Process as a Service - Distributed Multi-tenant Policy-based Process Runtime
Governance

MingXue Wang, Kosala Yapa Bandara and Claus Pahl
School of Computing
Dublin City University
Dublin 9, Ireland
[mwang|kyapa|cpahl] @computing.dcu.ie

Abstract—With the emergence of Business Process Outsour c-
ing and Cloud Computing, enterprises are looking for available
business processes outside of their organizations to quickly
adopt to new businessrequirementsand also reduce processde-
velopment and maintenance costs. The process execution needs
to be governed as policy enforcement might differ between
different clients. Since a process is deployed outside of the
organizations and serves multiple process clients, distribution
and multi-tenancy have become two requirements for runtime
governance of service processes.

We address this problem by introducing a policy-oriented
aspectual business process framework. Theruntime gover nance
constraints from process clients are integrated as aspects
through dynamic weaving into rpcess execution.

Keywords-business process; runtime policy; runtime gover-
nance; cloud.

I. INTRODUCTION

Service-oriented architecture (SOA) has become the stan-
dard for enterprise application development and integration.
Service processes based on WS-BPEL orchestrate service-
based business components as workflows to accomplishing
complex goals. On the business side, policies are created
throughout the enterprise to establish 'best practices or
standards, meet environmental or regulatory requirements, to
increase efficiency and to help streamline business processes
[1]. SOA governance defines and enforces the policies that
are needed to manage a SOA accordingly [2]. Based on the
service development lifecycle, business process governance
can be broken into design-time and runtime governance [2].
We aim at adopting existing processes, thus focussing on
runtime policies and governance.

With the emergence of Business Process Outsourcing and
Cloud Computing, enterprises are looking to adopt existing
processes to quickly take on new business opportunities and
tp save costa on process development and maintenance [3].
Process level collaboration has been becoming a necessity
for enterprises - c.f. the process as a service notion from
the cloud. However, simple service request/response ap-
proaches in conventional SOA [4] do not work for process-
level collaboration. A business process as an automation
of an organization's workflow is obligatorily enforced by

organizations through the process clients policies. As a
consequence, we note the following as a need for process
services:

process request = (service) request + runtime governance

While SOA governance is only starting to become main-
stream practice, the advent of the cloud could reimpose the
governance chalenge. "Once we start using services from
the cloud or putting services out on the cloud, it's going to
add another complicated layer to what we're dealing with.
We're not even starting to be ready to deal with it” [5]. To
take this challenge, we first analyse the problem: identifying
the unique governance requirements and features for pro-
cesses in new cloud environments compared to conventional
SOA:

1) The process is deployed outside the organization/pro-
cess client; it is executed by a process provider in the
cloud.

2) The process is decoupled from the organization; it
serves multiple process clients.

With above, two new requirements for runtime governance
can be identified:

1) Distributed — the process allows itself to be governed
by process clients remotely.

2) Multi-tenant — the process alows each client to gov-
erns its own process request instance without interfer-
ing with other clients.

We address above problems by introducing a policy-
oriented aspectual business processes concept. We apply the
AOP paradigm for distributed multi-tenant process runtime
governance. We develop abstract policy function compo-
nents in a business process as crosscuts, where the policy-
based governance as a crosscutting concern can be applied
as aspects. We outline our concept design in section 2. In
sections 3 and 4, we introduce policy categories for runtime
governance and provide abstract policy component designs
for each policy category. We show an aspects and weaving
design in section 4. The prototype and evaluation results are
presented in section 5. At the end, we compare our approach

with related work and give conclusions.

I1. AN AOP FRAMEWORK FOR POLICY-BASED RUNTIME
GOVERNANCE

A. AOP background

Aspect-oriented programming (AOP) is a programming
paradigm that increases modularity by allowing the separa-
tion of crosscutting concerns. An aspect is a modularization
of a concern that cuts across multiple objects. Join point,
Pointcut and Advice are key concepts introduced by AOP.
Join points are well-defined points during execution where
crosscutting code can be applied, e.g. calling a method
or reading a field. A pointcut is a collection of related
join points. An advice is the implementing crosscutting
code, applied to a declared pointcut. The type of advice
(such as before/after) indicates when to apply it. Central to
AOP is weaving, which introduces the advice code at the
captured join points of the target program. Regarding BPEL
processes, AOP concept has be adopted for BPEL to support
dynamic changes of business processes [6], [7].

B. Policy oriented aspects

We apply the AOP concept for policy-based runtime
governance of business processes. The process development
and runtime governance module development is separated
for process provider and clients (Figure 1). The provider
focuses on capturing a set of business tasks that model the
functional behavior of the process workflow. The policy-
based runtime governance as non-functional requirements
are applied to the business process as aspects. In this case,
the non-functional requirements are not limited to quality
concerns, but also the functional behavior configuration (e.g.
options of the post method), compliance, and recovery —
which are al concerned with the policies — can be included.

« Policy (function) components are Web services of busi-
ness processes, as connectors between processes and
policy engines as implementations. They allow a busi-
NEess process, given an input, to provide an output based
on the policy to govern the process execution.

o Crosscuts Once a policy function component of a
business process has been identified, it needs to be
developed and instrumented in a process before deploy-
ment. These integrated policy components are abstract
policy services as crosscuts of the process workflow.
These crosscuts are where the possible concrete policy
function implementations can be executed in the pro-
cess. This transforms the business process to a policy-
oriented aspectual BPEL process where the policy-
based runtime governance is considered as a crosscut-
ting concern of process execution.

« Join points The business workflow can be broken into
three types of policy-related process el ements (business
activity, data/business object, business fault) to model

the join points. All crosscuts are associated with join
points, which give identities to crosscuts.

« Pointcuts These are predicates that match join points.
They alow any crosscut of a business process to be
queried to apply concerted policy implementations.
Table | shows the basic pointcut declarations.

o Advices are implementations of the abstract policy
components. They are implemented by process clients
and provide concrete policy functions by executing the
code.

« Aspects are packages coupling specified abstract policy
components (pointcuts) with the concrete policy imple-
mentations (advices). For each client, the valid range of
its aspects are only process instances that are created
for its own requests.

» WWeaving is matching of aspects with integrated abstract
policy components of a process during process execu-
tion. Once the pointcut of an aspect is matched with the
identity (weavingRequest) of an abstract policy com-
ponent, the advice of the aspect will be executed. The
responses of all executed advices (weavingResponse)
will be returned by the abstract policy component.

Pointcut

Invoke (Web service
operation signature)
Process (message ele-

Description

Select join points whenever the spec-
ified business activity is executed.
Select join points whenever the speci-
ment signature) fied business/data object is processed.
Handle (fault signa | Select join points whenever the spec-
ture) ified business fault occurs.

Table |
BASIC POINTCUT DECLARATIONS

In following section, we first identify different categories
of business policy, then define abstract policy components
for these palicies, i.e. determining all crosscuts of a business
process.

I11. A CLASSIFICATION OF BUSINESS POLICY

Business policies are widely implemented in business
process in industry, especialy in finance and insurance
sectors. However, business policies change frequently and
policies that apply to multiple services and processes can
introduce redundancy and inconsistency within service logic
and contracts [8]. Hence, runtime polices have be separated
from processes in development, formalized as business rules.
These express the policies as business decisions and are
centralized in a rule management system. Rule or policy
components are integrated in the processes as runtime
governance for policy enforcement. All processes can be
automatically updated by changing business rules in one
central location without redeveloping and redeploying the
processes.

Multi-tenant

AN

A

- D
- / \
s -
_3 - - h
g o Runtime governance Runtime governance
o ; (process client 1) (process client 2)
o
~'<-’. Q Business policy Business policy
AAAAAAAAAAAAAAAAAAA ‘ \—l——l—!-»‘l——l——F .
W N3
3 Monitor + controller Monitor + controller 4)
g : ~
- a Pro?ess engtr\t.aer Process engineer
2 n (business policies) f (business policies)
-] I°]
< =]
2 g
3 3
S Ve g
.. WWW -« oo e g
A v
Ignorable abstract policy components
()
g ; =
2 - / 2
s Business Process M M) [[
—a > > () (/ (o
e process instrumentation Lot | » \ ™\ \] al | @
3732 LL | _J J [) J J E
g L U
2 ——
@ Process engineer Policy oriented aspectual BPEL process
(business tasks)
,/
H)
=5 [(M)
C M\) (.
23 () \ \
=2) — M\
s - M (.
® [J
—/

Figure 1. Distributed multi-tenant service process runtime governance

In recent research, business rules have been categorised
into three types [9]: integration rule, derivation rule and
reaction rule. While this shows different types of formal
expression of the business policies, it does not give any
concrete meaning to a business process. It is hard to establish
a common connection between policies and the process.
Based on the action areas of the process execution, we
categorise the policies for runtime governance in three
different categories:

1) Within the safe boundary — this business policy cate-
gory expresses the business decisions within the safe
boundary of the process execution. The business steps
continue after the decisions are made. It is used to
specify variable business decision logic for various
expected business scenarios such as different customer
types, different types of post method use or frequently
changing agreements (e.g. different discount rate over
times). The business dynamics is the driving force.
On the safe boundary — this business policy category
defines the safe boundary of the process execution to
restrict business behavior. Policies are expressed as
integration or constraint rules to specify assertions that
must be satisfied in all states of the process execution
such as ServicesLevel Agreements (SLA). This rules
make sure the business complies with regulations.
Outside the safe boundary — this type of business
policy defines the business reaction when the process

2)

3

crosses the safe boundary, i.e., the constraints are
violated. The business needs to decide what remedial
strategy is required to avoid potential subsequential
failure of the business goal. Since the constraint vio-
lations are viewed as 'faults' of process executions,
this policy category is aso known as fault policy.
Examples are Oracle’s fault policy management [10].

Policy components for different policy categories are used
for different governing actions. Based on [11], [12], [13],
[14], [15], we can correlate process governing actions — see
table 11. Policy components have different interface and can
be integrated at different locations of the process workflow.
These interfaces and locations will be identified in next
section.

Policy category Correlated governing actions
Within the safe boundary | Business flow and data control
On the safe boundary Constraint validation

Outside the safe boundary | Remedy determination

Table I
CONNECTIONSBETWEEN BUSINESSPOLICY AND PROCESS

IV. INTEGRATING ABSTRACT POLICY COMPONENTS

INTO BUSINESS PROCESSES

With the process as a service notion, the provider expects
the process to be available serviceable for more process

clients. Hence, the maximum governability is an important
goal in process design. More policies can be applied to the
process to meet the various requirements of clients — for
example, adding a policy component (getPostage) rather than
assuming the postage is fixed by the courier as a client may
offer free postage for its customers. While we are not going
to discuss process design here, we identify different types
of policy component and integration in our approach. We
discuss how and where they can be integrated in a business
process for different policy categories.

A. Ignorable abstract policy components

All policy components integrated in a business process
are 'ignorable’ and ’'abstract’. Ignorable means the policy
component has a default output. It will not halt the process
execution, if the client does not have a concrete imple-
mentation for it. Abstract means the real output is based
on the policies, which are implemented and executed by
the client. These integrated abstract components are key to
enable client-side runtime governance. The following shows
the basic structure inside the abstract policy component.
During process execution, each encountered abstract policy
component sends the current crosscut information weaving
(Request) to the weaver of the client and waits for output in
(weavingResponse).

Output = default value;

//try to get the result from the client

weavingResponse = call weaving(weavingRequest) ;

if weavingResponse != empty then

output = weavingResponse;
return output

The 'weavingRequest’ is a complexType, which consists
of following information: processReference - current pro-
cess identity (includes a unique process instance id created
for each process request). serviceReference - identity of
the associated business activity service. dataObject - input
SOAP message of the business service. adviceType - advice
type (before/after/replace/none). violationData - details of
constraint violations. The ’'weavingResponse' consists of
following: dataObject - output SOAP message of the busi-
ness service. violationData - details of constraint violations.
remdial Strategy - selected remedial strategy to be applied to
current process.

However, not al the above information has be provided
and be the same in each weaving call. Depending on the
governing actions used for different policy categories, we
have identified three types of abstract policy components
(see Table I11).

B. Policies within the safe boundary

The policy within the safe boundary is able to control
both business flow and data of the process. Flow control is
made by branch selection, the different business actions as
different branches are developed in process workflows for

possible results of the business decision. The policy compo-
nent as decisions point (e.g. getPostMethod in Figure 2) is
integrated into the workflow before a control flow structure,
such as BPEL-if or switch structures. The corresponding
branch is selected after is decision is made based on the
policy — for example if the item value is less than 20 euro,
then delivery as normal post, else delivery as registered post.
This type of policy component is designed and integrated in
the process by the process developer. The default value is
also provided by the developer. Still, the default value must
be careful chosen for loop structures, as infinite loops can
be caused.

<processReference>...</processReference>
Business activity:

<serviceReference>..getPostMethod ..</
serviceReference>
Data object:

<dataObject>...getPostMethod input ...</
dataObject>

Advice type: l
<adviceType>replace</adviceType>

<getPostMethodOperation>
...input...

</getPostMethodOperation>

A

Aspect

ESEITES]

getPostMethod
>

juauodwod Suineap

<weavingResponse> l
Data object:
<dataObject>normal</dataObject>

</weavingResponse>

Business service | |Business service
(normalPost) (registeredPost)

Figure 2. Policy component as business activity

There are two different scenarios with data control. The
first scenario is the same as flow control. The policy com-
ponents (e.g. getPostage) are designed and integrated by the
process developer, e.g., if the item value is more than 100
euro, then the postage is free. The default value is aso
provided by the developer. In this example, it might be the
standard postage from courier.

There are two types of abstract policy component inte-
gration for a business process. The above two examples
(getPostMethod and getPostage) are of the first type, where
the policy component itself is a business activity, which is
designed and integrated by the developer (first row of Table
[11). The serviceReference.operation of weavingRequest is
getPostMethod. The AdviceType is replace, since it is itself
is a business activity. The expected information of weav-
ingReponse is a dataObject — a decided post method or a
postage fee. The default value of this type policy component
is assigned by the devel oper.

The second category of policy components are instru-
mented in the business process for other business activities.
In the second scenario with data control, the policy compo-
nent could be applied at any point of the process data flow
(i.e., before and after each business service) to modify the
business data object passing through the component. This

Integration Governing actions weavingRequest Expected weav- | Associated join points
ingResponse

By process developer Business flow and data | processReference dataObject business activity
(e.g. getPostMethod ser- | control serviceReference data object
vice) dataObject

adviceType=replace
Instrumentation Business data control and | processReference dataObject business activity
(before/after service) constraint validation serviceReference violationData data object

dataObject

adviceType=before/after
Instrumentation Remedy determination violationData remedialStrategy | business fault
(handler service) adviceType=none

Table 111

THREE TYPES OF ABSTRACT POLICY COMPONENT

could be used to apply the policy which was not considered
during the process development. For example, with a policy
made for a business promotion: if the payment amount is
more than 200 euro, then give 5% discount on the payment.
The process client could apply this policy by modifying
the amount value before the payment business service is
executed. In this case, the serviceReference.operation of
weavingRequest is the payment. The dataObject is the input
message of the payment service, which is aso the default
value of the output. The adviceType is before. The expected
weavingReponse is a dataObject — the modified payment
amount.

C. Policies on the safe boundary

Policies on the business safe boundary can be divided
as two types of constraints for each business activity of
the process — pre-condition and post-condition constraints.
The pre-condition validation is inserted before each business
service (adviceType=before); the post-condition is inserted
after each business service (adviceType=after). Constraints
can be made for the business data which the business activity
processes, e.g., (if the total payment > 5000, then violation
of syntax constraint.), but aso as properties of business
activity profiles, e.g., (if the trust of the payment service
< 3, then violation of trust constraint.). In this case, the
expected weavingResponse is a violationData, which might
contain a set of violation types or is empty. If it is empty,
then the payment service will be executed; otherwise the
policy component should throw the violation as a business
fault. The default value is an empty violation variable.

Since we can see two types of abstract policy compo-
nents appearing twice in same location (second scenario of
data control and constraint validation) before each business
activity. We could merge two components as one before-
crosscut service (see second row of Table |11 and Figure 3)
to reduce the number of abstract policy components in a
process. The idea is that the violations (violationData) will
not been thrown by the policy component itself. A following
BPEL lif structure checks if the violationData is empty. If

it is not empty, the violation data is copied into a defined
BPEL Exception (constraintViolation) and is thrown by a
BPEL Throw activity.

<paymentOperation>
i

...</pro Operation>
Business activity:
ference>...payment...</serviceReference> l

Data object:
<dataObject>...payment service input ...</dataObject>
Advice type:
<adviceType>before</adviceType>

Aspect

Assign
- Copy
ivity data: ... beforeResponse/dataObject
to
onditionType>pre</conditionType> <paymentOperation>
I : .
</paymentOperation>
Assign

Copy
beforeResponse/
o

I= empty—p

beforeResponse/violationData/... == empty Th

(constraintViolation
- business fault)

Business service
(payment)

Figure 3. Policy component before business activity

A corresponding after-crosscut service is also instru-
mented after each business activity. It is amost the same as
the before-crosscut service, except it has an after-advice type
in the weaverRequest. It is used for business service output
modification and post-condition validation. Both before/after
services can also be used to capture the temporary data
required for the working memory of the rule engine.

D. Policies outside the safe boundary

When the constraintViolaton exception is thrown, it indi-
cates that process execution has crossed the safe business
boundary. In this case, the fault policy is in charge of the
process governance. "A critical dimension of your SOA
Governance model is how you will anticipate and deal

with governance exceptions. Exceptions to your governance
model are not only to be expected, but they are important
for evolving your policies and overall governance model”
[2]. The abstract policy component is inside a BPEL Catch
handler, which is responsible for catching the exception
(third row of the table and Figure 4). The fault policy
specifies a remedia strategy for the violation. For example,
if trust pre-condition violation with payment service, then
replace with payment-2 service. The input of this policy
component is the constraintViolation caught by the BPEL
Fault Handler; the output is a remedial strategy based on
the fault policy. Depending on the systems, various remedial
strategies are supported. We briefly introduce four remedial
strategies supported by our prototype. (Ignorethe fault, Retry
the fault business service, Replace the fault service with an
alternative service. Abort the current process execution.) The
default value is abort. The advice type is none, since we
cannot dtermine when a business fault will happen.

Catch

. faultVariable="constraint
Business fault: . s
. — Violation’
<violationData>...<violationData>
E Advice type:
= < <adviceType>none<adviceType>
5 35
Aspect |8 @
e > g N Handler crosscut
85 service
° >
3
2
=
Remedial strategy
<replaceStrategy>

<alternative>
<serviceReference>...<serviceReference>

remedial strategy
</alternative>

(Ignore; Retry;Replace;Abort)

</replaceStrategy>

\

Figure 4. Policy component for business fault

V. RUNTIME GOVERNANCE BY ASPECT

During process execution, each encountered abstract pol-
icy component sends the current crosscut identity informa-
tion (weaverRequest) to the weaver. The weaver is responsi-
ble for matching aspects (pointcut and advice type) with the
crosscut identity. To alow distributed runtime governance,
the weaver is deployed on the client side and has a service
interface, which is able to establish a communication with
the process. To allow multi-tenant runtime governance, the
process clients provide the weaver interface reference to
govern their process instance for each request. In each
process request, it includes message data (service request)
additionally to the weaver interface (for runtime gover-
nance), see Table 1V. The serviceReference contains the
weaver endpoint data that is assigned for each encountered
abstract policy component of the process instance to allow
the abstract policy components to dynamically invoke the
weaver. |n case the weaver is inaccessible, the abstract policy
components are "ignored’ and the default value is returned.

< orderOperation>
<clientReference>
Weaver interface:
< serviceReference> ... </serviceReference>

< orderOperation>
M essage data:
<item>...<fitem>
<IclientReference>

</6'rderOperati on> M essage data:
<item>..</item>
</6rda'0peration>
Conventional Process request with runiime gover-
service request nance
Table IV

PROCESS REQUEST WITH RUNTIME GOVERNANCE

We present an aspect code example applied to Figure 3
for constraint validation. With our framework, each aspect is
implemented as a Java class. The pointcut and advice type
metadata of an aspect are defined in Java annotation and
retrieved by Java reflection. An additional XML file defines
aspects associated with a business process. These aspect
classes will be dynamically loaded at runtime. The advice
method has the following interface standard. It takes defined
pointcuts (service reference, message element, violation) as
input and returns a weavingResponse - a response of advice.
For each matched advice, the advice code will be executed
and the returned advice response is updated to the final
weavingResponse. After all matched aspects are executed,
the final weavingResponse is sent back to the abstract policy
component.

<process name="Order Process” operation="orderOperation” ... >
<aspect className =" onSafeBoundary. PaymentConstraint"/>
<aspect ...

</process>

@Aspect
public class paymentConstraint{

@Pointcut (" invoke (paymentOperation)”)
@Before
public WeavingResponse checkTrust(ServiceReference sr){

11 Constraint by Jess rule

//(defrule paymentService—trust

1l (ServiceReference
(endpointUrl *http://localhost:8080/Order .../ PaymentService 2wsdl)

Il (ServiceReference (operation "paymentOperation”))
Il (ServiceProfile {trust < 3})
/I => add (new ConstraintViolationType "TRUST")))

Il Fire rule engine, return maybe include a violation type
engine.run();
Iterator currencies = engine.getObjects(
new Filter.ByClass(ConstraintViolationType.class));
I/ add the violation into weavingResponse
return weavingResponse;

}

@Pointcut (" invoke (paymentOperation)&& process (amount)”)
@Before
public WeavingResponse checkMaxAmount(ServiceReference sr, double amount){

With aspect associated to fault join points and in
case more than one constraint is violated, then the
violationData includes more than one constraint viola-
tion type. The advices may return a bag of remedial
strategies. But only one most severe remedial strategy
(Abort>Replace>Retry>Ignore) is returned by the weaver
and is applied to the business process.

V1. IMPLEMENTATION AND EVALUATION
A. Prototype

In previous work, we have developed an XML-based
fault policy for handling constraint violations [13]. A BPEL
instrumentation template can be applied to the four types
of remedial strategy for the process. However, there are
modifications to support the presented approach here, such
as enabling instrumented services to communicate with the
weaver, etc. The Jess rule engine (http://www.jessrules.com/)
is used on the client side to develop a number of business
rules for experiment. Additionally, some aspects are aso
developed as interceptors of process flow to collect data (e.g.
performance) for compliance monitoring purposes by using
the before/after crosscut services. The ActiveBPEL engine
(http://www.activevos.com/) is used for BPEL deployment.
Our approach itself is not limited to any vendor-specific
BPEL engine. Since we use XPath to handle XML messages
in the BPEL process, BPEL engines with limited XPath
support might be less suitable.

B. Evaluation

An business process (the order process information is
presented in section 4) was developed as a service of a
process provider. Two process clients (at the same machine,
but with different weaver endpointUrls) have also been
developed with a number of business policies that cover
the three policy categories. The evaluation is focussed on
runtime governance effectiveness and on dynamic weaving
performance overhead.

Effectiveness evaluation We designed 14 test cases for
each client. Each test case includes process input, aspects for
governance, excepted process execution flow by governance
and expected output by governance. Based on an analysis
of process outputs and process execution logs, we verified
that all test cases are successful, i.e., our approach provides
the distributed multi-tenant process runtime governance.

Performance overhead evaluation During process execu-
tion, each encountered ignorable abstract policy component
needs to communicate with the weaver, which causes per-
formance overhead. This can vary in different scenarios,
e.g., large numbers of advices defined could cause longer
matching time or poor network speed could cause weaving
delays. In our experiment scenario, the average matching
time (in total 30 advices methods) for a weaving cal is an
acceptable 544ms.

VIl. RELATED WORK

How business process can be delivered in cloud envi-
ronment is gaining an attention in academia recently. The
ongoing Cafe project [16], [17] has proposed an SaaS
approach. BPEL process runtime governance is offered in
a Web-based software application. Each registered user
(process client) is able to define his own business policy
(SLA valuein that case) as configuration data of the business

process customization. Separate configuration data stored at
the process provider is used to govern the process by the
need of each separate client. While we propose a similar
approach, the process runtime governance is exposed as
an APl to alow client-side control. We can identify four
aspects of process governance of our solution that overcome
limitations of the state-of the-art.

A pre-registered account is required for all process clients
To create separate configuration data for a process, each
process client must be a registered user to keep a unique
account ID in the configuration database. This registration
procedure ceases the open accessibility of the business
process. In advanced scenarios, dynamic process discovery
is required and invocation becomes impossible.

Policy enforcement completely relies on process providers
After a process client sets the policy in the configuration
database, the policy enforcement completely relies on the
process provider, as the process client has no governability
of the process anymore. This means the process provider
has to be fully trusted without a satisfactory verification
preferred by many business [18]. In our approach, the policy
compliance is possible to be verified by process clients
themselves.

Business policy centralization and reuse We introduced
business policy centralized in a management system to avoid
redundancy and inconsistency problems for policies with
multiple service and process. However, saving policies at
process providers reintroduces this problem. Especidly, a
company may have many different providers for different
processes. In addition, each process provider may have
different policy or rule specifications with configuration
databases. This means that existing business rules of process
clients might need to be reformatted before submitting to the
process providers.

Concerns over confidentiality of policies Some business
policies contain confidential information, which might con-
cern the competitive advantage of a company. Storing these
policies with process providers, i.e., outside the organisation,
raises confidentiality concerns. Recent reports have shown
confidential data being leaked from several process providers
[19]. Also, the business partner relationships might change
in dynamic business situations. A process provider as a
business partner may be trusted today, but might become
a competitor tomorrow. Some business policies may be
restricted to be exposed to process providers.

Despite these benefits of our approach, some limitations
remain. Beside performance overhead caused by abstract
policy components, our approach does not support the
functional service customization as e.g. the Cafe project, i.e.,
specifying a Web service for a business activity. We only
adlow a business service to be replaced in an exceptional
condition (business fault) by the replace remedia strategy.
However, the ignorable abstract component design technique
could be used for business services to support functional cus-

tomization, but this also will cause additional performance
overhead as discussed.

VIIlI. CONCLUSIONS

Business process management needs to automate policy
enforcement and compliance monitoring as runtime gover-
nance. However, with process delivery in cloud environ-
ments, runtime governance needs a distributed, multi-tenant
solution. We have introduced a policy-oriented aspectual
business process framework that enables the clients to en-
force their policies on process instances remotely. We have
given a classification for business policies and presented ab-
stract policy component integration for each policy category.
We aso showed the runtime governance by process clients
with aspects.

Distribution and multi-tenancy are requirements arising
from the cloud computing paradigm. Within this context,
flexible client-driven and client-controlled governance tech-
niques are needed to manage cloud service processes dy-
namically and securely based on the individual compliance
needs of the clients.

Our future work includes investigating the performance
overhead caused by the dynamic weaving with different
scenarios and find possible optimal mechanisms to reduce
it. For example, temporary weaving matching results might
be kept on the provider side for each client weaver; the
clients could notify the provider (e.g., provide a version
number of weaver) to update the temporary file once aspects
are updated for a process. This could reduce the unwanted
weaving calls from abstract components. In addition, the
default value of abstract componentsis fixed in current work,
but it might be dynamically assigned in certain situations
to automatically select a remedial strategy or automatically
select a process branch for load balancing.

ACKNOWLEDGMENT

The authors would like to thank the Science Foundation
Ireland for their support of the CASCAR project.

REFERENCES

[1] “Policy based governance for the enterprise” A WebLayers
white paper, 2005.

[2] E.A. MARKS, Service-Oriented Architecture Governance for
the Services Driven Enterprise. John Wiley Sons, Inc., 2008.

[3] P Fingar, “Cloud computing and the promise of on-demand
business innovation,” Intelligent enterprise, 2009.

[4] C. Pahl, “A Forma Composition and Interaction Model for
a Web Component Platform.” Elsevier lectronic Notes on
Computer Science ENTCS Val. 66 No. 4, 2002.

[5] J. Vaughan, “On the road to soa c part 2, governance is
fundamental,” 2009, http://searchsoa.techtarget.comvtip/0,289483,
sid26_gci1359534_memd1,00.html.

6l

(8]

(9

(10

(11

(12]

(13]

(14]

(19]

(16]

(17

(18]

(19]

D. Karastoyanova and F. Leymann, “Bpel’'n’ aspects: Adapting
service orchestration logic,” in International Conference on Web
Services, 2009.

A. Charfi and M. Mezini, “Aodbpel: An aspect-oriented extension to
bpel,” World Wde Web Journal, 2007.

P. d. Leusse, T. Dimitrakos, and D. Brossard, “A governance model
for soa,” in IEEE International Conference on Web Services, 2009.

H. Weigand, W.-J. v. d. Heuvel, and M. Hiel, “Rule-based service
composition and service-oriented business rule management,” in
Interdisciplinary Workshop Regulations Modelling and Deployment,
2008.

“Oracle soa suite new features 10g(10.1.3.3) - fault manage-
ment framework,” http://www.oracle.com/technol ogy/products/ias/
bpel/pdf/10133technotes.pdf.

M. E. Kharbili and T. Keil, “Bringing agility to business process
management: Rules deployment in an soa” in 6th |IEEE European
Conference on Web Services, 2008.

F. Rosenberg and S. Dustdar, “Business rules integration in bpel ¢ a
service-oriented approach,” in 7th IEEE International Conference on
E-Commerce Technology, 2005.

M. Wang, K. Y. Bandara, and C. Pahl, “Integrated constraint violation
handling for dynamic service composition,” in IEEE International
Conference on Services Computing, 2009.

“Oracle business rules: Technical overview,” An Oracle White Paper,
2007.

S. Subramanian, P. Thiran, N. C. Narendra, G. K. Mostefaoui, and
Z. Maamar, “On the enhancement of bpel engines for self-heaing
composite web services,” in International Symposium on Applications
and the Internet, 2008, pp. 33-39.

R. Mietzner, T. Unger, R. Titze, and F. Leymann, “Combining differ-
ent multi-tenancy patterns in service-oriented applications,” in IEEE
International Enterprise Distributed Object Computing Conference,
2009.

R. Mietzner, F. Leymann, and M. P. Papazoglou, “Defining com-
posite configurable saas application packages using sca, variability
descriptors and multi-tenancy patterns,” in International Conference
on Internet and Web Applications and Services, 2008.

C. Berndtson, “Interop: Cloud computing adopters ready to 'trust, but
verify’,” 2009, http://www.crn.com/software/221900379;jsessionid=
R1HY 3YANNS5EL 1QEIGHOSKHWATMY 323V N.

“Indian bpo and the ongoing struggle with data security is
sues,” 2009, http://searchsecurity.techtarget.in/news/article/0,289142,
sid204_gci1374165,00.htmi#.

