
A Service-Oriented Framework for GNU Octave-Based
Performance Prediction1

1 This work has been supported by the IRMOS project and has been partly funded by the European Commission's IST activity of the 7th

Framework Programme under contract number 214777.

George Kousiouris
National Technical University of

Athens
9 Heroon Polytechniou str,
157 73 Zografou, Athens

+30 210 772256

gkousiou@telecom.ntua.gr

Spyridon Gogouvitis
National Technical University of

Athens
9 Heroon Polytechniou str,
157 73 Zografou, Athens

+30 210 772256

sgogouvitis@telecom.ntua.gr

Dimosthenis Kyriazis
National Technical University of

Athens
9 Heroon Polytechniou str,
157 73 Zografou, Athens

+30 210 772256

dkyr@telecom.ntua.gr

Gregory Katsaros
National Technical University of

Athens
9 Heroon Polytechniou str,
157 73 Zografou, Athens

+30 210 772256

 gkats@telecom.ntua.gr

Kleopatra Konstanteli
National Technical University of

Athens
9 Heroon Polytechniou str,
157 73 Zografou, Athens

+30 210 772256

kkonst@telecom.ntua.gr

 Theodora Varvarigou
National Technical University

of Athens
9 Heroon Polytechniou str,
157 73 Zografou, Athens

+30 210 772256

 dora@telecom.ntua.gr

ABSTRACT

Cloud/Grid environments are characterized by a diverse set of
technologies used for communication, execution and
management. Service Providers, in this context, need to be
equipped with an automated process in order to optimize service
provisioning through advanced performance prediction methods.
Furthermore, existing software solutions such as GNU Octave
offer a wide range of possibilities for implementing these
methods. However, their automated use as services in the
distributed computing paradigm includes a number of challenges
from a design and implementation point of view. In this paper, a
loosely coupled service-oriented implementation is presented, for
taking advantage of software like Octave in the process of creating
and using prediction models during the service lifecycle of a SOI.
In this framework, every method is applied as an Octave script in
a plug-in fashion. The design and implementation of the approach
is validated through a case study application which involves the
transcoding of raw video to MPEG4.

Innovation Area

Services Delivery Platform and Methodology

Keywords : Service Oriented Infrastructures, Performance
Estimation, GNU Octave, Quality of Service, Service Delivery

1. INTRODUCTION

Service Oriented Architectures (SOAs) [1] refer to a specific
architectural paradigm that emphasizes implementation of

components as modular services that can be discovered and used
by clients. Infrastructures based on the SOA principles are called
Service Oriented Infrastructures (SOIs). A basic principle that
governs the operation of such environments is that the relations
between the SOA initiators and requesters are driven by Service
Level Agreements (SLAs) [2]. This means that the roles of the
parties involved in a transaction in a SOA-based environment
(service provider and service customer), the relation itself and the
relation details are defined by SLAs. In most cases, SLAs define
the service that will be offered, the Quality of Service (QoS)
parameters (expressed with specific terms) as well as other terms
related to the involved parties (e.g. compensation in case of SLA
violation). QoS provisioning and management in general is a very
important and challenging field of research in distributed
environments. In [3] an approach is presented for managing QoS
in SOA that focuses on the categorization of the quality
characteristics and uses a specific XML-based language for
applications and service providers to express QoS requirements
and contracts.

Taking into account that the QoS requirements submitted by
the end-user are stated into the SLA, what is essential for the
service providers prior to signing the specific SLA refers to an
estimation of the resources needed to fulfill the user requirements
for every application that is offered as a service from his/her
platform. To this direction, performance prediction and modeling
is considered of major importance since the service providers
need to determine the resources in order to fulfill the QoS
requirements of the application while at the same time resource
utilization must be maximized.

 To this end, a number of methods have been implemented,
from graph based ([4],[6] and [7]) to probabilistic ([8]) and
machine-learning ones ([9][9]). In general, a model is built in
order to predict the output from the input, usually by taking into
account suitable parameters or by analyzing past historical data.
Models can be based for example on linear functions, neural
networks, classification and regression trees or statistical
properties. However, in general there is no specific framework for
implementing such methods, especially in a service-oriented
environment. Useful and widely adopted tools, such as GNU
Octave ([21][21]) make the implementation of such methods
much easier than with standard programming languages such as
Java or C++. Octave is an open source, community-driven high
level numerical computation software, very similar to Matlab. It
can be used for implementation of advanced methods like the
aforementioned ones, used in the context of performance
prediction or analysis. However the automated adaptation of
software like Octave on distributed environments is far from
perfected. A very thorough analysis on various schemes of this
sort can be found in [17].

The major aim of this paper is to present the IRMOS
project[24] Mapping Service, a service framework, in which all
the aspects of the SOA paradigms will be taken into consideration
and the resulting solution will be able to implement whatever
estimation method as an Octave script. To this end, all
functionalities that are required by such a service are addressed,
from XML-based information extraction regarding critical
information for an application, embedding of Octave software for
use in the service lifecycle and up to retrieval of historical data
from databases, a key feature of interest since all methods use the
latter.

The service-oriented implementation approach that is
presented is generic and can be applied in service oriented
architectures. The layered architecture that has been followed for
the implementation of the mechanism can be used for adopting
every performance prediction technique that can be written in
Octave and focuses on the decoupling of the framework from the
method used. The latter is used as an Octave plug-in, which can
be altered at any time, without further additions. Furthermore, due
to the layer approach, the dependencies from specific OS or
distributed computing software toolkit used are minimized.

The remainder of the paper is structured as follows: Section
2 presents related work in the field of service oriented
performance estimation and enablement of mathematical software
through Web/Grid services. The next section describes in detail
the functionality of the service along with the specific supportive
actions whereas Section 4 introduces the service layer approach
and the per layer implementation. In Section 5 we present a case
study based on the application of encoding raw video in MPEG4
format. In order to demonstrate and evaluate the operation of the
implemented mechanism a set of simple approximation techniques
such as multivariable regression and polynomial fitting, are used,
in order to produce approximating functions that connect the
application input characteristics (as predictors) with the execution
end time of the application (as the QoS level offered by the SP).
The aim of these methods is just to demonstrate the abilities of the
framework and not to provide efficient performance predictions.
Finally, Section 6 concludes the paper with a discussion on future
research and potentials for the current study.

2. RELATED WORK

There are various approaches for service oriented performance
prediction mechanisms that aim to estimate the resources needed
for the execution of specific applications in the SOI realm or for
offering mathematical software in distributed environments.

For example, in [12], the Network Weather Service includes a set
of forecasters and sensors in a distributed environment, in order to
retrieve data dynamically and apply them to modules that
implement advanced prediction techniques. While ahead of its
time, this implementation was heavily based on C language, thus
making the implementation of the techniques used more difficult
and time consuming.

A framework for incorporating QoS in Grid applications is
discussed in [5]. In this paper, a performance model to estimate
the response time and a pricing model for determining the price of
a job execution are used. In order to determine whether the
client’s QoS constraints can be fulfilled, for each QoS parameter a
corresponding model has to be in place. The main disadvantage is
that Vienna Grid Environment (VGE) does not prescribe the
actual nature of performance models. It specifies only an abstract
interface for performance models, taking as granted that these
models will be provided from analytical modelling or historical
data. But analytical modelling in general requires a thorough
knowledge of the application, in order to develop the equations
that depict its performance. However, in the case of SOIs, this
knowledge may not be available in the wanted level of detail.

In [14], the authors present GridSolve, which emphasizes the
ease-of-use for the user and includes resource monitoring,
scheduling and service-level fault-tolerance. In addition to
providing Fortran and C clients, GridSolve enables scientific
computing environments (such as Matlab) to be used as clients, so
domain scientists can use Grid resources from within their
preferred environments. This effort attempts to go the other way
around and “gridify” applications such as Matlab and Octave, in
order for them to be able to exploit distributed resources. This is
also done for Maple in [15] and for a variety of computer algebra
packages in [18]. While these works are significant, it is
questionable how the produced services can be used in an
integrated service oriented environment during the service
lifecycle. They can be considered mainly as a successful effort to
improve the performance of software like Octave through
distributed infrastructures.

In [13], an architecture very similar to the design presented here is
followed, in order to provide Maple-based mathematical web
services. While very promising, this approach is not incorporated
in a Grid/Cloud environment and focuses mainly on the offering
of mathematical services. In the GENSS project [16], the main
focus lies on the matchmaking techniques for advertisement and
discovery of mathematical services, from a semantic point of
view. The authors of [22] demonstrate the use of Octave for
creating performance models for network interfaces based on
queueing models, while in [23] a limited part of Octave is offered
through Web Services interfaces for use of the signal processing
functions by mobile phones.

 The design presented in this paper aims at providing the
service oriented framework for performance prediction methods in
a generic way without requiring detailed knowledge of the

internal parts of the infrastructure or the application, but only by
creating an Octave script of the proposed method. The latter is
especially important for use by people who may be experts in the
performance estimation realm but are not directly involved with
the issues and development of SOIs. Furthermore, the designed
service can be used in real life automated environments, e.g.
during the SLA negotiation process between a Service Provider
and the client.

3. Mapping Service Functionality

In the IRMOS framework, which is a platform offering real time
execution on service oriented infrastructures, in order for an
application to be included in the Service Provider’s list of enabled
services, a number of steps must be implemented in order to adapt
it to the framework. These steps are described in detail in [19]. In
a nutshell, the application developer needs to create an XML
description of his application, including a set of characteristics for
its functional and non-functional requirements. This description is
called Application Service Component Description (ASCD) in the
IRMOS language. Afterwards, the Service Provider needs to go
through the process of creating a number of mapping rules, that
,in IRMOS, are considered as the first level of performance
prediction and are used for the mapping between user
requirements, application characteristics and the resources needed
in order to meet the QoS levels that will be exposed in an SLA.
The aim of this paper is to describe the framework for the creation
of these mapping rules/models, however the design and
implementation that was followed is generic, thus enabling the
Mapping Service to be used even outside the aforementioned
platform. The overall platform architecture of IRMOS can be
found in [25]. At this point it must be stressed that while the
interests of the Application Developer and the Service Provider
seem contradictory, this is not the case due to the value chain
followed. From this point, the Application Developer adapts his
application to the IRMOS platform, in order to be used by other
parties (customers) , through the Software-as-a-Service model. So
it is actually his/her interest to aid the platform to correctly predict
the necessary resources, so that the application runs smoothly
with the minimum resources, in order to be competitive in
comparison to similar applications. Furthermore, there are more
than one IRMOS platform providers, so for the same reason
(competitiveness) the latter want to achieve accurate predictions.
In order to design such a service, one must take into account all
the different functionalities that need to be implemented in order
to have a fully operational platform component. The high level
functions that must be provided are a) model creation based on
the performance prediction method b) model exposure for the
estimation process. Furthermore, these processes must be fully
automatic in order to fit in the service oriented infrastructure.

3.1 Model Creation

For a model to be created, a number of steps must be
implemented:

• Triggering of the service, including a specific identifier
for the application whose model is going to be created

• Acquisition of information regarding the application
that needs to be modeled (this includes predictors-
inputs, estimated outputs, possible values of the
parameters etc.)

• Acquisition of historical data from a database that are
going to be used as the data set for the method

• Passing of the parameters to Octave

• Octave method script and its execution in the service
lifecycle

• Storing of the rules for future use

One key point here is the extraction of information regarding the
application. This can be done via an XML-based schema, which is
instantiated by the application developer and contains critical
information regarding the inputs and outputs of the software
module. What is considered as critical information are the inputs
and outputs of the application, mainly the inputs or characteristics
that influence application performance and are regarded as
predictors and the outputs that can be considered as the QoS
metrics. Furthermore, for these elements, ranges of possible
values must be identified or enumerations regarding their
acceptable values. This is mainly done because in a variety of
methods, normalization of the data into common intervals is
needed. In order for the conversion to take place, the allowed
values must be described in a descending or ascending order of
importance. The schema used is described in [19]. To this end, the
main service must be able to process the XML description and
extract all the necessary info for the application.

From the previous steps, the necessary components can be
identified. These include the core service (Mapping Service)
which is responsible for the coordination of the entire process and
the main processing tasks. The Application Description
Repository contains the XML descriptions of the components,
while the Historical Database is used to store data from previous
executions. These may originate from already existing historical
data or from benchmarking. Finally, the Model Repository
contains the stored rules after the finalization of this operation
(Model Creation) The sequence diagram for the CreateModel
operation of the service appears in Figure 1. The interfaces that
need to be implemented after the triggering of the service by the
external world (in our case the other services of the IRMOS
Framework) are (1) the retrieval of the XML description from the
application repository, (2) the retrieval of the historical data from
the Database and (3) the storing of the model functions in the
Model Repository. For the internal operations, the processing of
the XML description and the actual creation of the models are
needed.

Mapping Service Model RepositoryHistorical DatabaseApp Description Repository

CreateModel (App_ID)

getAppDescription(App_ID)

extractInfo(I/O, ranges)

getHistoricalData(App_ID)

Store Model

Create Model

Figure 1: Sequence Diagram for CreateModel Operation

This phase is envisioned to be included during the application
adaptation to the service oriented platform, for creating the
models of the application component. Whether this can be
included directly in the runtime negotiation mainly depends on
the implemented method and if it can create models on the fly in a
logical time interval. In many cases these methods are time
consuming, involving costly numerical computations. This time is
deteriorated by the fact that Octave is slower than traditional
programming languages. However given its diversity and ease of
implementation and the fact that the models do not need to be
created on the fly during negotiation but in an earlier (in any case
automated) phase, this delay is not a hindering factor.

.Furthermore, while it is generally considered as an interactive
environment, Octave can also be run via command line, in an
automated fashion, thus enabling its variety of tools and functions
to be used in a SOA approach.

3.2 Model Usage

For a model to be used, a number of steps must be implemented:

• Request for an estimation based on the model predictors
(such as application inputs/characteristics/)

• Acquisition of information regarding the application
(this includes inputs, outputs, possible values of the
parameters etc.)

• The model is retrieved from the repository and run with
the current set of predictors

• The response is passed back to the Service Provider

The sequence diagram of this phase appears in Figure 2.
Interfaces must be implemented towards the external framework
(in this case the IRMOS framework described in [25]) for
accepting estimation requests and towards the Model Repository
for retrieving during runtime (in SLA negotiations for example)
the models. Also, a similar to the previous phase interface towards
the Application Description Repository is necessary in order to
obtain the ranges of the inputs for normalization purposes. The
main internal operation, other than the XML extraction described
previously, is to execute these models through proper Octave
scripts in order to get the estimated response that is passed back to
the client.

Service Model RepositoryApp Description Repository

RequestPrediction (Inputs,App_ID)

getAppDescription(App_ID)

extractInfo(I/O, ranges)

RetrieveModel(App_ID)

RunModel(Inputs)

PredictionResponse

Figure 2: Sequence Diagram for RequestPrediction Operation

This phase is in all cases lightweight and is used during runtime
negotiations due to the fact that the model is already created
during phase 1 and the time to execute it is negligible (for
example it may involve the appliance of the input parameters to a
model function in order to estimate the output based on a
mathematical function).

4. Service Oriented Implementation

The different layers in the service oriented architecture of the
estimation mechanism are depicted in Figure 3. The reason for
having these layers is because there are software solutions (such
as Octave and Matlab) for easily implementing various estimation
methods, but in order to pass information and arguments from the
client to the bottom layer it was considered safer to include
intermediate steps that would minimize the interdependencies
from one layer to the next. This also increases the decoupling
between the different layers, making it possible to change at any
point one layer, with minimum interventions to the rest of the
components. For example, for OS, the main element affected is
the Shell script and for Octave a few commands in the Java core
class relating to the passing of the dataset and the execution
command in the shell script.

The resulting implementation is also generic and fully decoupled
from the underlying algorithm, since at any time the developer
may switch the methods of estimation by simply replacing the
underlying scripts (A, B, C or D). In our case, with the use of such
a decoupled solution, it was feasible to easily implement the
mechanism with more than one method as mentioned in Sections
4.4 and 5. These methods can, at any time, be increased or
combined in order to have an even more robust estimation
approach. Following, details are presented with regard to each
layer.

Figure 3: Layered Implementation of the Service

4.1 Middleware Level (GT4)

The service-oriented version of the mechanism presented in this
paper was implemented using the Globus Toolkit version 4 (GT4)
and runs under the standalone container that the toolkit offers.
GT4 [11] is an open source Grid middleware that provides the
necessary functionality required to build and deploy fully
operational Grid services. It implements the WS-Security and
other specifications relating to security, as well as the Web
Services Resource Framework (WSRF), WS-Addressing and WS-
BaseNotification specifications.

The WS interface in front of the mechanism acts as a gateway
offering a single-point of access to its functionality while at the
same time “hiding” its details and complexity from the clients. In
more detail, the client of the service sends a SOAP request to the
operation exposed by the WS interface. The SOAP message
includes the input needed, i.e. the ID of the application software
module for which a model needs to be created. This message is
captured by the SOAP Engine running within the GT4 container
which serializes the included information into Java objects before
passing it to the service’s core Java class for further processing.

The operations described in Section 3 are exposed to the outside
world through standard WSDL descriptions.

4.2 Connecting Level (Java Core)

The connecting component (Java class) that is in the center of the
framework is the most critical part. It is responsible for taking the
ID of the application component whose model needs to be
created, retrieving the XML description (ASCD) of the
Application Service Component and processing it. This
processing is performed based on the tag names inside the ASCD,
regardless of the depth level where the information is stored. This
aids the developer in decoupling the structure of the ASCD from
the rest of the framework, with only dependence the tag names.

Based on the information extracted from the ASCD, the SQL
interface is enabled and the data from the Historical Data
Repository (MySQL DB) are retrieved and normalized, by taking
into consideration ranges or enumerations of the predictors and
parameters that were previously extracted from the XML
description. The transformation of the data set into normalized
values in a common predefined interval is necessary for internal
processing reasons of the various estimation methods. For the
ranges, this is quite easy, taking only the minimum and maximum
range declared in the ASCD. For the enumeration it was
considerably more difficult, since the list of possible values is
dynamic for each case of inputs, so proper assignment
mechanisms had to be implemented. These mechanisms are
deployed in both phases of the service (CreateModel and
RequestPrediction) due to the fact that the inputs received during
the second must again be normalized in order to be used in the
resulting model functions of the first phase.

Then the Java2Octave interface takes advantage of a suitable
library [20] for storing these data as Octave readable data files.
Afterwards the Java2System interface executes the shell script,
which in turn initializes the Octave environment which is
responsible for actually creating the models, after reading the
dataset.

Thread locking mechanisms have been implemented during this
stage so that overlapping requests to create models do not
interfere with one another. The reason for not using this
Java2Octave interface to also execute the Octave scripts is that the
Octave engine that is provided in the library does not support the
use of extra packages that are very helpful in Octave. Afterwards,
a Java2System interface is executed in order to initialize the
Octave method script execution as a system command (shell
script). The most critical part in this process is to effectively
capture the I/O produced by the system command so that the
system does not halt. This manipulation is also achieved through
proper use of threads for capturing input, output and error
streams. These streams are transmitted back to the client, so that
the progress of the process is observed. The time that Octave can
execute in order to produce the model is bounded by the WS
request timeout and is configurable.

When the execution finishes, the output of Octave, model,
function etc., is transferred to the Rule Repository, so that it can
be retrieved in the future for the Model Usage phase. The internal
structure of the service appears in Figure 4.

4.3 OS level (FC9)

For the OS level layer, Fedora Core 9 was used. The main
functionality of this layer, as seen in the introduction of this
Section is to enable the decoupling of each layer from the
previous. In terms of functionality, the shell script used is mainly
for launching the Octave environment, plus a number of necessary
secondary actions such as directory manipulation.

Figure 4: Mapping Service Internal Structure

4.4 Numerical Software Level (GNU Octave)

For the core implementation of the estimation methods GNU
Octave [21] was selected. Octave is an open source, community-
driven scripting language. It includes a number of add-on
packages, in addition to the main version, that significantly aid in
the implementation of advanced algorithms more efficiently and
in a more abstract way than standard programming languages such
as C and Java. Its scripting style is very dense and helps in the
easier and faster implementation of complicated methods. It also
provides built-in functions, that either alone or in combination can
be used to create performance models of an application. Other
solutions such as Matlab were also investigated, but were
abandoned due to the fact that while the latter supports in many
cases the compiling of the scripts into executables, a step which is
necessary for the automated execution of the methods in the
presented service oriented context, this does not happen for all
available functions, thus limiting the underlying algorithms.
Octave on the other hand can be run from the command line in all
cases.

In our case, due to the fact that the main focus of this paper is not
to investigate efficient performance prediction methods, simple
built-in functions were used that implemented the multi-variate
linear regression and polynomial fitting through very simple
commands.

Two Octave scripts were used, one for the creation of the models
(in the form of mathematical rules or algebraic functions
connecting the predictors with the estimated output) and one for
the execution of them with the according inputs during the
runtime estimation phase. During this phase, the inputs of the
predictors were applied to the estimating functions, in order to
receive the prediction of the outputs.

5. Case Study

In order to validate the functionality of the proposed approach in
terms of efficiency and ease of use, an application was selected for
predicting its QoS level. The methods used were simple, since
their main usage was to evaluate the framework and not actually
predict with accuracy. As predictors, specific characteristics of the
application were chosen, that in the IRMOS framework are
described in advance by the application developer and included in
the ASCD, as described in [19]. The identification of the
predictors lies on the latter, but they do not require extensive
knowledge of the internal code of the application, only experience
gained from using the component. The developer does not need to
be an expert on the application or on performance prediction to
identify them.

5.1 Application

The application that we used in order to measure the ability of the
methods was the encoding of raw video in MPEG4 format with
the FFMPEG encoder [10]. In order to predict the execution time
of the encoder (which is regarded as the QoS level offered in the
SLA- how fast the encoding service will finish), four parameters
of the input video which have a direct effect on the execution time
were considered as predictors. These were the duration of the
video, the frames per second (FPS) used in the capture, the
resolution of the images and an index of movement inside the
video (0 for still images, 0.5 for mediocre movement and 1 for
intense movement). The method selected was multiple linear
regression through least squares fit, which in Octave is given
through only one command (regress). In Figure 5, the XML
description appears, based on the IRMOS schema used. From this
description, the Mapping Service is able to process and
understand that the model should have four inputs and one output,
along with the necessary intervals for the normalization.

Figure 5: XML Description for the FFMPEG Encoder

During the experiments it was noticed that the size of the raw
video could be correlated with the total execution time for the
encoding. This is logical since 3 out of 4 parameters have a direct
relation to the size (fps, duration and image resolution). In order
to further test the framework, single variable approximation
techniques were used that correlated the size of the video with the
execution time. In this case the observed error is due to the fitting
error of the curve to the experimental data along with the lack of
consideration for the index of activity of the video. For the single
variable approximation, a number of functions were considered:
linear, quadratic, and higher order polynomials up to the 5th

degree. For all these methods to be implemented, one command
was used (polyfit) inside a for loop that changed the order of the
fitted polynomial in each iteration.

In the experiments, the platform and the conditions of execution
(CPU load) were kept the same. This is a simple approach, but the
main focus was to validate the framework From the acquired data
set, about 70% was used for the creation of the functions and the
remaining 30% was used for the validation of each method’s
accuracy. Automated division in the required subdatasets is
performed through the Octave command subset.

5.2 Results

The results from the applied methods appear in the following
table (Table 1). In this, all the aforementioned variations are
presented, along with the mean absolute error and the maximum
absolute error of estimation.

Method Mean
Absolute
Error of
estimatio

n (%)

Max Absolut
Error of

estimation
(%)

Linear 10.46 20.97

Quadratic 27.84 91.64

Cubic 8.11 14.84

4th degree
polynomial

8.16 13.01

5th degree
polynomial

15.4 42.51

Multivariate
Linear

Regression
(outliers
removed)

15.5 34.5

Table 1: Comparative results of function approximation
techniques

For higher order polynomials the results deteriorated and were
similar to the ones for the quadratic case of fitting. In Figure 6, a
graphical representation of the % error of each method for every
validation case is presented.

Figure 6: Comparative graphs of the different methods in
terms of % error

While the end estimation results are not the primary concern, the
performance of the cubic and 4th degree polynomials is promising,
as a low-cost, easy to implement method. In any case, the
framework was able to extract the necessary models through very
small octave scripts. These scripts at any time may be replaced by
more sophisticated algorithms and methods, without affecting the
remaining components.

6. Conclusions

In this paper we have presented a service oriented framework for
implementing Octave based performance prediction methods. This
framework can be applied in a real life production environment, in
order to aid in the SLA negotiation process between consumers
and service providers in SOIs. In this context the proposed
framework is generic and loosely coupled, so that at any time
specific layers can be removed and replaced by more advanced
ones. The performance estimation methods have been reduced to
Octave level scripts, a fact that aids in abstracting the service
oriented aspects from the actual estimation processes.

For the future, one goal to pursue is to implement more advanced
methods through Octave scripts and test their performance in the
service oriented context. Furthermore, due to the fact that now the
methods can be applied easily and that Octave offers a large set of
statistical tools, the combination of different methods for the
improvement of the overall estimation is worth investigating.

Concluding, SOIs have not yet adopted a specific approach for
performance estimation and modeling although a set of
approaches have been presented in the research community. In
that rationale and based on the reviewed literature, the essence of
such mechanisms is shown, the ease of use and incorporation of
which is considered to be of major importance for efficient service
provisioning.

7. ACKNOWLEDGMENTS
This work has been supported by the IRMOS project and has been
partly funded by the European Commission’s IST activity of the
7th Framework Programme under contract number 214777.

8. REFERENCES
[1] T. Erl, “Service-oriented Architecture: Concepts,

Technology, and Design”, Upper Saddle River: Prentice Hall
PTR. ISBN 0-13-185858-0, 2005.

[2] Debusmann, M.; Keller, A., "SLA-driven management of
distributed systems using the common information model,"
Integrated Network Management, 2003. IFIP/IEEE Eighth
International Symposium on , vol., no., pp. 563-576, 24-28
March 2003.

[3] G. Wang, A. Chen, C. Wang, C. Fung, and S. Uczekaj,
“Integrated Quality of Service (QoS) Management in
Service-Oriented Enterprise Architectures”, In Proceedings
of the 8th International IEEE Enterprise Distributed Object
Computing Conference (EDOC), Monterey, California,
September 2004.

[4] Zhengting He, Cheng Peng, Aloysius Mok, "A Performance
Estimation Tool for Video Applications," rtas, pp. 267-276,
12th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS'06), 2006

[5] Siegfried Benkner, Gerhard Engelbrecht, "A Generic QoS
Infrastructure for Grid Web Services," aict-iciw, p. 141,
Advanced International Conference on Telecommunications
and International Conference on Internet and Web
Applications and Services (AICT-ICIW'06), 2006

[6] Peer Hasselmeyer, Bastian Koller, Lutz Schubert, Philipp
Wieder: Towards SLA-Supported Resource Management.
HPCC 2006: 743-752

[7] Jarvis, S. A., Spooner, D. P., Keung, H. N., Cao, J., Saini, S.,
and Nudd, G. R. 2006.Performance prediction and its use in
parallel and distributed computing systems.Future Gener.
Comput. Syst. 22, 7 (Aug. 2006), 745-754.

[8] Oana Florescu, Menno de Hoon, Jeroen Voeten, and Henk
Corporaal. Probabilistic modelling and evaluation of soft
real-time embedded systems. In Proceedings of SAMOS VI,
LNCS 4017,2006.

[9] Singh, K., Đpek, E., McKee, S. A., de Supinski, B. R.,
Schulz, M., and Caruana, R. 2007. Predicting parallel
application performance via machine learning approaches:
Research Articles. Concurr. Comput. : Pract. Exper. 19, 17
(Dec. 2007), 2219-2235.

[10] Fabrice Bellard, FFMPEG multimedia system,
http://www.ffmpeg.org, 2005.

[11] http://www.globus.org/toolkit/

[12] R Wolski, N Spring, J Hayes “The Network Weather
Service: A Distributed Resource Performance Forecasting

Service for Metacomputing - Future Generation Computer
Systems, 1999

[13] E. Smirnova, C.M. So, S.M. Watt, Providing mathematical
Web services using Maple in the MONET architecture. In
Procs. MONET Workshop (2004)

[14] YarKhan, A., Dongarra J., Seymour K., 2007, in IFIP
International Federation for Information Processing, Volume
239. Grid-Based Problem Solving Environments, eds.
Gaffney, P. W.. Pool, J.C.T., (Boston: Springer), pp. 215–
224.

[15] http://www.hpcgrid.com

[16] http://genss.cs.bath.ac.uk/index.htm

[17] Petcu, D. 2006. BetweenWeb and Grid-based Mathematical
Services. In Proceedings of the international Multi-
Conference on Computing in the Global information
Technology (August 01 - 03, 2006). ICCGI. IEEE Computer
Society, Washington, DC, 41. DOI=
http://dx.doi.org/10.1109/ICCGI.2006.52

[18] A. Al Zain, K. Hammond, P.W. Trinder, S.A. Linton, H.-W.
Loidl, and M. Costanti. SymGrid-Par: Designing a
Framework for Executing Computational Algebra Systems
on Computational Grids. In Proc. International Conference
on Computer Science (Workshop on Practical Aspects of
High-level Parallel Programming), Beijing, China, May 27-
30, 2007, 2007

[19] IRMOS Project: “Irmos Application Blueprint”, December
2009

[20] http://kenai.com/projects/javaoctave/downloads

[21] http://www.gnu.org/software/octave/

[22] Paola Laface, Damiano Carra and Renato Lo Cigno, “A
Performance Model for Multimedia Services Provisioning on
Network Interfaces”, in Lecture Notes in Computer Science,
Volume 3375/2005, Springer Berlin / Heidelberg

[23] Roger J. Castaldo Michael A. McKay Vladimir Tosic,
“Exposing GNU Octave Signal Processing Functions as
Extensible Markup Language (XML) Web Services”, in
Electrical and Computer Engineering, 2006. CCECE '06.
Canadian Conference on

[24] http://www.irmosproject.eu/

[25] IRMOS Project D3.1.2: “IRMOS Overall Architecture”,
NTUA and other partners, February 2009

