
HAL Id: inria-00482578
https://inria.hal.science/inria-00482578

Submitted on 10 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Complex Event Processing for Dynamic Business
Process Adaptation

Gabriel Hermosillo, Lionel Seinturier, Laurence Duchien

To cite this version:
Gabriel Hermosillo, Lionel Seinturier, Laurence Duchien. Using Complex Event Processing for Dy-
namic Business Process Adaptation. SCC 2010 - 7th IEEE 2010 International Conference on Services
Computing, Jul 2010, Miami, Florida, United States. pp.466-473, �10.1109/SCC.2010.48�. �inria-
00482578�

https://inria.hal.science/inria-00482578
https://hal.archives-ouvertes.fr

Using Complex Event Processing for Dynamic Business Process Adaptation

Gabriel Hermosillo, Lionel Seinturier, Laurence Duchien

INRIA Lille Nord Europe - University of Lille 1

Laboratoire LIFL - CNRS UMR 8022

Lille, France

Email: firstname.lastname@inria.fr

Abstract—As the amount of data generated by today’s
pervasive environments increases exponentially, there is a
stronger need to decipher the important information that is
hidden among it. By using complex event processing, we can
obtain the information that really matters to our organization
and use it to improve our processes. However, even when
this information is retrieved, business processes remain static
and cannot be changed dynamically to adapt to the actual
scenario, diminishing the advantages that can be achieved. In
this paper we present CEVICHE, a framework that combines
the strengths of complex event processing and dynamic business
process adaptation, which allows to respond to the needs of
today’s rapidly changing environments. We use a simple car
rental scenario to show how CEVICHE could be used to
maintain the quality of service of a business process by adapting
it according to the situation.

Keywords-Complex Event Processing; BPEL; process adap-
tation; QoS

I. INTRODUCTION

Given the dynamicity of today’s business environments,

there is a need to continuously adapt the business processes

in order to respond to the changes in those environments

and keep a competitive level. One of the main concerns for

on-line applications is to keep a high Quality of Service

(QoS), for which they need to keep a constant monitoring of

their processes. By using Complex Event Processing (CEP)

we can facilitate the solution of this problem by gathering

information about the different steps of the processes in

order to determine whether a situation of low QoS is

approaching. CEP is an emerging technology which allows

to find real-time relationships between different events using

elements such as timing, causality, and membership in a

stream of data in order to extract relevant information [1].

CEP can be used, for example, to prevent the theft of

merchandise from stores by creating relationships between

the amount, kind, and movement of the products inside the

store and sending an alert when a suspicious situation is

detected [2]. However, there are some occasions in which

it is not enough just to be able to obtain this information

from simple raw data. For example, when monitoring the

QoS, we could alert the administrator when the process is

not responding as expected, but an optimal response would

be to automatically adapt the business process according to

the new context in order to continue in an optimal way,

and this is why we developed CEVICHE (Complex EVent

processIng for Context-adaptive processes in pervasive and

Heterogeneous Environments).

The purpose of CEVICHE is to create context-aware

business processes that are able to adapt dynamically in

order to respond to different scenarios. CEVICHE relies on

BPEL, since it is the most common orchestration language,

it is an OASIS standard and it is an execution language and

not a modeling language (like BPMN), and in CEVICHE

the adaptation of the business process happens at runtime

during the execution [3]. The decisions of how to respond to

a specific scenario are done by collecting data from different

sources and transforming it into useful information, using

CEP. By using an aspect-oriented approach, we can define

alternative processes that can be woven into the business

process at runtime, allowing the business process to adapt

in a dynamic way.

In this paper we use an on-line car rental application to

show how CEP, and specially CEVICHE, can be used to

maintain a high QoS by monitoring the business process and

adapting it accordingly to respond to the context information

gathered by the system.

The objectives in this paper are:

• To show why dynamic adaptation is needed in today’s

business processes.

• To integrate CEP into business processes to help in the

decision making task.

• To provide a framework that facilitates such integration

by giving the users a unique entry point to create

dynamically adaptable business processes.

The rest of this paper is organized as follows. In Section

II, we use a scenario to illustrate the motivation and chal-

lenges of our proposal. Section III presents a background of

the different domains used in this paper. Section IV explains

the CEVICHE framework and its architecture. In Section

V, we discuss our proposal and present some validations.

Section VI presents some of the related work. Finally,

section VII concludes and discusses some future work.

II. MOTIVATION AND CHALLENGES

In this section we present our motivation by using a small

car rental scenario in which we want to monitor the QoS.

After that we present the challenges that we face when using

static business processes.

A. Motivation

To show how CEP and CEVICHE can be used to maintain

a high QoS we present an on-line car rental service. In

this service, the client goes through a process of eleven

steps to get a car, as shown in Fig. 1. The client starts the

process by providing a valid license number, then selects

the characteristics of the car to rent and finally pays and

receives a confirmation from the system.

Figure 1. The car rental process

Whenever the application is getting a considerable amount

of traffic, that could decrease the response time of the

servers, the owners of the on-line application want to avoid

the invocation of some optional tasks of the business process.

This will help to maintain the QoS and allow the user to

complete the car rental process in fewer steps and to spend

less time waiting for the application to respond.

The optional tasks that could be excluded from the

business process of this scenario, without altering the main

objective, are: the color select (step c) and the satisfaction

survey (step j). To skip them, an additional path from the

preceding activity to the next will have to be set. Then,

the process will have to be redeployed and the application

restarted, for the changes to be considered.

In this scenario, the QoS is considered with two param-

eters: service performance and service availability. The per-

formance of a web service can be measured by considering

the time it takes to respond to a user query, while the service

availability can be simply measured by the existence or not

of a response from the service.

B. Challenges

When we want to monitor the business process and adapt

it accordingly to respond to current situation, we face several

challenges that make it difficult to accomplish.

Challenge 1: The first challenge we have in this

scenario is the lack of specification in the BPEL standard

to monitor the business processes, thus leaving each BPEL

engine implementation to decide whether or not to include

a monitoring interface [3]. But even when the BPEL engine

used provides a monitoring interface, it does not necessarily

mean that it will provide the precise information that we

want to monitor.

Challenge 2: As our next challenge, we face that

even when we could monitor the business process, the

identification of a situation that needs the process to be

adapted (like a low QoS), will add a lot of unnecessary code

to the core business process definition, and in some cases

will be impossible to specify using only BPEL.

Challenge 3: The last challenge that we face when

using BPEL engines is that the process definitions are static,

which means that we cannot adapt the business process with-

out redeploying it, thus generating a downtime of the system

and losing all the information of the current transactions. The

only changes possible at runtime are the bindings to partner

links, but they have to be previously defined at deploy-time

and we cannot add new partner links at runtime [4].

III. BACKGROUND

In this section, we present a brief introduction to the

four main domains addressed in this paper: complex event

processing, business process execution language, quality of

service and aspect oriented programming.

A. Complex Event Processing

CEP is an emerging technology for finding relationships

between series of simple and independent events from

different sources, using previously defined rules [1]. The

CEP technology can be used, among a lot of other things,

to enrich the enterprise’s existing processes, by introducing

rules that will allow the capture of relevant information from

the different steps of their business process [5].

For example, let us consider the scenario of a retail store

that keeps a record of its inventory in an existing Enterprise

Resource Planning (ERP) system and wants to keep a live

monitoring of its stocks in order to prevent shortage. To

achieve this, the store installs a CEP engine that will monitor

the products movements through their life cycle in the store

process by receiving and analyzing all the events generated

by every change in the state. Since the objective is to

monitor inventory, the CEP engine will only keep the events

related to changes in the inventory and forget about the rest.

By creating the necessary CEP rules, the configuration is

set to specify the lowest acceptable stock of product that

the store can have to avoid a shortage, e.g., a 10% for

normal products and a 5% for some low-demand products.

Whenever a product reaches a minimum, the CEP engine

alerts the managers so they can make a supply order.

In addition to that, CEP can also be used to predict

unexpected situations. To complement the previous example,

we can say that because of a global pandemic alert, hand

sanitizers are very popular and are selling a lot more than

usual. Given this demand, the store will run out of hand

sanitizer before they can resupply it, even with the minimum

stock alert. By adding some specialized CEP rules to analyze

the frequency of sells of each product during the last 4 or 5

hours, the engine could polarize these values to know in

advance (if the sells rates are kept) that it will need to

resupply before the expected time, which will allow them

to react in time even before it reaches the minimum level.

B. Business Process Execution Language

The Business Process Execution Language (BPEL) is

an XML-based language for composing services, created

by IBM, BEA Systems and Microsoft in 2002, and later

approved as an OASIS Standard as WS-BPEL 2.0 [3].

There are two types of service composition: orchestration

(execution) and choreography (control). BPEL is an orches-

tration language, which means that it focuses on the flow

of control and data among the different services of the

business process, rather than on the specification of peer-

to-peer collaboration.

BPEL uses web services as a way to communicate with

the different parties involved in the business process. It has

two types of activities: primitive and structured. The former

refers to atomic or single activities while the latter refers

to composite activities (a combination of several activities).

Some instructions like invoke, receive or assign

refer to the primitive activities, while sequence and flow

are part of the structured activities and refer to the order in

which the activities will execute.

In order to interact with the different parties of the

business process (called partners), we need to define a

partner link, which specifies the roles of the partner and the

caller. We also need to define the different input and output

variables that we will use to send information to and receive

information from the service. Finally, BPEL also provides

some facilities for transaction and exception handling.

C. QoS in Web Services

The goal of the Web Services effort is to achieve inter-

operability between applications by using Web standards.

Web Services use a loosely coupled integration model to

allow flexible integration of heterogeneous systems in a va-

riety of domains including business-to-consumer, business-

to-business and enterprise application integration [3]. Web

services are the most popular technology to implement the

service-oriented architecture and they use open Internet-

based standards, like the Simple Object Access Protocol

(SOAP) for data transmission, the Web Services Description

Language (WSDL) for defining services, and BPEL for

orchestrating services [6].

When these web services are used as part of a whole

process, the QoS of the process depends on the QoS of the

web services composing it. But, in order to use the services

provided through the Internet by the different organizations,

the users of those services need to know what to expect from

them, in terms of QoS, so that they can offer a decent QoS

to their own users.

The study of QoS for web services is not new, and

there have been a good number works discussing how to

estimate the QoS of a web service-based workflow [7],

[8], [9], [10]. Also, in order to measure the QoS of the

web services, many metrics have been proposed in the

literature [7], [11], [12], [8], [13]. The QoS attributes can be

classified as deterministic or non-deterministic. The former

means that the attributes are already known before the

execution of the service (e.g., price, server location). The

latter refers to the attributes that are unknown before the

execution (e.g., response time, availability). The monitoring

of these attributes can be achieved in two ways: server-side

monitoring or client-side monitoring. Since the user of the

services does not always have the control of the hosting

servers, we will focus on the client-side monitoring for our

scenario.

As we mentioned in Section II, our scenario measures the

QoS using two parameters: performance and availability. To

calculate those values we will use the formulas provided by

Oliver et al. in [11], as shown in Table I.

QoS Attribute Formula

Performance 1
#requests

∑
requestT imei

Availability 1−

uptime

downtime

Table I
QOS ATTRIBUTES

D. Aspect Oriented Programming

The domain of Aspect-Oriented Programming (AOP) ap-

peared in 1996 [14], [15]. It was pioneered by Gregor

Kiczales and his team, then at the Xerox Palo Alto Research

Center. While original and innovative, the domain of AOP

inherits results from other programming approaches, such

as reflection, open implementations, meta-object protocols,

and generative programming.

AOP, as a new programming paradigm, introduces no-

tions such as aspect, join point, pointcut and advice code.

However, these notions do not replace existing ones, such

as class, object, procedure or method. Rather, AOP must

be seen as a complement to these existing techniques.

Furthermore, these notions are not specific to a programming

style (e.g., object-oriented or procedural) or a given syntax

(Java, C#, Ada, COBOL, etc.). Aspect-oriented extensions

exist for many languages, object-oriented or procedural, and

in this case, BPEL.

AOP has been proposed as a technique for improving the

separation of concerns in software systems and for adding

crosscutting functionalities without changing the business

logic of the software. AOP provides specific language mech-

anisms that make it possible to address concerns, such as

Figure 2. The CEVICHE framework

security, in a modular way. AOP languages and tools can

be applied at compile-time or at run-time, this giving the

designer the flexibility to use them in the most appropriate

moment.

IV. THE CEVICHE FRAMEWORK

In this section we present the CEVICHE framework. We

start by giving an overview of the system, then we present

the architecture and finally we explain how the process

adaptation is realized.

A. Overview

CEVICHE is a framework that intends to facilitate the

integration of CEP into existing business processes and to

allow these processes to be dynamically adapted to different

circumstances. With this framework we want to address

mainly four issues: adaptation, dynamicity, integration to

business process, and non-dependency to a specific CEP

engine.

To address the first issue, adaptation, we use an approach

based on AOP [14]. This approach allows the system to add

or change services from the current business process and

facilitates the task of separating concerns. To do this, AOP

needs to know in which part of the business process it needs

to perform the adaptation (the pointcut). Using the pointcuts,

we can tell the AOP framework what special behavior (the

advice code) we want to apply in that part of the business

process. Once the advice code is woven, the process is

adapted.

By analyzing the current events with CEP and using

context information, CEVICHE can automatically decide

when and how to adapt the system. This adaptation can be

done at runtime, thanks to the advantages of using an aspect-

oriented approach, thus giving a solution to the dynamicity

issue.

To integrate BPEL with AOP, we use the AO4BPEL

framework [16], which creates a wrapper around the BPEL

interpreter and has the ability to weave the aspects at runtime

to the business process. The advantage of using AO4BPEL

is that we can change the business process specifications at

runtime without the need to redeploy them, avoiding to lose

all the ongoing transactions by doing that. In CEVICHE we

integrate the AO4BPEL framework with CEP, allowing us

to give a solution to the third issue.

Finally, CEVICHE aims to be able to work with any

CEP engine available. For that, as part of this framework,

we define a language called the Standard Business Process

Language (SBPL), which gathers all the information about

the processes, contextual environment, business rules, and

adaptation conditions. This information is saved in an XML

file that CEVICHE translates to the chosen CEP engine

using the corresponding translation plug-in of that engine.

This approach allows the users to define their business

processes only once and deploy them using their preferred

CEP engine.

1 < a s p e c t name=" M o n i t o r i n g A s p e c t ">

2 < p a r t n e r L i n k s >

3 < p a r t n e r L i n k name=" P e r f o r m a n c e M o n i t o r " p a r t n e r L i n k T y p e =" P e r f o r man ceL i nk "

4 myRole=" c a l l e r " p a r t n e r R o l e =" m o n i t o r " / >

5 < / p a r t n e r L i n k s >

6 < v a r i a b l e s >

7 < v a r i a b l e name=" a c t i v i t y S t a r t " messageType=" a c t i v i t y S t a r t N a m e " / >

8 < v a r i a b l e name=" a c t i v i t y S t a r t T i m e " messageType=" s t a r t T i m e " / >

9 < v a r i a b l e name=" a c t i v i t y S t o p " messageType=" a c t i v i t y S t o p N a m e " / >

10 < v a r i a b l e name=" a c t i v i t y S t o p T i m e " messageType=" s topTime " / >

11 < / v a r i a b l e s >

12 < p o i n t c u t a n d a d v i c e >

13 < p o i n t c u t name=" p e r f o r m a n c e " c o n t e x t C o l l e c t i o n =" t r u e ">

14 / / i n vo ke []

15 < / p o i n t c u t >

16 < a d v i c e t y p e =" a round ">

17 < s e q u e n c e >

18 < a s s i g n >

19 <copy>

20 <from v a r i a b l e =" T h i s J P A c t i v i t y " p a r t =" name " / >

21 < t o v a r i a b l e =" a c t i v i t y S t a r t " p a r t =" a c t i v i t y N a m e " / >

22 < / copy>

23 < / a s s i g n >

24 < i n vo ke p a r t n e r L i n k =" P e r f o r m a n c e M o n i t o r " p o r t T y p e =" Pe r f o r manc eL i nk "

25 o p e r a t i o n =" s t a r t T i m e r " i n p u t V a r i a b l e =" a c t i v i t y S t a r t "

26 o u t p u t V a r i a b l e =" a c t i v i t y S t a r t T i m e " / >

27 < p r o c e e d / >

28 < a s s i g n > . . . < / a s s i g n >

29 < i n vo ke p a r t n e r L i n k =" P e r f o r m a n c e M o n i t o r " p o r t T y p e =" Pe r f o r manc eL i nk "

30 o p e r a t i o n =" s t o p T i m e r " i n p u t V a r i a b l e =" a c t i v i t y S t o p "

31 o u t p u t V a r i a b l e =" a c t i v i t y S t o p T i m e " / >

32 < / s e q u e n c e >

33 < / a d v i c e >

34 < / p o i n t c u t a n d a d v i c e >

35 < / a s p e c t >

Figure 3. The performance monitoring aspect

B. CEVICHE Architecture

CEVICHE is composed of three main parts: a user in-

terface to create the SBPL files, a translation framework to

manage the plug-ins for each CEP engine, and an aspect

manager to deal with the process adaptation. CEVICHE

also relies on different technologies to achieve the process

adaptation, as shown in Fig. 2.

To configure the system, the user is provided with an

interface to capture the different elements needed to adapt

the processes, which are then saved to an SBPL file. The

SBPL is an extension of BPEL which allows the user to

include, in the business process definitions, the adaptation

points and conditions in order to create dynamically adapt-

able business processes. The information in the SBPL file is

sent to the translation framework, which separates the data

in three parts: the business process (BPEL), the adaptation

situations (CEP rules) and the aspects to adapt the process.

Since there is no standard to define the CEP rules, the

translation framework uses a specialized plug-in to send the

adaptation information in the SBPL file in the specific CEP

engine’s format. This way, whenever the user wants to use

another CEP engine, the only thing that needs to be done is

to change the plug-in, without rewriting all the specifications

of the business processes.

Once the initial setup is ready and all the components

have been properly configured, the process starts and the

information begins to flow from one component to the

other, as seen in Fig. 2. First, the CEP engine subscribes

to the different sources of events, here called the events

cloud, which will provide the engine with the information

it needs to take decisions and create complex events.

The CEP engine will gather all the events, filter the

interesting ones according to the business rules and find

relations that can generate complex events. When an adapta-

tion situation is detected, the CEP engine notifies the aspect

manager, which in turn searches for the corresponding aspect

to adapt the business process. Once the aspect is selected,

CEVICHE uses the AO4BPEL engine to weave the code

into the process, adapting it at runtime.

C. Process adaptation

CEVICHE uses an aspect-oriented approach, which al-

lows the system to add and remove functionality at runtime.

When this approach is applied to the business processes, it

allows them to be dynamically adapted.

With AO4BPEL we can handle two types of aspect

deployments: process-level deployment and instance-level

deployment [16]. The former is used when the aspect is

needed in all the instances of the business process, while

the latter is used when only a specific kind of instances are

targeted.

The process can be adapted using three kind of advices:

before advice, after advice and around advice. The first

one intercepts the call before the joinpoint, executes its task

and then lets the process continue the normal flow, including

the execution of the joinpoint activity. The after advice gets

executed just after the joinpoint activity is completed and the

process continues normally afterwards. Finally, the around

advice intercepts the call just like the before advice, but

it adds functionality before and after the join point activity.

Moreover, this advice can be used without executing the

joinpoint activity.

An example of an aspect definition can be seen in Fig.

3. In this example we see the use of the special reflexive

variable ThisJPActivity (line 20), which refers to the join

point (the intercepted activity). This variable can obtain all

the information of the join point, in this case the name, so

that it can be used by the advice.

We can also have a pool of different services that can

replace the original one and we can even have a historical

QoS rating for each one, that will allow us to select the best

option. This pool of services can even include composite

services, which can replace the original one.

V. DISCUSSION AND VALIDATION

In this section, we present how we can use CEVICHE

to deal with the challenges presented in Section II. In a

nutshell, we had three main challenges in our scenario: QoS

monitoring, identification of special situations and dynamic

adaptation.

Challenge 1: For the monitoring of the QoS, in our car

rental scenario, we created an around advice. This advice

is deployed at process-level, since we want to monitor

all the instances of the business process. In the advice

we include four additional activities, two before and two

after the joinpoint. The first activity is used to count the

number of times the joinpoint activity is called, then it

calls the second activity which records the start time of the

joinpoint activity. Once the joinpoint activity is executed,

the third extra activity is called. This activity measures the

duration of the invocation by subtracting the starting time

from the current time, thus getting the performance of the

activity for that invocation. The final activity is used to count

the number of times the joinpoint has been successfully

executed to calculate the availability. By using this two

metrics (performance and availability) we can monitor the

QoS of the business process.

Challenge 2: To identify the special situations where

the process needs to be adapted, we created some CEP rules

using the formulas presented in Section III-C. Whenever the

performance of the car rental process dropped more than

25% or an activity was not available, the CEP engine notified

CEVICHE.

Challenge 3: When CEVICHE received the notification

about the drop in performance, it automatically deployed the

instance-level aspect that skipped the two optional tasks

of the car rental scenario: the color select (step c) and

the satisfaction survey (step j). When the notification was

about an unavailable service, then CEVICHE searched for

alternative service from the pool. If an alternative service

is found in the service pool, then an aspect deployed at

instance-level to change the service. We tried this by turn-

ing off the insurance selection service (step f) in the car

rental process and CEVICHE automatically changed to an

alternative service of another provider. The adaptation of the

business process was done dynamically and automatically,

without loosing any information from the different instances

of the process.

Performance: As it can be expected, the inclusion

of aspects to dynamically adapt the process, as well as a

CEP engine to discover the adaptation situations, require

some additional time and resources. This overhead may vary

depending on the number of rules that need to be processed

by the CEP engine and the complexity of the aspects that

will be woven. However, the overhead induced to the original

process is negligible compared to the cost of the whole

process, specially when dealing with Internet interactions

with partners. The AO4BPEL engine adds only an overhead

of 1% of the execution time, and could be even less when

the processes are bigger, since the cost is mostly the same

for the whole system and does not vary in terms of the

number of activities. For the CEP engine, the overhead is

also insignificant, taking it less than 1 ms to process each

event through the whole set of rules. In this case we used

the Esper engine, which is an open source stream event

processing engine [17]. The efficiency of the CEP engine

to process the events is such that it exceeds over 500,000

events per second.

VI. RELATED WORK

CEP and BPEL: As mentioned earlier in this paper,

CEP is an emerging technology and the use of it in the

business processes is a recent topic of interest and research

[18], [19]. An analysis of scenarios of composite event

patterns comparing BPEL and BPMN is done in [18]. The

authors analyze patterns of events that go from conjunction

and cardinality to time relations and event consumption

possibilities. The conclusion of their study is that neither

BPEL nor BPMN are capable of supporting complex event

scenarios in their specifications, so there is a need to inte-

grate event pattern descriptions into the process definitions

language, but they do not mention the need to adapt the

process according to those complex events.

In [19], we present a service to add traceability to the

RFID tagged products by using Complex Event Processing.

When the RFID events are captured, they are transformed

into business events that correspond to the business rules

defined in the process which allows the users to have a

better understanding of the status of their products, i.e., the

product’s location and the environment it has been exposed

to.

Business process adaptation: The need to adapt a

process has been a topic of interest in the recent years and

there have been different approaches that offer solutions to

it [20], [21], [22], [23]. In [20], the authors propose to deal

with process adaptation by adding a web service repository

that will handle the web services to invoke in each case.

Whenever an invocation of a web service is done, the call is

intercepted and the repository is checked for changes in the

process definition, before the invocation of a web service. If

there have been some changes, then it examines the available

web services in the repository and chooses the one that best

suits the criteria, otherwise the invocation is executed as

usual.

The authors in [21] use an aspect-oriented approach in-

troducing executable models, which are used to repre-

sent the cross-cutting concerns. They use open objects,

which are representations of the state of the elements in the

model, to monitor the invocation of services and adapt the

process by weaving the interaction with other models before

(activation) and after (deactivation) the call to the service.

Another aspect oriented implementation, using the Spring

.NET framework, is presented in [22]. They use a contract-

based approach to assign a web service to each instance

of an execution call. To achieve adaptation of the process

they can change the contract at runtime to assign a new

web service for the call. They can also adapt an existing

implementation of a web service by using aspects to weave

the new behavior.

An adaptation of the BPEL language called VxBPEL is

presented in [23]. The authors insist on the need of flexibility

and variability in the service-based systems and the lack

of them when deploying BPEL processes. They extend the

BPEL language to add new elements like Variation

Points, which are the places where the process can be

adapted and Variants, which define the alternative steps

of the process that can be used. VxBPEL also accepts new

Variants to be added at runtime, allowing the systems to

be adapted without redeploying the process.

BPEL context adaptation: The work that is closer to

our proposal is the one presented in [24]. The authors present

a plug-in based architecture for self-adaptive processes that

uses AO4BPEL. Their proposal is to have different plug-

ins with a well-defined objective. Each plug-in will have

two types of aspects: the monitoring aspects that

will check the system to observe when an adaptation is

needed and the adaptation aspects that will handle

the situations detected by the monitoring aspects. Whenever

the conditions of a monitoring aspect are met, it

uses AO4BPEL to weave the adaptation aspects into

the process at runtime. In our approach we deal with the

monitoring part using the rules deployed in the CEP engine,

which will detect special situations (by relating simple

events) and select the aspects to be used to adapt the process.

An advantage of their work is that the monitoring aspects

can be hot-deployed to their BPEL engine while with our

approach the changes in the rules might not be considered at

runtime, depending on the CEP engine. On the other hand,

this difference also shows an advantage for our proposal,

since we are not tied to a single engine and we can use

any CEP rules already defined for the monitoring process,

while in their case we would need to create a new plug-in

for each new situation we want to monitor. Also, even if we

needed to restart the CEP engine in order to consider the new

rules, this would not affect any active running processes, as

it would if we restarted the BPEL engine.

VII. CONCLUSIONS AND FUTURE WORK

Process adaptation and Complex Event Processing are

two topics that are creating a lot of interest in the research

community, however there is still no integration of both

domains. In this paper we presented CEVICHE, a frame-

work that intends to facilitate the integration of CEP into

existing business processes and to allow these processes

to be dynamically adapted to different circumstances. With

CEVICHE we addressed four issues: adaptation, dynamicity,

integration to business process, and non-dependency to a

specific CEP engine. As part of the CEVICHE framework,

we proposed the SBPL, an extension of BPEL that allows

the user to include the adaptation points and conditions in

order to create dynamically adaptable business processes.

The SBPL uses special plug-ins to deal with the different

languages of the CEP engines, allowing the users to write

their process specifications only once and deploy it in the

engine they want. Using a simple car rental scenario we

showed how CEVICHE can be used to monitor the QoS

of a business process and adapt it dynamically to keep a

competitive level whenever the QoS dropped, without the

need to redeploy the process and without loosing any current

transactions.

Thanks to the modular architecture of CEVICHE, it is not

strongly linked to any third party technology. Even though,

for the moment we use AO4BPEL to deal with dynamic

adaptation of business processes, we could change it for

any other technology that allows us to do better dynamic

adaptation, or even develop our own. This architecture

also allows our work to be componentized in the future,

facilitating the integration with other technologies and the

interaction with the different parts of the architecture. We

also plan to work on the definition of a RESTful architecture

to leverage on the deployment of CEVICHE components

and facilitate the evolution of the architecture by adding or

changing components. We are still working with the SBPL

in order to have a very vast coverage of the CEP needs, and

for the moment we only have some basic support for SQL

based CEP engines like Esper.

REFERENCES

[1] D. C. Luckham, The Power of Events: An Introduction to
Complex Event Processing in Distributed Enterprise Systems.
Addison-Wesley Longman Publishing Co., Inc., 2001.

[2] N. Huber and K. Michael, “Minimizing Product Shrinkage
across the Supply Chain using Radio Frequency Identifica-
tion: a Case Study on a Major Australian Retailer,” in ICMB
’07: Proceedings of the International Conference on the
Management of Mobile Business. IEEE Computer Society,
2007, p. 45.

[3] “OASIS Standard. Web Services Business Process Execution
Language Version 2.0,” http://docs.oasis-open.org/wsbpel/2.0/
wsbpel-v2.0.html, April 2007.

[4] M. B. Juric, Business Process Execution Language for Web
Services BPEL and BPEL4WS 2nd Edition. Packt Publishing,
2006.

[5] T. Ku, Y. Zhu, and K. Hu, “A Novel Complex Event
Mining Network for Monitoring RFID-Enable Application,”
in PACIIA ’08: Proceedings of the 2008 IEEE Pacific-Asia
Workshop on Computational Intelligence and Industrial Ap-
plication. IEEE Computer Society, 2008, pp. 925–929.

[6] M. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,
“Service-oriented computing: State of the art and research
challenges,” Computer, vol. 40, no. 11, pp. 38–45, November
2007.

[7] J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut,
“Quality of service for workflows and web service processes,”
Web Semantics: Science, Services and Agents on the World
Wide Web, vol. 1, no. 3, pp. 281 – 308, 2004.

[8] M. C. Jaeger, G. Rojec-Goldmann, and G. Muhl, “Qos aggre-
gation for web service composition using workflow patterns,”
in EDOC ’04: Proceedings of the Enterprise Distributed
Object Computing Conference, Eighth IEEE International.
IEEE Computer Society, 2004, pp. 149–159.

[9] H.-C. Wang, C.-S. Lee, and T.-H. Ho, “Combining subjective
and objective qos factors for personalized web service selec-
tion,” Expert Systems with Applications, vol. 32, no. 2, pp.
571 – 584, 2007.

[10] L. Zeng, B. Benatallah, A. H.H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang, “Qos-aware middleware for
web services composition,” IEEE Trans. Softw. Eng., vol. 30,
no. 5, pp. 311–327, 2004.

[11] O. Moser, F. Rosenberg, and S. Dustdar, “Non-intrusive
monitoring and service adaptation for ws-bpel,” in WWW ’08:
Proceeding of the 17th international conference on World
Wide Web. ACM, 2008, pp. 815–824.

[12] M. Gillmann, G. Weikum, and W. Wonner, “Workflow man-
agement with service quality guarantees,” in SIGMOD ’02:
Proceedings of the 2002 ACM SIGMOD international con-
ference on Management of data. ACM, 2002, pp. 228–239.

[13] C. Patel, K. Supekar, and Y. Lee, “A qos oriented framework
for adaptive management of web service based workflows,”
in DEXA, 2003, pp. 826–835.

[14] G. Kiczales, J. Lamping, A. Mendheka, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin, “Aspect-Oriented Pro-
gramming,” in Proceedings of the European Conference on
Object-Oriented Programming (ECOOP), ser. Lecture Notes
in Computer Science, S. Gjessing and K. Nygaard, Eds., no.
1241. Springer, June 1997.

[15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold, “An overview of aspectj,” in ECOOP
’01: Proceedings of the 15th European Conference on Object-
Oriented Programming. Springer-Verlag, 2001, pp. 327–353.

[16] A. Charfi and M. Mezini, “Ao4bpel: An aspect-oriented
extension to bpel,” World Wide Web, vol. 10, no. 3, pp. 309–
344, 2007.

[17] EsperTech, “Esper,” http://esper.codehaus.org/.

[18] A. P. Barros, G. Decker, and A. Großkopf, “Complex events
in business processes,” in BIS, 2007, pp. 29–40.

[19] G. Hermosillo, J. Ellart, L. Seinturier, and L. Duchien,
“A Traceability Service to Facilitate RFID Adoption in the
Retail Supply Chain,” in Proceedings of the 3rd International
Workshop on RFID Technology - Concepts, Applications,
Challenges IWRT 2009. INSTICC Press, Portugal, 05 2009,
pp. 49–58.

[20] F. A. A. Lins, J. C. dos Santos Júnior, and N. S. Rosa,
“Adaptive web service composition,” SIGSOFT Softw. Eng.
Notes, vol. 32, no. 4, p. 6, 2007.

[21] M. Sánchez and J. Villalobos, “A flexible architecture to
build workflows using aspect-oriented concepts,” in AOM ’08:
Proceedings of the 2008 AOSD workshop on Aspect-oriented
modeling. ACM, 2008, pp. 25–30.

[22] S. S. u. Rahman, N. Aoumeur, and G. Saake, “An adap-
tive eca-centric architecture for agile service-based business
processes with compliant aspectual .net environment,” in
iiWAS ’08: Proceedings of the 10th International Conference
on Information Integration and Web-based Applications &
Services. ACM, 2008, pp. 240–247.

[23] M. Koning, C.-a. Sun, M. Sinnema, and P. Avgeriou, “Vxbpel:
Supporting variability for web services in bpel,” Inf. Softw.
Technol., vol. 51, no. 2, pp. 258–269, 2009.

[24] A. Charfi, T. Dinkelaker, and M. Mezini, “A plug-in archi-
tecture for self-adaptive web service compositions,” in ICWS
’09: Proceedings of the 2009 IEEE International Conference
on Web Services. IEEE Computer Society, 2009, pp. 35–42.

