-
nents. Section 5 details the process instrumentation with the
violations and faults handling template. After an evaluation,
we discuss related work and present some conclusions.

2 Constraint violation and fault monitoring

Fault monitoring is responsible for the fault detection
and fault data collection to provide input for a subsequent
fault analysis. For services, a fault is an abnormal condition
which may lead to a service process failure [4].

BPEL provides the capability to catch and manage faults
using fault handlers (<catch> and<catchAll>). Fault han-
dlers can be attached to the entire process or a smaller exe-
cution scope (<scope>). If the process or scope completes
normally, fault handlers are ignored, but if a fault situation
occurs, the fault is propagated to the fault handler. The fault



handler takes over the process execution by executing addi-
tional activities inside the fault handler.

Using BPEL’s fault handlers for monitoring can avoid
overheads on additional monitoring processes and BPEL
engine-dependent monitoring components. We weave con-
text model-based constraint services (as pre- and post-
condition) into BPEL processes for each business services
[2]. The context model captures both business and tech-
nical level information for semantic service composition.
Constraint services validate context information for each
service-invoking instance. Constraint violations as faults
are thrown by the constraint services. This way, we simply
transform business constraint violations into service faults,
which can be monitored by default BPEL fault handlers.

3 Fault analysis

The fault analysis takes fault data as input and deter-
mines a suitable remedial strategy for the fault instance.
The basis of the fault analysis is predefined fault remedial
knowledge. It defines various remedial strategies for differ-
ent fault scenarios. There are three steps for defining the
fault remedial knowledge: defining a fault taxonomy, defin-
ing remedial strategies, and matching each fault category
with remedial strategies.

3.1 A taxonomy of fault categories

In order to suggest and apply a suitable remedial strat-
egy, a key factor are the types of fault to look for. Thus,
we categorize possible faults that can occur for dynamically
composed services [4, 1, 15]. In order to deal with busi-
ness constraint violations, a fault taxonomy needs to cap-
ture both business and technical faults. Our fault taxonomy
is derived from a context model used for our constraint val-
idation services [2]. Root fault categories are: Functional,
Quality of Service, Domain, and Platform Context.

Functional context fault: describes the violation of op-
erational features of Web services. It is grouped into Syn-
tax, Effect and Protocol faults.

1. Syntax fault: includes violation of input/output pa-
rameters that define the operations’ messages and the
data types for the parameters for invoking the service.

2. Effect fault: includes faults in terms of pre-conditions
and post-conditions, i.e. functional failure during an
operation execution.

3. Protocol fault: refers to faults related to the consistent
exchange of message between services involved in a
service composition to achieve their goals.

Quality of Service context fault (QoS): violation of
end-to-end quality in service compositions, includes single
and compound services. It is grouped into four categories.

1. QoS runtime fault: violation of properties related to
the execution of a service. This includes Performance,
Reliability and Availability violations.

2. Financial/business fault: violation relates to the fi-
nancial context which allows the assessment of a ser-
vice from a financial or business perspective. This in-
cludes Cost, Reputation and Regulatory violations.

3. Security fault: violation of security require-
ments. This includes Integrity, Authentication, Non-
repudiation and Confidentiality violations.

4. Trust fault: violation refers to failed establishment of
trust relationships between client and providers.

Domain context fault: refers to application domains
that need specific requirements to be met for services.

1. Semantic fault: violations related to the semantic
framework (i.e. concepts and their properties) in terms
of vocabularies, taxonomies or ontologies.

2. Linguistic fault: violation related to the language
used to express queries, functionality and responses.

3. Measures and standard fault:violation relates to lo-
cally used standards for measurements, currencies, etc.

Platform Context fault: violation relates to the techni-
cal environment a service is executed in (includes classical
technical platform faults).

1. Device fault: refers violation with the computer/hard-
ware platform on which the service is provided.

2. Connectivity fault: refers violation with the network
infrastructure used by the service to communicate.

3.2 Defining remedial strategies

Potential remedial strategies - such as retry or replace
- have been introduced in [15, 9, 6, 1, 13]. In dynamic
service composition, remedies are selected and applied dy-
namically. These strategies need address process impact, re-
source consuming, and additional component requirements
to support remedial knowledge definition. Naturally, some
strategies are context-dependent. Therefore, we only dis-
cuss a framework here.

We categorise remedial strategies into goal-preserving
and non-goal preserving strategies. Goal preserving strate-
gies aim to recovery from faults immediately; the business
goal would be completed with a continued process execu-
tion after fault recovery. In contrast, non-goal preserving
strategies do not attempy recovery. They provide additional
actions to assist possible future recovery.

3.2.1 Goal-preserving strategies

In BPEL, an invoke activity calls a business activity per-
formed by a Web service. This can be monitored with a
fault handler using the scope attachment. We can identify
four goal-preserving strategies for fault handling as follows:
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Ignore: does not take any action on a fault. It ignores
specified faults that do not affect the overall business goal.

Retry: retries the fault causing service. Maximum retry
times and interval before each retry can be defined.

Replace: replaces faulty service by alternative service
with same capabilities.

Recompose:discards the faulty process and establishes
an alternative process with the same goal.

Ignore and Retry are lower-level recoveries, which keep
the original process workflow. Applying them requires less
time resources. In higher-level recovery (Replace, Recom-
pose), an additional component is needed for discovering
alternatives, requiring more resources. In general, lower-
level goal-preserving strategies should be applied first, as
they have less impact. The following example allows one
Retry opportunity before applying Ignore:

<preCond i t i onV io la t i onRemedy>
<sequence>

<r e t r y><max>1</max><wai t ingTime>P0Y0M0DT0H0M1. 0 S</wa i t ingTime></r e t r y>
<i gno re><va lue>t r u e</va lue><log>l e v e l 1 </log></i gno re>

</sequence>
</p reCond i t i onV io la t i onRemedy>

There are two ways to provide alternative replacements.
Firstly, alternative services are pre-assigned to remedial
strategies. The Replace strategy can be applied instantly.
Secondly, alternative services are dynamically discovered
based on functional and non-functional properties. Recom-
pose is different, as in dynamic composition, we presume
service processes are only discovered at runtime. However,
depending on the business goal and size of service registry,
Recompose can be time consuming. Hence, we have devel-
oped a selective process repository to minimize time [12].
The process repository saves composed services and pro-
cesses with a categorized fault ratio. Alternative processes
can be retrieved and selected from the process repository.

Replace is a passive replication technique; the backup
service is only called after a primary service fault. A paral-
lel strategy in introduced in [6]. Several alternative services
are invoked in parallel for one invocation. The first response
received is chosen for ongoing process execution. A disad-
vantage is that all alternative services need to be discovered
dynamically at composition time. It also causes large over-
heads on computation and network resources to execute al-
ternative services. Moreover, it could cause business goal
violations on state update, e.g. a bill is paid twice. The ad-
vantage is that only the best performing service is picked,
and does not need to be replaced. We obtain a similar result
and avoid its disadvantages by selecting alternative services
for replacement. With multiple alternative services, the ser-
vices’ fault ratio and, if performance is the issue, response
times in the process repository is used for alternative ser-
vices sequencing. The service response time is calculated
from the time window between end of pre-condition and
start of post-condition constraint services.

Replace and Recompose might call for compensation or

rollback. Compensation would be a pre-condition of these
remedial strategies in many cases. Deploying an alterna-
tive process, the system needs to clear up partially executed
faulty processes (rollback), i.e. the process execution needs
transactional behaviour. This is difficult as no common pro-
tocol exists for Web services [11, 3, 5]. BPEL compen-
sationHandler enable to define an activity at the scope or
process level whose execution reverses previously executed
application logic. However, there is no automatic restora-
tion of data during compensation. The application might de-
fine its own compensation behaviour. We assume for state-
updating services that there is at least one service that can
rollback its effect and does not depend on any state for exe-
cution. For Replace, compensation may also be required for
post-condition faults before an alternative service is retried.

3.2.2 Non-goal preserving strategies

Non-goal preserving strategies do not impact on process ex-
ecution and can be combined with other strategies includes
goal-preserving strategies. We define three non-goal pre-
serving strategies.Log records the captured fault. It could
be applied at different levels, e.g. Level-1 logs fault source
and fault message. Level-2 logs data transmission of fault
sources as well. This data is saved in a fault log database.
Alert ensures that relevant stakeholders will be notified.
Suspendsuspends the faulty service or process until fu-
ture investigation, if the fault element exceeds an accept-
able fault ratio. A composition component would normally
avoid suspended processes. The purpose is to isolate the
fault elements to avoid possible repeat faults.

3.3 Fault categories & remedial strategies

Matching fault categories with remedial strategies needs
to consider different levels of data. From low to high, there
are default remedial data, services and process-specific re-
medial data and application-specific remedial data.

Default remedial data comes from an analysis of fault
categories. It is the proposed solution for all fault cate-
gories (Table 1). Retry is suitable for most remote faults
where post-condition constraints are violated. For instance,
a missingOutput faults might result from a temporary un-
available service. Retry is not suitable for pre-condition
constraint violations. Replace and Recompose are suitable
for all fault categories. Recompose would be last option as
it is the most time and resource consuming. The following
is a pre-condition remedial strategy for securityFaults:

<s e c u r i t y F a u l t>
<preCond i t i onV io la t i onRemedy> <sequence>

<i gno re><va lue>f a l s e</va lue><i gno re>
<r e t r y><max>0</max><wai t ingTime>P0Y0M0DT0H0M0. 0 S</wa i t ingTime></r e t r y>
<r e p l a c e><va lue>any</va lue></r e p l a c e>
<recompose><va lue>t rue </va lue><log>l e v e l 1 </log></recompose>

</sequence> </p reCond i t i onV io la t i onRemedy>
<pos tCond i t i onV io la t i onRemedy>...</ pos tCond i t i onV io la t i onRemedy>

</ s e c u r i t y F a u l t>
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Pre-cond constraint violation Post-cond constraint violation
Ignore All fault categories All fault categories
Retry Not suitable Functional context fault;

Platform context fault
Replace All fault categories All fault categories
Recompose All fault categories All fault categories

Table 1. Default remedial data

Service-specific remedial datais defined according to
service descriptions for specific services only. Services with
side-effects need compensation. Services can have fault and
compensation handlers as child elements.

<s e r v i c e>
<s e r v i c e R e f e r e n c e>

<endpo in tU r l>h t t p : / / l o c a l h o s t : 8 0 8 0 / . . . / Bankpaymen tServ i ce </e n d p o i n t U r l>
<o p e r a t i o n>Bankpayment</o p e r a t i o n>

</s e r v i c e R e f e r e n c e>
<f a u l t s>

<s e c u r i t y F a u l t>...</ s e c u r i t y F a u l t>
. . .

</ f a u l t s>
<compensat ion>

<s e r v i c e R e f e r e n c e>
<endpo in tU r l>h t t p : / / l o c a l h o s t : 8 0 8 0 / . . . / B a n k r e f u n d S e r v i c e </e n d p o i n t U r l>
<o p e r a t i o n>Bankrefund</o p e r a t i o n>

</s e r v i c e R e f e r e n c e>
</compensat ion>

</s e r v i c e>

Process-specific remedial datais defined according to
business goals and application domains. It needs to comply
with application requirements and organisational policies.
In processes involving financially sensitive data, security-
level mismatch faults are not acceptable; some processes
would mark minor security faults as ignorable. Organisa-
tions might define their own trusted alternative service as a
Replace remedy. Processes could have high-level faults and
services as child elements.

<p rocess>
<p r o c e s s R e f e r e n c e>

<onDemandRequest>Gas−Bi l lPayment</onDemandRequest>

</p r o c e s s R e f e r e n c e>
<s e r v i c e s>

<s e r v i c e>
<s e r v i c e R e f e r e n c e>...</ s e r v i c e R e f e r e n c e>
<f a u l t s >...</ f a u l t s>

</s e r v i c e>
. . .

</s e r v i c e s>
<f a u l t s >...</ f a u l t s>

</p rocess>

For a fault instance, the system searches for remedial
strategies from high to low level. Higher levels are cus-
tomizations of lower level data. For example, remedial
strategies of securityFault for a business service is appeared
in both service- and process-specific level, only the reme-
dies of process-specific level is valided.

4 Architecture and core components

We divide our fault tolerant architecture into three lay-
ers (Fig. 1): process execution layer, composition and
fault-tolerance layer and database layer. A BPEL engine
is responsible for the process execution layer. The three
databases of the database layer have been discussed in the
pervious section. The four components in the composition
and fault-tolerance layer are core of the archicture. They

interact with the instrumented BPEL process, thus our ap-
proach is completely BPEL engine independent. We discuss
the core components here.

AnalysisProcess

instrumentation

composition domain,

business goal

fault data 
collection

remedial
strategy

execution

Web services

Remedial

knowledge

Process

repository

Composition

Fault log

Service

wrapper

BPEL
engine

recompose invoking

BPEL process

Database

Composition and

fault tolerant

Process execution

Figure 1. Three layered system architecture

Thecomposition componentcomposes services to ser-
vice processes based on business goals. This requires a ser-
vices ontology to provide the composition domain. Service
processes are saved in an indexed process repository for
possible future reuse, such as the Recompose remedy. The
process repository also supplies a suspended-list of services
and processes for composition to filter invalid processes.
To enable recomposition, the composition component is ex-
posed as a Web servicerecompose() with a processRefer-
ence as input.ProcessReference contains the process name
as business goal and the process index which differentiates
multiple processes for the same business goal.

The process instrumentation component converts
business processes to BPEL processes, which includes the
generation of deployment descriptors. An important step of
the conversion is instrumenting the fault monitor and han-
dling mechanism within the BPEL process.

The analysis componentutilizes the remedial knowl-
edge we defined earlier to provide remedial strategies for
any fault instance. It also updates the fault ratio of services
and processes in the process repository and updates the fault
log if the Log strategy is required. All non-goal preserving
remedial strategies could be implemented by the analysis
component. Its Web service interfaceanalyse() has 5 inputs
(Fig. 2). faultData is a fault variable or constraint violation
collected by the BPEL fault handlers.processReference de-
notes the current BPEL process.invokingServiceReference
is an instance ofServiceReference that identifies a Web ser-
vice. A ServiceReference contains a service endpointUrl
and an invoking operation.RequestData andresponseData
record fault service data transmission for the Log strategy.
analyse()’s outputanalyseResult is a complexType, which
we detail in Section 5.

The service wrapper componentis a dynamic service
invoker. It wraps actual business services into a unified ser-
vice interfacegenericOperation() (Fig. 3). ThegenericOp-
eration() has two input parts.requestData is input of the
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faultData

processReference

invokingServiceReference

requestData

responseData

analyse() analyseResult

path

invokingServiceReference

compensationServiceReference

waitingTime

compensation

Figure 2. analyse() service data flow

business service;invokingServcieReference is the identity
of the business service.responseData returned bygener-
icOperation() is output of the business service. The pur-
pose of this wrapper is to provide a dynamic binding partner
link. In BPEL, partner links define how the process inter-
action with other business processes and services. Dynamic
binding partner links allow that business services endpoints
are selected and assigned to the partner link through con-
figuration or runtime input. The limitation is these business
services must have the same interface. Our wrapper com-
ponent achieves dynamic binding without this limitation.

genericOperation()

requestData (xsd:AnyType)

invokingServiceReference

responseData (xsd:AnyType)

request

response

Figure 3. genericOperation() service data flow

5 Instrumentation for violation handling

The purpose of process instrumentation is the fault mon-
itoring and handling capability of BPEL processes, i.e. dy-
namically selected remedies are able to act on process exe-
cutions when faults occur. The instrumentation is based on
an intrumentation template for violations and faults for each
service-invoking activity (Fig. 4). Since we use constraint
services for pre- and post-activity validation, two constraint
services are bound to each invoking service.

We describe the violation and fault handling template in
two parts. The first part is the<repeatUntil> container
in the top half of Fig. 4. It achieves fault monitoring and
supports the Ignore, Retry, and Replace remedial strategies.
The second part is for the Recompose strategy; see bottom
half of Fig. 4. Since non-goal preserving strategies do not
impact the processes, they will not be considered by the vi-
olation handling template.

5.1 Ignore, Retry, and Replace

Five variables for each invoking activity define the vi-
olation handling context and determine the handler execu-
tion: invokingServiceReference provides the current invok-
ing activity service reference, e.g.billPay(). composition
denotes if compensation of the current invocation is needed
for recomposition. It has the default value true.compen-
sationServiceReference names the compensation service of
the current invocation - the initial value is empty.wait-
ingTime defines the waiting duration for the Retry strategy

constraint

service

(pre-condition)

path==1

billPay()

constraint

service

(post-condition)

repeatUntil (path==0 or path== -1)

path=1, compensation=true(), waitingTime=’P0Y0M0DT0H0M0.0S’,

invokingServiceReference=flightBooking(), compensationServiceReference=empty

path=0

path==3

generic-

Operation()

constraint

service

(post-condition)

path=0

path=analyseResult/path

waitingTime=analyseResult/waitingTime

invokingServiceReference=analyseRes...

compensationServiceReference=analyseR

esult/...

previous invoking activity

catchAll

path=4,

compensation 

=false()

path==4

constraint 

service

(post-condition)

path=0

compensationHandler

genericOperation()

(for compensation)

faultData=constraintViolation

processReference=

invokingServiceReference

RequestData

ResponseData

constraint

service

(pre-condition)

path==2

generic-

Operation()

constraint

service

(post-condition)

path=0

wait

analyse()

catch

faultVariable=”constraintViolation”

!throw

catchAll

compensationServiceReference=

analyseResult/compensationServiceReference

analyseRequest/faultData=’compensation’

processReference

invokingServiceReference

analyse()

empty

path== -1

!throw

for=waitingTime

next invoking activity

compensation==false()

analyseResult/compensation!=empty

compensation=analyseResult/compensation

Analysis

component

Service wrapper

component

compensationServiceReference != empty

genericOperation()

(for compensation)

compensationServiceReference != empty

Figure 4. Violation handling instrumentation
template

with an initial value 0. The executionpath is by default
initialised as the uninstrumented original execution path:
pre-condition constraint service, invoking service, and post-
condition constraint service.

In addition to context constraints, paths are the second
key concept in the template. In a fault-free scenario, only
the default path is executed. Otherwise, the fault is caught
by attached fault handlers and theanalyse() service inside
the handlers determines the subsequent actions, including
selection of a new execution path. In the template, the
<repeatUntil> container is important. It only ends when a
path is executed successfully (path=0) or analyse() decides
to recompose the current process (path=-1). We distinguish
pre-and post-condition-based constraint violations.

For faults caused bypre-condition constraint viola-
tion, the fault handler passes the fault variable thrown
by constraint service (constaintViolation) to the analyse()
service. analyse() takes processReference, invokingSer-
viceReference and other additional variables.

1. If the remedial knowledge suggests to Ignore the fault,
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analyse() returnspath=3, compensation=true(), com-
pensationServiceReference=empty, waitingTime=0,
and keepsinvokingServiceReference=billPay(). The
<repeatUntil> forces the process to execute path 3.
The billPay() is executed by the wrappergenericOp-
eration() and the post-condition is validated.

2. If the Replace strategy is applied, theanalyse()
setspath=2, compensation=true(), compensationSer-
viceReference=empty, waitingTime=0 and assigns the
invokingServiceReference to an alternative service.
The second path is similar to first path, exceptgeneric-
Operation() replaces the original business servicebill-
Pay(). This allows the alternative service to be exe-
cuted through the wrapper component.

3. If analyse() suggests the recomposition strategy,
it keeps invokingServiceReference, sets compen-
sation=true, compensationServiceReference=empty,
waitingTime=0, and path=-1 to end<repeatUntil>.
We discuss this in the next subsection.

For faults coming from theinvoking service activity,
i.e. eitherbillPay() or genericOperation(), a non-constraint
violation fault is caught by the<catchAll> fault handler.
The fault handler assignspath=4, which means the post-
condition constraint service deals with the fault and throws
a constraint violation fault foranalyse(), i.e. a syntax con-
straint violation is expected thrown from the constraint ser-
vice for faultData. Variable compensation is also set to
false, as no compensation is required for this invocation ac-
tivity during recomposition.

For faults caused bypost-condition constraint viola-
tion we distinguish the four strategy cases:

1. In the case of Ignore,analyse() keepsinvokingSer-
viceReference, sets compensation=empty, compen-
sationServiceReference=empty, waitingTime=0, and
path=0 to end <repeatUntil>. The compensation
variable keep its previous value, i.e. it remembers if
a fault came from the invoking service activity.

2. For the Retry strategy,analyse() setspath=3, com-
pensation=true, a waitingTime for the <wait> activ-
ity to give a interval before retry execution,compen-
sationServiceReference=empty and keeps the previous
invokingServiceReference.

3. For Replace, analyse() sets path=2, compensa-
tion=true, waitingTime=0 and an alternative service
for invokingServiceReference. In addition, Replace for
post-condition faults also needs to check if compensa-
tion is required. Ifanalysis() returns acompensation-
ServiceReference, genericOperation() within the fault
handler executes the compensation service.

4. For Recompose,path=-1, compensation=empty, com-
pensationServiceReference=empty, waitingTime=0 is
set andinvokingServiceReference and compensation
are kept.

In case of faults with alternative replacement services,
the same strategy as above is applied again.

5.2 Recompose

We continue with the secondscope (Fig. 4 with
<compensationHandler> attachment). The second scope
is responsible for compensation of the whole process scope,
i.e. for Recompose. If variablecompensation==false,
a throw activity throws a defined fault. An attached
<catchAll> handler catches the fault and does nothing. The
purpose is to mark this scope as a faulty scope. The BPEL
compensationHandler attachment can only be triggered by
a succcessful scope for process scope compensation. In that
case, such as Ignore with a post-condition fault, a compen-
sation handler attached to the scope within<repeatUnit>
will not be triggered as a fault occurred. Thus, we create
this scope for invocation activity compensation. Acompen-
sation variable decides whether to trigger it.

If analyse() decides to Recompose (path=-1), a
<throw> activity throws a fault. The process scope catches
this fault and starts scope composition before callingrecom-
pose() (Fig. 5). All fault-free compensation scopes are exe-
cuted in backward order. If any invocation activity requires
compensation,analyse() provides a rollback service, which
is executed throughgenericOperation().

Invoking 1

repeatUntil

compensationHandler

If-

throw

recieve

Invoking 2

repeatUntil

compensationHandler

If-

throw

compensation1

compensation2

reply

catchAll

recompose()

composite

processReference

Composition

component

Process

instrumentation

redeployment

Figure 5. The structure of a process scope

5.3 Template for normal processes

In case of normal service processes which without pre-
and post-condition constraint validation services, our viola-
tion handling template is also applicable for technical plat-
form faults with a small modification (Fig. 6). The differ-
ence is inside the<repeatUntil> container. We need fault
handlers for each BPEL fault to be caught.analyse() only
setscompensation=false for the Ignore strategy. A suitable
remedial knowledge database needs to be provided. A mi-
nor limitation of our template is it does not deal with faults
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during compensation service execution due to the complex-
ity of service transaction handling. However, backups for
compensation are usually not provided by the designer.

catch

...

other

fault

handler

path==1

billPay()

repeatUntil (path==0 or path== -1)

path=1, compensation=true(), waitingTime=’P0Y0M0DT0H0M0.0S’

invokingServiceReference=flightBooking(), compensationServiceReference=empty

path=0

path==2

genericOperation()

path=0 path=analyseResult/path

waitingTime=analyseResult/waitingTime

invokingServiceReference=analyseResult/…

Compensation=analyseResult/compensation

previous invoking activity

faultData=constraintViolation

processReference=invokingServiceReference

RequestData

ResponseData

wait

analyse()

catch

faultName=...

same as bottom part of Fig. 4

for=waitingTime

wait

for=waitingTime

Figure 6. Template for normal processes

6 Evaluation

Objectives and Strategies. We focus on effectiveness
and performance as the central criteria. Effectiveness and
correctness are essential. We need to ensure correct re-
medial strategies are selected for different fault categories
based on the remedial knowledge. Selected remedial strate-
gies must be executed correctly in order for business goals
to be achieved. We used a test driven approach to evaluate
our system within a utility bill payment application.

Violation handling performance differs for each process
instance. It depends on the number of faults during pro-
cess execution, the size of remedial knowledge, the reme-
dial strategies applied, and the waiting time of retrials. Con-
straint validation services also cause overheads. Our pro-
cess instrumentation makes business processes more com-
plex. A concern is if the violation and fault handling tem-
plate causes unacceptable overheads compared to the origi-
nal process execution.

Application and Test Cases. In total 35 test cases were
designed for the bill payment process to test the correctness
of the remedial strategy implementation, which involves
four business services (requestBill(); billPay(); updateRe-
cords(); infoProvider()). The last three services include
state update actions, i.e. can be used to test compensation.
We also developed three alternative services for each ser-
vice to test replacement remedies for faults with alternative
services. The following table shows one of the test cases.

In the test case, we created a pre-condition measurement
constraint violation for the billPay service, which can be re-
placed by billPayAlt1. We also disabled the billPayAlt1 to

Input <ns2:CompanyBillPayment xmlns:ns2="http://businessService/">
<customer>...</customer> </ns2: CompanyBillPayment>

Constraint vio-
lation and fault
instances

Pre-condition<measureFault> on billPay service;
Turn off billPayAlt1 service to create a runtime fault;
Remedial strategy: Replace with any

Expected ser-
vice invoking
sequence

requestBill; billPay; analyse; genericOperation(billPayAlt1);
analyse; genericOperation(billPayAlt2); updateRecords; info-
Provider

Expected out-
put

<ns2: CompanyBillPaymentResponse xmlns:ns2="http://busi...">
<return>...</return> </ns2: CompanyBillPaymentResponse>

simulate a runtime fault, which can be recovered by the bill-
PayAlt2 replacement. Each test case is designed for a dif-
ferent scenario. In another, similar test case, we changed the
measurement violation as post-condition of a billPay fault;
then we expect the billPay compensation service to be ex-
ecuted as well (i.e. the correct amount is debited from a
customer account). Other complex test cases cover e.g. vio-
lations of last step, which need to rollback previous actions
before Recompose. These cases cover all remedial strate-
gies with various designed constraint violation and runtime
fault scenarios.

We created nine pairs of processes to evaluate perfor-
mance. Each process contains between 2 and 10 business
services. We instrumented each process, which creates nine
pairs of processes to compare the performance. Each pro-
cess was executed six times using the ActiveBPEL engine
v5.0.02 and we took the average execution time.

Results. Based on an analysis of process outputs, the fault
log database, and the BPEL engine execution log, we ver-
ified all test cases are effective, i.e have correctly imple-
mented the remedial strategies.

For performance, following table shows execution time
(ms) of each pair of processes in our experiment.

No. services 2 3 4 5 6 7 8 9 10
Original 1340 1992 2563 3256 3851 4488 5199 5779 6378
Instrumented 1352 2052 2675 3293 3876 4522 5319 5820 6560

Discussion. With all test cases successful, we can demon-
strate our approach provides a reliable violation and fault
handling for dynamic service composition. It, of course, de-
pends on alternative services and processes being supplied
for the replacement remedies.

The performance evaluation results show that the instru-
mented processes does not introduce any significant over-
head (in average less than 1% over all cases). The instru-
mented processes do not delay business processes execution
time unless a violation or fault needs to be handled.

7 Related work

Work on reliability for Web service composition can be
classified into two categories. The first category does not
address the problem of dynamic service composition. Soft-
ware developers are required to embed concrete remedial
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strategies into service processes before deployment. [3] re-
quires developers to define monitoring and/or recovery ac-
tions for each business process in a Web Service constraint
language. A supervision framework was designed for indi-
vidual BPEL engines to supervise the constraint rules. [6]
and [10] defined some BPEL fault-tolerant patterns, which
allow single recovery strategies to be translated into BPEL
processes according predefined recovery actions. However,
they cannot handle recovery strategy selection at runtime.

The second category provides dynamic fault handling.
Sometimes, this is achieved through engine-dependent im-
plementations. The execution engines is modified to retain
the original simple business process workflows. [13] de-
velops the VieDAME Monitor component which extends a
BPEL engine with different engine adaptors. The moni-
tor component uses atry-catch structure to handle service
faults. [15] achieves runtime recovery through an extended
ActiveBPEL engine. In contrast, some approaches try to
maintain engine independence. [5] uses a job submission
description language (JSDL) to describe the business pro-
cesses as job flow. Each job unit has to be translated to a
BPEL flow for execution. A job flow manages jobs execu-
tion and can resubmit a job for Retry and Replace strategies.
This introduces significant complexity through the job flow
manager. It is also restricted to non-transactional behaviour
and, thus, does not support any compensation.

In addition, as discussed, the above work essentially fo-
cusses on runtime environment faults. Business constraint
violations are not taken into account, as we do.

8 Conclusions

In this paper, we have introduced an approach for busi-
ness constraint violation and runtime environment fault
handling for dynamic service composition. We have devel-
oped an intelligent remedial knowledge base for dynamic
remedial strategy selection. We provided an instrumen-
tation template for constraint violation and runtime fault
handling to enable an engine-independent implementation.
We demonstrated the effectiveness and the limited overhead
through instrumented process execution.

Our approach is lightweight in that we do not require
engine extension and do not cause overheads during normal
execution. The remedial strategy selection for both business
and technical constraint violation monitoring and analysis is
integration into a normal fault handling mechanism.

As software quality aspects such as performance are of
central importance for dynamic service composition, we in-
tended to run more complex test scenarios to measure our
prototype violation and fault handling performance in the
future. We also plan to study and apply advanced learning
based mining technique to optimize service and process se-
lection to influence handling performance.
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