
Dynamic Composition of Services in Sensor Networks

Sahin Cem Geyik and Boleslaw K. Szymanski
Department of Computer Science
Rensselaer Polytechnic Institute

Troy, NY, 12180
Email: {geyiks,szymansk}@cs.rpi.edu

Petros Zerfos and Dinesh Verma
Wireless Networking Lab

IBM T.J. Watson Research Center
Hawthorne, NY, 10532

Email: {pzerfos, dverma}@us.ibm.com

Abstract—Service modeling and composition is a fundamen-
tal method for offering advanced functionality by combining a
set of primitive services provided by the system. Unlike in
the case of web services for which there is an abundance
of reliable resources, in sensor networks, the resources are
constrained and communication among nodes is error-prone
and unreliable. Such a dynamic environment requires a con-
tinuous adaptation of the composition of services. In this paper,
we first propose a graph-based model of sensor services that
maps to the operational model of sensor networks and is
amenable to analysis. Based on this model, we formulate the
process of sensor service composition as a cost-optimization
problem, which is NP-complete. We then propose two heuristic
methods for its solution, the top-down and the bottom-up,
and discuss their centralized and distributed implementations.
Using simulations, we evaluate their performance.

Keywords- Service Composition, Sensor Networks, Service
Modeling.

I. I NTRODUCTION

A wireless sensor network is an ensemble of low-cost
devices that collect raw measurement data from the envi-
ronment, transform it through a series of operations into
more meaningful aggregate values, and relay these values
(possibly over multiple hops) to base stations, for collection
and further processing by end-users [1]. Due to limited
communication bandwidth, node processing and energy re-
sources, sensor network applications are implemented and
run distributedly over a collection of nodes. Each node
typically provides a basic functionality for operating on
the monitored data, while the network of sensor nodes
collectively provides a composite service to the end-user.For
example, the tracking and object identification application
of Figure 1 is provided by combining acoustic localization,
object identification algorithms and camera-based visual
tracking functionalities.

Early programming frameworks for sensor applications
[2][3] recognized the need for a component-based design
that compartmentalizes at the source-code level the trans-
formational steps that measurement data must undertake.
Recent advances in this area further propose the use of a
high-level language such as Haskell [18], WaveScript [4] or
Prolog [13] to describe the interconnection of application
components, each of which is implemented in a lower-level,

device-specific language. However, prior efforts provide a
static description of the sensor network application that does
not allow for a flexible re-engineering of the application at
runtime that makes the service resilient to failures and dis-
connections. Furthermore, they are ill-suited for the dynamic
sensor network environment, and do not adapt the service
model to the ever-changing processing and energy resources
of the nodes. The goal of this work is to propose a modeling
and composition framework for sensor services that allows
for adaptation of the service descriptions to the dynamics of
the underlying sensor network deployment.

In this paper, we take a service-oriented approach for
representing sensor network applications and view them as
a collection of component services assembled in a data flow
graph that describes the composite service. Each component
service provides basic operators for transforming the data,
has typed inputs and outputs, and generates metadata that
provides meta-information on the values that are being trans-
formed, as well as on the runtime of the service deployment
that includes processing and communication costs.

Based on this modeling approach, we formulate the
process of dynamic sensor service composition as a cost-
optimization problem, which can be shown to be NP-
complete. Two heuristic approaches, the top-down and the
bottom-up, are then proposed to solve this problem, which
differ on how the composition process proceeds: from the
composite service description to the identification of the
primitive components that are required to be provisioned,
or vice versa. Centralized and distributed implementations
are also discussed.

In summary, this paper makes the following contributions:
• a modeling framework for sensor services that follows

a natural data flow graph formulation enhanced with
metadata information, which is amenable to analysis;

• a formulation of the sensor service composition process
as a cost-optimization problem;

• two algorithms that use heuristics for performing auto-
matic service composition that adapts to the dynamics
of the sensor network environment;

• simulation results that provide a preliminary analysis
of the performance of these algorithms.

The rest of the paper is organized as follows. Section II

admin
Text Box
Proc. 7th IEEE International Conference on Services Computing (SCC 2010), pp. 242-249, Miami, FL, July 5-10, 2010.

Acoustic Sensor

Service: SS1

Acoustic Sensor

Acoustic Sensor

Service: SS2

Service: SS3

Stream
(Time,Distance,Strength)

Stream
(Time,Distance,Strength)

Stream
(Time,Distance,Strength)

Event Detector Service
EDS1

(Detects when the signal exceeds
the threshold value)

EDS2

EDS3

Triangulation Service

(TS)

Triangulation performed according to the

distances from the sensor locations which
detect the event.

Event Tuple (ET)
(Time,Distance,Strength)

ET

ET

Camera Sensor

Recognition Service (RS)
- Detects Object Type

- Turns camera to given location

Tuple
(Time,Location)

Camera Sensor
Tracking Service (CTS)

- Follows Object

- Changes camera direction

Stream
(Time,Location,Object Type)

Stream
(Time,Location,Object Type)

Figure 1. A Composite Service Example

outlines a model of sensor services and formulates the prob-
lem of sensor service composition. Section III describes the
two approaches that we propose for solving that problem and
discusses their centralized and distributed implementations.
Performance is analyzed through simulations in Section IV
and in Section V related work is presented. The paper
concludes in Section VI with our ongoing work.

II. SENSORSERVICE MODELING AND COMPOSITION

We start with introducing a graph-based model for rep-
resenting sensor network services that is intuitive and also
amenable to analysis. A servicesi in a sensor network is
defined by the input data that it accepts, the transformation
function that it applies to its input, the output data that
it produces, as well as metadata that provides additional
information that characterizes the service and its outputs:

si = {inputi = (inputi,1, ..., inputi,m),

outputi = (outputi,1, ..., outputi,k),

fi(inputi) → (outputi),metadatai(t)}.

Although the inputs and outputs of a sensor service change
with time, to abbreviate the notation, we omit thet subscript,
which instead is implied. A service implemented in a sensor
network may be just asource service, which does not
receive any input and only outputs data. Similarly, we can
also havesink services, which do not produce any outputs
(but may take an action instead).

In the above service definition,metadata carries informa-
tion about the data and the services that process it, following
the approach in [5]. Metadata may contain properties of the
data such as levels of reliability, as well as cost information
and certain characteristics of the service itself, such as
energy consumption per output data produced, processing
delays, number of other services that make use of its outputs,
etc. The service metadata depends on time (t) and each
service has different types of metadata that is transmitted
to other services offered by the sensor network. As it will
be shown in the later sections, metadata information is used
to find which services are most cost-efficient to use for a
given composite service requested by an end user.

A. Service Graph of a Sensor Network

Service graph of a sensor network,GS , is a graph in which
vertices represent services and directional edges represent
the potential data flows between services. The edge directed
from the vertex of serviceA to the vertex of serviceB
is created if and only if the output of A and input of B
intersect in some fields. That is, informally, A can provide
some of its products (output) to the use of B through this
directional edge. Additionally, we require that each inputof
B is connected to at least one output of some service (we
assume that by definition, a service requires all its input data
to produce any output). A formal definition of the service
graph is given below:

GS = {V,E} where,

V = {si} (one vertex per service) and

E ⊆ V xV, where ei,j =

{

1 if outputi ∩ inputj 6= ∅

0 otherwise

Although not stated explicitly in the graph definition, we
require matching properties of the metadata of the service
providing some data as output with those of the service that
is requesting this data as input. For example, if a service
requires input with reliability of at least a certain value,only
the services that can provide this type of data at the requested
reliability level can potentially be connected to the service
description with a directed edge.

While the above definition of the service graph requires
exact match between input and output fields of two services
to create an edge between them, this requirement can be
relaxed by using type hierarchies. If a serviceA’s output
field is a subtype of a serviceB’s input field, then A can
provide the information that B requires, hence the edge
between them should be allowed. An example is a type
vehicle with a subtypecar. If a service can identify an
object as a car, then by the subtype-type relationship, it has
automatically classified it as a vehicle.

B. Definition of the Service Composition Problem

In our model, there are two basic types of costs related
to service composition: first, the processing cost of each
service, for example the energy cost incurred by activat-
ing an implementation of a service. Second, the cost of
communication between two services needed to exchange
information (e.g., transfer delay between two services or
load on the network due to service communication). This
cost is interpreted as the edge costs in the service graph.

Service composition requires finding such a subset of
servicesSc ⊂ S and data flows between them that each
service inSc has its inputs provided by at least one service
in Sc that is capable of sending data to it. Furthermore, union
of the outputs of services inSc must satisfy a user-requested
functionality Φ, given as a set of output fields required by
the end-user and satisfying certain properties:

Φ = {outputΦ,1, ..., outputΦ,n}

Service composition may be considered as the task of finding
a certain subgraph of the service graph (GS) wherein only
a subset of the possible edges (data flows) and vertices
(services) is used. Furthermore, this problem requires that
the cost of the composition is minimized. A formal definition
of the problem is as follows: For givenGS = {V,E} and
Φ, find the minimum costVC ⊂ V andEC ⊂ E, such that,

Φ ⊂
⋃

Vi∈VC

(output of Vi) and,

∀ Vi ∈ VC , (input of Vi) ⊂
⋃

Vj where ej,i∈EC

(output of Vj).

According to this definition, an edgeei,j cannot be a part
of the composition scheme unless bothVi (representing
service i) and Vj (representing servicej) are selected
for the composition. This problem formulation makes the
composition scheme subject to changes in time since an
optimal composition is dependent on the network conditions
at time t. Services learn the network conditions via the
metadata mechanism.

Although not shown here due to lack of space, we can
also prove that even a very simple version of the above
problem is NP-complete, because any instance of the set
cover problem can be transformed to an instance of the
Service Composition Problem in polynomial time. In the
next section, we present heuristic algorithms for its solution.

III. H EURISTICS FORDYNAMIC SERVICE COMPOSITION

IN SENSORNETWORKS

The algorithms that we present in this section aim at
achieving cost optimization across the sensor network, while
reacting to changing network conditions by recomposing
the service. We introduce two approaches termedtop-down
and bottom-up, with the latter one further divided into two
variants, which differ in the amount of information used to

find the composition. To ensure that the heuristics terminate,
we consider only service graphs that areacyclicanddirected.
We leave the consideration of service composition costs on
more general graphs to future work.

A. Top-down Approach

The top-down algorithm starts when the user-request
(which is represented by asink service) is received. It first
finds a set of services that satisfy its inputs and minimize the
local cost, which is the sum of the cost of services chosen
and communication costs between those services and user-
request. Then, the services that were selected choose their
input providers and so on. A key requirement in this scheme
is that all services at the current level are composed before
any services on the next level are considered. It is easy to
see that this approach is indeed a breadth-first traversal in
the service graph,GS , which provides us with the ability
to identify which services are already used for composition.
However, this breadth-first traversal requirement also makes
the top-down approach difficult to implement in a distributed
way, since it requires synchronization among sensor nodes
involved in the composition process.

At each level, first, we select thecritical services, which
are those that exclusively provide input fields of a service
that are not provided by any other service. Since these
services have to be included in any feasible set of services,
they may cover some inputs that could also be provided by
otherwise non-critical services. Then, a set of services is
chosen such that among all sets that can supply the inputs
to the service under consideration, the chosen set exhibits
the smallest cost. To make such choice, we use a well-
known heuristic for the set cover problem, which chooses the
service that adds the smallest cost per each input covered.
A drawback of the top-down approach is that, at any level,
it may choose a set of input providers that cannot be further
decomposed (their inputs cannot be satisfied), since it makes
local decisions without knowledge of available services at
the lower levels of the graph, as each service knows only
its immediate neighbors.

B. Bottom-up Approach

The bottom-up approach sorts topologically the directed
and acyclic service graphGS . At each service, assuming
the possible input providers (neighbors) have composed
themselves, a subset of neighbors are chosen to satisfy input
fields. A filtering function can be applied at this stage to filter
out neighbors with unwanted properties (e.g. high cost, low
reliability etc.).

The bottom-up method (Algorithm 1) is designed fol-
lowing the heuristic for the set cover. At each step, it
attempts to find the neighboring service that has the smallest
cost per new input field that it can provide. The cost is
calculated by the composition graph of the neighbor node
and communication cost between the neighbor and the

Algorithm 1 Algorithm for Choosing Services to Cover
Input Set

method find comp(input,output sets,compositions,S)
remaining in = input

remaining out = output sets

composition graph = vertex(service S)
while remaining in! = ∅ do

if ∃ Sj ∈ remaining out is a critical servicethen
Smin = Sj

else
for each serviceSj in remaining out do

Find Smin where
gr cost(compositions[Smin])+comm cost(Smin−>S)

|remaining in∩Smin|
is smallest

end for
end if
remaining in− = remaining in ∩ Smin

composition graph+ = compositions[Smin]+
edge(Smin → S)

remaining out− = Smin

for each serviceSk in remaining out do
compositions[Sk]− = compositions[Sk]∩

compositions[Smin]
end for
if remaining out == ∅ then

break
end if

end while
returncomposition graph

service that is being composed. Note that, when a service
is selected, its composition graph (compositions[Smin]) is
subtracted from the graphs of all services that haven’t been
used yet. This is done in order to prevent duplicate additions
of services and links between services. When a serviceA

is chosen to provide input to another serviceB, all services
and their links that denote information flow are already used
in the composition. At a later step, when another serviceC

is chosen to provide input toB, the common services and
links betweenA andC are not counted towards the cost of
C. As in the top-down approach, critical services are always
included first due to the input fields that exclusively provide.

The bottom-up method, as described above, incurs sig-
nificant communication overhead when implemented in a
distributed manner, due to transferring complete composition
subgraphs among the neighbors of a service. An alternative
approach transmits upstream only the composition cost of
the subgraph. When a serviceS chooses a set of services
to utilize in order to satisfy its input, the cost of this
service is sent upstream to services that may utilizeS’s
output. Sending the collective cost information incurs a
lighter load on the system. However, less information is

also made available about the composition of a service’s
possible input providers and hence may result in a less cost-
efficient composition. When a service does not know which
services will be utilized by its input providers, it is not
possible for it to reuse the services, potentially increasing
the composition’s cost.

C. Implementing the Composition Selection Algorithm

The selection of composition can be made either in a
centralized way, at a single node that receives information
from all services, ordistributively, wherein each node with
a service assign to it chooses which services it will use to
satisfy inputs of its service. In the following, the detailsof
these two approaches are further discussed.

1) Centralized Implementation:uses a single node on
which metadata of each needed service is first collected.
Then, the node runs either the top-down or bottom-up
algorithm and selects the component services to be activated.
Although not shown here due to lack of space, there are
cases in which the top-down approach gives a lower cost
solution than the bottom-up one, while in some others cases,
the opposite is true. The service graph can be generated
at the central node based on the sensor network topology,
which is discovered through the information collected from
every sensor node. This information includes the set of ser-
vices (and their metadata) that the reporting node offers and
the communication costs from that node to its neighborings.

2) Distributed Implementation:makes each node with a
service allocated to it to select, independently of others,
services that it needs to receive inputs for its service. The
advantage of this scheme is its robustness to network faults
and the quick reaction to changes in the network conditions.
Additionally, no single node is selecting the entire compo-
sition, avoiding a single point of failure and bottleneck. The
composition process proceeds from bottom to top. In the
distributed implementation, a node selecting services has
only information about its own neighbors, i.e. the services
which could provide input to its service. This information
is included in the metadata that the node receives from its
potential input providers, as described in Section II.

When a composition process starts, messages are sent
from the node at which the end-user request for service
originated (considered to be at the top level of the service
graph) to the nodes capable to provide lower level services.
User-requested data has certain properties that are provided
at the time of the request. According to these properties,
a set of nodes with services whose outputs can satisfy the
request will be considered neighbors of the node from which
the user-request originates. This process repeats until the
necessary information is disseminated downstream to all the
nodes with source services, which do not have any incoming
edges, i.e. any inputs. At that time, the reverse dissemination
process takes place, in which, at each stage, the service
composition algorithm is executed. Once every node with the

service is aware of its smallest composition cost, backward
messaging takes place, where services on certain nodes are
activated. This generates the composition graph.

Mapping the sensor network topology to the service
graph is complicated in the distributed case. Finding which
services can send their data to a given service, as well as
the information on the cost of these services, requires every
node to have global knowledge of the entire topology. Hence,
a mechanism for distribution of service metadata among
nodes is required. Once each node with a service knows
its neighboring services in the services graph1, the service
costs can be exchanged between the nodes with services.
The distribution of service metadata enables the distributed
implementation of the bottom-up approach. To disseminate
service costs among nodes in the sensor network, a simple
protocol like controlled flooding can be used. Furthermore,
such a scheme can also be easily modified to eliminate
costly links between services. For example, if the node on
which a service A is implemented is more thanα hops away
from a node that provides another service B, then these
two services might not be regarded as neighbor services. By
using time-to-livewhen transferring service costs, a virtual
service graph in the sensor network with a time or hop limit
can be created.

D. Dynamic Composition

In a sensor network environment, the conditions of service
can change fairly frequently. Hence, it is important to be able
to dynamically change service composition. Metadata infor-
mation exchanged throughout the network can be used for
this purpose. For the centralized implementation, dynamic
composition is similar to generating the initial one: for each
update in the system, the composition process is re-executed,
triggered by the new costs. In the distributed case, each node
with a service will decide on its new composition graph
based on the updates of its neighbors. When a node with
a service updates its own information, it also notifies its
neighbors so that they can, if needed, change their respective
compositions. If a service (or a link of a service) is not used
anymore, the node running will deactivate its corresponding
output links. If all links of the service are deactivated, the
node will stop the service itself and will send stop signals
to every service that provided input to stopped service.

Finally, an important issue that needs to be considered in
dynamic composition is the frequency of updates. Some of
the metrics, such as residual energy on the nodes that the ser-
vices are implemented on, change continuously. Therefore a
dynamic composition solution would be triggered constantly
by the change, leading to high overhead. Such a situation can
be prevented by setting up a composition update period, or
an updating scheme. A node running a service can wait for

1It should be noted that neighor relationship of services in the services
graph does not necessarily imply that the nodes that are implemented on
are neighbors in the network topology.

0 5 10 15 20 25 30 35 40
40

60

80

100

120

140

160

of Services

C
os

t o
f C

om
po

si
tio

n

Composition Cost vs # of Services for Top−down and Bottom−up Approaches

Bottom−up with Cost
Bottom−up with Graph
Top−down

Figure 2. Comparison of Composition Costs incurred by the Top-down
and Bottom-up Approaches

significant changes in service conditions to notify the central
node or the nodes with neighboring services. Example of
such significant changes are threshold on reliability, critical
low battery level of the sensor node, etc.

IV. PERFORMANCEEVALUATION

We conduct simulations to assess the performance of the
proposed algorithms, both when used for deriving the initial
composition of a service (Section IV-A), as well as for
dynamic composition (Section IV-B).

A. Evaluation of Initial Composition

We evaluate the costs of composition incurred by each
algorithm, given an initial set of services and their costs,as
well as user-requests. For simplicity, activation and commu-
nication costs are combined into a single metric that could
correspond for example to the total energy spent by the
algorithm.

To evaluate the composition performance of our algo-
rithms, we created 10,000 distinct cases of services. Of these
cases, 40 are basic ones, each with a unique number of
services varying from 1 to 40. Moreover, 250 variants of
each basic case are generated. In each variant, we assigned
each service a uniformly distributed cost between 0 and
40, while the communication cost between services is also
uniformly distributed between 0 and 50. First, the acyclic
graph is created and then inputs and outputs are assigned
according to the edges that have been created. A random
user-request is chosen from the set of inputs and outputs
defined in the graph. Then, our algorithms are run on this
setting and performance results are collected.

Figure 2 shows that the bottom-up approach creates
compositions with lower cost than the top-down approach.
Furthermore in the bottom-up algorithm, sending the graph
information upstream instead of collective cost information
leads, as expected, to a lower cost of the final compositions.

0 5 10 15 20 25 30 35 40
40

50

60

70

80

90

100

110

120

130

of Services

C
os

t o
f C

om
po

si
tio

n
Composition Cost vs # of Services for Centralized vs Distributed Approaches

Distributed
Centralized

Figure 3. Cost of Composition Comparison of Centralized and Distributed
Approaches

In Figure 3, the costs of composition for the centralized
and distributed approaches are compared. The centralized
approach implements both the top-down as well as the
bottom-up algorithms, and thus produces better results com-
pared to the distributed one, which implements only the
latter one (bottom-up). It is interesting to note that, although
the top-down approach is much worse on average (as seen in
Figure 2), it still has a certain advantage over the distributed
one. This is due to the lower costs that the top-down
algorithm incurs compared to the bottom-up one in certain
cases, as mentioned before.

B. Evaluation of the Dynamic Composition

In this section we are presenting the dynamic composition
results of centralized and distributed approaches. As men-
tioned before, the distributed approach selects composition
based on the local information. Thus, a change in the local
system conditions, such as service or communication cost
change, deactivation or reactivation of services, immedi-
ately triggers the re-composition of a requested service.
In the centralized approach however, there is a period of
re-composition during which all the services update their
information in the central decision making node and the
actual re-composition is performed once this time period
is over.

We have used a subset of the services generated for the
experiments described in the previous section. As previ-
ously, service costs are uniformly distributed between 0–40,
and communication costs between services are uniformly
distributed between 0–50. We introduce events to this set-
ting, which change these costs and activation states of the
services. For example, every 0–20 (uniformly distributed)
seconds a random service or a random link is assigned
a new cost, from 0–40 and 0–50 ranges, respectively. We
also change which subsets of the initial services are still
active by choosing a random service in 0–50 second time
periods and deactivating it for a period of 0–200 seconds.

0 5 10 15 20 25 30 35 40
40

60

80

100

120

140

160

180

200

220

240

of Services

C
os

t o
f C

om
po

si
tio

n

Dynamic Composition Cost Comparison for Centralized and Distributed Approaches

Centralized
Distributed

Figure 4. Comparison of Composition Costs for Dynamic Composition
by Centralized and Distributed Approaches

The centralized approach is set to perform a re-composition
every 10 seconds and dynamic composition triggers a re-
composition locally if a service’s or link’s cost changes
significantly. Reactivation or deactivation of services also
trigger a recomposition process. We set the simulation time
of 3000 seconds for each experiment and service set.

In Figure 4, we present the cost of the composition of
both the centralized and the distributed approach, averaged
over the service operation. It can be seen that the centralized
approach gives lower costs for each case for two reasons.
First, the centralized approach has more information and
generally creates compositions with lower cost than the dis-
tributed approach does. The second reason is the triggering
mechanism of distributed approach; to lower the information
overhead, a recomposition is performed only when there is
a significant change in the service costs, and this results in
the higher composition cost than necessary.

Figure 5 shows the activation ratio of services for both
approaches, defined as the percentage of the simulation time
that the user-request service was active. The user-requestis
considered active when all services in the composition graph
are satisfied in terms of the inputs that they require. We
observe that, for small number of services, the centralized
approach gives a higher activation ratio, which means that
the reactive re-composition of the distributed approach isnot
always helpful, as it is less likely to find the alternative routes
locally. However, the centralized approach recomposes the
services from scratch, hence creating an active composition
more readily. From the figure, it can also be seen that the
distributed approach gives better results for a large number
of services. This means that the local reactive approach
of distributed composition works well in finding alternate
information flows dynamically.

To summarize, the distributed approach exhibits higher
activation ratio, provided that the alternative compositions
exist for the reactive means to work well. A trade-off
exists since we have lower cost service composition schemes

0 5 10 15 20 25 30 35 40
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of Services

A
ct

iv
at

ed
 R

at
io

Comparison of Activation Time for Centralized and Distributed Approaches for Dynamic Composition

Centralized
Distributed

Figure 5. Comparison of Service Activation Ratios for DynamicCompo-
sition by Centralized and Distributed Approaches

generated in the centralized approach.

V. RELATED WORK

Service composition has enjoyed a continuous attention in
the web services domain, where there are no constraints on
resources and there is high user interactivity. The latter helps
with semi-automated and manual composition approaches
weakening the need for automated composition techniques.
There are several detailed surveys on web services and
composition [6] [7], and below we discuss in more detail
efforts that are more closely related to our work.

The authors of [8] and [9] use OWL-S (Web Ontology
Language - Services) language to describe the web services
with their inputs and outputs. However their methods are
user supervised in the sense that, at each step, a set of
possible matchings for the user functionality needs are
presented to the user who selects one or more services for
use.

In [10], MARIO (Mashup Automation with Runtime
Orchestration and Invocation) is introduced, which utilizes
tags chosen by the user to provide possible composition
schemes. Each tag represents a functional goal and can be
interpreted as a query. Type hierarchies are used to connect
outputs of a service to compatible inputs of another service
in the composition decision process. This work however,
does not take into account the changes in the network for
performing a re-composition. In [11], the authors propose the
use of service equivalence (both semantical and syntactical
equivalence) in order to replace services in a mobile network
where the connections between nodes are changing rapidly.

In Mao et al. [12], a dynamic web service compo-
sition method is proposed that considers quality of ser-
vice (QoS) and network characteristics. Their method,
Automatic Path Creation service (APC), is centralized
and looks for a shortest path from the end-user to the
primitive services. This is similar to what we would like
to achieve. However, our method is amenable to distributed

execution. Furthermore, [12] does not consider the case
where a subset of the output of a service can be used as
input to another service.

In sensor networks, few approaches have been proposed
for service composition. A significant one is [13] in which
the authors provide a method based on logical programming
through backward chaining for chaining services. They
model services as statements whose truth depends on their
predicates and they set certain statements true when these
predicates are satisfied. These statements are further used
by other services as predicates. The method is used for
automated inference in sensor networks. Another paper in
the sensor networks domain [14] tries to identify the service
composition that is less likely to be invalid in the near
future due to nodes going to sleep mode etc. The goal is
to minimize the recomposition cost at a later time.

In [15], the authors propose a dynamic flow control
solution, applicable to sensor networks, which uses filters
and wires between services. By using filters on the wires
(which are logical conditions), the user manually blocks data
flow whenever such blocking is needed for the functionality
desired in the current network conditions. Their system still
requires user interaction.

A model similar to our service graph can be found in
[16], which proposes abstract task graphs that consist of
abstract tasks and abstract channels. These are mapped to
services (nodes) and possible connections (edges) in the
service graph, respectively. However, this paper does not
address automatic construction or cost measures. Another
work worth mentioning is that of [17]. The authors present
MiLAN, which is a middleware for sensor applications.
MiLAN receives the application requirements in terms of
the information needed and chooses a set of sensors that
can provide this information according to certain quality of
service requirements. However, MiLAN does not provide
composition of services in which outputs of services are
combined to provide inputs of other services.

VI. CONCLUSIONS ANDONGOING WORK

In this paper a novel method of service modeling and
dynamic composition is described, which is suitable to the
unreliable and dynamic sensor network environments. Two
heuristic algorithms for composition of sensor services are
introduced that differ in the direction of traversing the
service graph during the composition process. Centralized
and distributed implementations of these algorithms are also
described and evaluated through simulations, along with the
associated trade-off between overhead of performing the
composition and the cost of the final composition result.

The implementation and evaluation of the algorithms
proposed in this paper in real systems is the main focus of
our ongoing work. Two runtime environments are targeted
for this purpose: the stream processing language called
SPADE [19] ofSystem S, the large-scale stream processing

system developed by IBM Research, and the ITA Sensor
Fabric [20]. In SPADE, each processing unit is modeled as
a stream, with predefined inputs and outputs, similar to our
definition of a service. Streams are linked with one another,
at present only in static service graphs to provide composite
services. We are planning to extend the SPADE framework
to dynamically activate/de-activate streams according toour
proposed composition algorithms, thus emulating dynamic
composition. Metadata, which can be supported by SPADE
as separate streams, can be used to trigger dynamic re-
compositions.

Our second environment for implementation is the ITA-
developed Sensor Fabric [20]. It provides a lightweight
publish/subscribe framework that can interconnect sensor
nodes over multiple hops. Message topics defined in the
Sensor Fabric can be used to specify input and outputs of
services that are offered by the nodes, as well as metadata.
Connectivity among services on the nodes is determined
from the topics that they subscribe to, which can be specified
by our proposed composition algorithms.

ACKNOWLEDGMENT

This research was sponsored by US Army Research
laboratory and the UK Ministry of Defence and was ac-
complished under Agreement Number W911NF-06-3-0001.
The views and conclusions contained in this document are
those of the authors, and should not be interpreted as
representing the official policies, either expressed or implied,
of the US Army Research Laboratory, the U.S. Government,
the UK Ministry of Defense, or the UK Government. The
US and UK Governments are authorized to reproduce and
distribute reprints for Government purposes notwithstanding
any copyright notation hereon.

REFERENCES

[1] Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., Cayirci, E.,
A Survey on Sensor Networks, Computer Networks, 2002, pp.
393-422.

[2] Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E.,
Culler, D., The nesC Language: A Holistic Approach to
Networked Embedded Systems, ACM SIGPLAN conference,
2003

[3] Greenstein, B., Kohler, E., Estrin, D.,A sensor network appli-
cation construction kit (SNACK), in ACM SenSys Conference,
2003

[4] Newton, R., Toledo, S., Girod, L., Balakrishnan, H., Madden,
S., Wishbone: profile-based partitioning for sensornet appli-
cations, in NSDI Conference, 2009

[5] Ibbotson, J., Chapman, S., Szymanski, B. K., ”The Case for
an Agile SOA”, First Annual Conference of the International
Alliance, Adelphi, MD, September, 2007.

[6] Papazoglou, M. P., van den Heuvel, W.,Service oriented
architectures: approaches, technologies and research issues
, The VLDB Journal, vol. 16, no. 3, July 2007, pp. 389-415.

[7] Bronsted, J., Hansen, K. M., Ingstrup, M.,A survey of service
composition mechanisms in ubiquitous computing, in Proc.
UbiComp 2007 Workshop, pp. 87-92.

[8] Sirin, E., Parsia, B., Hendler, J.,Composition-driven Filtering
and Selection of Semantic Web Services, In AAAI Spring
Symposium on Semantic Web Services, 2004.

[9] Sirin, E., Hendler, J., Parsia, B.,Semi-automatic Composition
of Web Services using Semantic Descriptions, In Web Ser-
vices: Modeling, Architecture and Infrastructure workshop in
ICEIS 2003, Angers, France, April 2003.

[10] Riabov, A. V., Bouillet, E., Feblowitz, M. D., Liu, Z., Ran-
ganathan, A.,Wishful Search: Interactive Composition of Data
Mashups, in WWW Conference, Beijing, China, pp. 775-784,
2008.

[11] van Thanh, D., Jorstad, I.,A Service-Oriented Architec-
ture Framework for Mobile Services, Proceedings of IEEE
Telecommunications 2005, pp. 65-70.

[12] Mao, Z. M., Katz, R. H., Brewer, E. A.,Fault-tolerant,
Scalable, Wide-Area Internet Service Composition, Technical
Report UCB/CSD-01-1129, EECS Department, University of
California, Berkeley, California, USA, 2001.

[13] Whitehouse, K., Zhao, F., Liu, J.,Semantic Streams: a Frame-
work for Composable Semantic Interpretation of Sensor Data,
EWSN 2006, pp. 5-20.

[14] Wang, X., Wang, J., Zheng, Z., Xu, Y., Yang, M.,Service
Composition in Service-Oriented Wireless Sensor Networks
with Persistent Queries, Consumer Communications and Net-
working Conference, CCNC 2009, Las Vegas, NV, pp. 1-5.

[15] Bamis, A., Singh, N., Savvides, A.,An Architecture for
Dynamic Reconfiguration of Data Flows in Sensor Networks,
Technical Report, ENALAB, Yale University, 2007.

[16] Bakshi, A., Prasanna, V. K., Reich, J., Larner, D.,The
Abstract Task Graph: A methodology for architecture-
independent programming of networked sensor systems, in
Proc. Workshop on End-to-end, sense-and-respond systems,
applications and services, 2005.

[17] Heinzelman, W., Murphy, A., Carvalho, H., Perillo, M.,
Middleware to Support Sensor Network Applications, IEEE
Network Magazine Special Issue, Jan. 2004.

[18] Mainland, G., Morrisett, G., Welsh, M.,Flask: Staged Func-
tional Programming for Sensor Networks, Proc. of the 13th
ACM SIGPLAN international conference on Functional pro-
gramming, pp. 335-346, 2008.

[19] Gedik, B., Andrade, H., Wu, K., Yu, P. S., Doo, M.,SPADE:
The System S Declarative Stream Processing Engine, Proc. of
the ACM SIGMOD International Conference on Management
of Data, pp. 1123-1134, 2008.

[20] Wright, J., Gibson, C., Bergamaschi, F., Marcus, K., Pressley.,
R, Verma, G., Whipps, G.,A Dynamic Infrastructure for
Interconnecting Disparate ISR/ISTAR Assets (The ITA Sensor
Fabric), Proc. IEEE/ISIF Fusion 2009, July 2009.

