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Abstract—We present an optimization approach for service
compositions in large-scale service-oriented systems that are
subject to Quality of Service (QoS) constraints. In particular, we
leverage a composition model that allows a flexible specification
of QoS constraints by using constraint hierarchies. We propose
an extensible metaheuristic framework for optimizing such com-
positions. It provides coherent implementation of common meta-
heuristic functionalities, such as the objective function, improved
mutation or neighbor generation. We implement three meta-
heuristic algorithms that leverage these improved operations. The
experiments show the efficiency of these implementations and the
improved convergence behavior compared to purely randomized
metaheuristic operators.

I. INTRODUCTION

Service-oriented systems have gained momentum as a
means to implement robust and interoperable distributed appli-
cations [1]. Enterprises often adopt the Service-Oriented Ar-
chitecture (SOA) paradigm to implement inter-organizational
and mission critical business processes [2], [3], [4]. Such
processes typically compose a large number of atomic services
into so-called composite services. For example, consider a
large online electronic reseller, called PCSell, who is assem-
bling built-to-order PCs and selling a wide range of electronic
equipment. If it uses a service-based infrastructure, it would
typically consume services from business partners. These
include payment services (such as Paypal), Customer Relation-
ship Management (CRM) services (such as Salesforce) or ship-
ping services. PCSell’s business success is highly dependent
on a reliable IT system that must satisfy rigid non-functional
properties such as 24/7 availability, efficient execution time
or high throughput. Non-functional properties are specified
as QoS constraints on composite services. QoS includes both
technical measures (e.g., response time of individual services
or availability [5]) and business-related attributes (e.g., order
fulfillment time). While some of these constraints are required,
other constraints are considered “nice to have”, i.e., desirable
but not critical. The specification and enforcement of QoS
constraints on a composite service level requires the necessary
means to optimize such compositions. Additionally, it requires
a pool of alternative services with different QoS or services
offered by different business partners (e.g., shipping services).

We argue that an efficient runtime optimization of large-
scale QoS-aware compositions is of particular importance

since a number of QoS attribute values are dynamic. These
would typically depend on environmental factors. For example,
response time depends on input data, server load, and network
latency. Therefore, service compositions need to be continu-
ously monitored and re-optimized in case the overall QoS is
not satisfactory. It is important that runtime re-optimization is
triggered whenever QoS changes are reported by monitoring
modules [5], [6]. This calls for efficient optimization methods.
Additionally, the optimal solution for the composition problem
is not usually required. Instead, it is important that all QoS
constraints are fulfilled and solutions be generated efficiently.

Most existing optimization approaches for QoS-aware ser-
vice compositions use some form of global optimization to
find the best solution in terms of QoS [7], [8], [9], [10].
While this is definitely useful for small compositions, it
incurs a significant performance penalty if applied to larger
compositions, especially for runtime optimization. Contrary to
global optimization, a metaheuristic combines basic heuristic
methods in higher level frameworks to efficiently and effec-
tively exploring a search space [11]. There is ample evidence
regarding the applicability of metaheuristics for large-scale op-
timization problems [11], [12]. However, no coherent approach
is available to demonstrate the effectiveness and efficiency of
metaheuristics for large-scale QoS-aware service composition.

We propose a comprehensive framework for optimizing
large-scale QoS-aware compositions at runtime. It uses an
extensible QoS model and a flexible specification of QoS
constraints by leveraging constraint hierarchies, a mechanism
that categorizes the importance of constraints using expressive
labels [13]. We combine flexible QoS constraint specification
with efficient metaheuristic optimization algorithms in a novel
way. In particular, we propose a coherent way to evaluate ser-
vice candidates and solutions, i.e., an assignment of concrete
services to abstract services in a composition. In addition,
we present efficient heuristics for modifying existing solu-
tions. They further improve the quality of generated solutions
compared to purely randomized ones. Thanks to their generic
nature, the proposed heuristics can be used across a variety of
existing algorithms such as Genetic Algorithms (GA), Simu-
lated Annealing (SA) and Tabu Search (TS). The experiments
demonstrate the efficiency and improved convergence behavior
compared to purely randomized implementations.
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The rest of the paper is structured as follows: Section II
presents the composition model for this approach. Section III
describes our metaheuristic framework. Section IV evaluates
the approach. Section V describes the related work. Section VI
provides concluding remarks and highlights some future work.

II. QOS-AWARE COMPOSITION MODEL

In this section, we present the composition model upon
which the foundation for the metaheuristic optimization ap-
proach is built. We briefly describe our approach for specifying
QoS constraints for a composite service.

A. Composition Model

A composite service CS consists of a set of n abstract
services Sj = {s1, s2, . . . , sn}. An abstract service is a non-
executable service describing the core functionality in terms of
operations, input, output, pre- and postconditions [14]. These
abstract services are composed using various control flow
structures such as sequences, loops, conditional or parallel
execution. This specification is called an abstract composite
service. For each abstract service sj , a set of m concrete
services Cij = {c1j , c2j , . . . , cmj} is available that imple-
ments the corresponding abstract service. To enact an abstract
composite service, a selection and binding of each abstract
service to a concrete service in the composition needs to be
established. This task is commonly known as service selection.

B. QoS Model

Service selection can be improved by considering the can-
didate services’ QoS for an abstract service sj . Our approach
provides an extensible QoS model, thus we use a vector
Q to denote all available QoS attributes in the system. Qk

then refers to the k-th QoS attribute within this vector. Each
candidate has a vector of QoS values, where qk

ij denotes the
QoS value of Cij (attribute type Qk). In this work, we focus on
two categories: (1) operational QoS attributes, e.g., response
time, throughput, availability or security; (2) business-related
attributes such as price, reputation or order fulfillment time.

We generally distinguish between three different types of
QoS attributes (also known as their dimension) as explained
in Table I. The functions (column 2) return true whenever
a given attribute has this dimension. They are particularly
important for the optimization phase (see next section) to
determine what attribute value is better than another one.
It also ensures extensibility of the QoS model because the
optimization framework can determine the dimension of each
QoS attribute at runtime.

C. QoS Constraints

We propose a flexible model for incorporating QoS con-
straints into the optimization process. Constraints usually
apply to different services or the whole composition. They can
also have different importance ranging from “nice to have” to
required constraints. Constraints applied to specific regions of
a composite service are not the scope of this paper.

Basically, two different constraint types can be specified on
the abstract composite service level [15]. Global constraints

Dimension Function Description Examples
metric ascending asc(Qk) a higher value is better availability,

throughput
metric descending desc(Qk) a lower value is better response

time, price
nominal nom(Qk) no natural ordering security

protocol

TABLE I
QOS DIMENSIONS

express QoS constraints for the overall abstract composite
service. Local constraints are applied only to single services
within the abstract composition. We leverage constraint hier-
archies [13] to capture the flexibility of specifying constraints.
A constraint hierarchy H is a multiset of labeled constraints.
H0 denotes the required constraints in H (also called hard
constraints). The sets H1,. . . ,Hn are defined for the hierarchy
levels 1. . . n representing weaker, so-called soft constraints la-
beled with different strengths. Each level expresses constraints
that are equally important. We use hierarchy levels with
the following strengths: {required, strong,medium,weak}.
However, this can be adapted to represent different levels.

We specify constraints as follows: A global constraint (GC)
for a given QoS attribute Qk can be written as a tuple GCk =
〈gc rvk, gc sk〉. The first element represents the desired value
of the constraint, e.g., for a response time constraint qrt ≤
1500msec, gc rvk is 1500. The second element represents the
strength of the constraint, e.g., required if the QoS constraint
needs to be satisfied. Local constraints (LCs) are specified in
the same way for a given abstract service Si and QoS attribute
Qk: LCk

i = 〈lc rvk
i , lc s

k
i 〉.

s1

s2

s3

s4

s5 s6

[false]

[true]

[false]

[true]

security = X.509 | required

reputation > 0.85 | strong

response time < 5000msec | required
availability >= 0.95 | strong

Fig. 1. Abstract Composition Example

Figure 1 shows a simple composition example as an Unified
Modeling Language (UML) activity diagram with six abstract
services denoted as s1 to s6 and a number of constraints.
Abstract service s1 defines a LC desiring a high reputation
which can be useful for example when selecting online reseller
services. Abstract services s2 and s3 define a LC for security,
e.g., when selecting credit card services. The GCs address the
response time and availability to ensure adequate performance.

III. METAHEURISTIC-BASED OPTIMIZATION

Based on the composition and QoS model, we introduce
the basic concepts to evaluate service candidates and solu-
tions. We define the objective function and introduce solution
modification as a common concept shared across metaheuristic
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algorithms. Finally, we show how Simulated Annealing (SA)
leverages these concepts for a specialized implementation.

A. Overview

A metaheuristic is an iterative generation process which
guides a subordinate heuristic by combining different concepts
for exploring and exploiting the search space. They are an
effective method for finding near-optimal solutions for large-
scale problems [16]. Different metaheuristic algorithms have
been developed over the years, such as Genetic Algorithms
(GA), Simulated Annealing (SA), Tabu Search (TS) and Ant
Colony Optimization (ACO). Each metaheuristic proposes a
different strategy, however, some basic principles and com-
monalities are shared. The goal of the optimization is to
find a solution that maximizes or minimizes a user-specified
objective function. This function is used as a black-box to
evaluate whether a given solution is satisfied. Some meta-
heuristics maintain one solution at a time (such as SA) while
others use multiple (such as GA and TS). Specific heuris-
tics, called generators, are used to generate initial solutions.
During the optimization, new solutions are usually generated
through mutation. If a solution is based on a current one,
it is called a neighbor. Both are usually implemented using
probabilistic methods. For example, GAs generate multiple
solutions and use another heuristic to select which solutions
will be combined by using a so-called crossover operator. All
metaheuristics generally keep track of the current optimum and
can be terminated based on different termination conditions
(e.g., time or number of iterations). SA is discussed in detail
in Section III-D.

We leverage these commonalities to build a common frame-
work for representing a solution, modeling the objective func-
tion and modifying solutions. In this paper, we focus specifi-
cally on two aspects: First, a solution needs to be represented
in combination with the definition of an objective function. We
incorporate QoS constraints using penalty values if constraints
are violated. Second, a neighbor generation function needs to
be specified to generate new and hopefully better solutions
based on a given solution by applying small modifications.
We refer to this requirement as solution modification.

B. Candidate and Solution Evaluation

Before describing how solutions are generated and im-
proved, we describe how to evaluate service candidates and
solutions. The goal is to generate aggregated values for both,
the candidate and the solution that combines QoS and penalty
values.

1) Candidate Evaluation: Each service candidate needs a
score and penalty value as general quality indicators for the
optimization process. Different quality attributes have different
scales, therefore, they need to be normalized. We use Simple
Additive Weighting (SAW), similar to [7]. The normalized
value nqk

ij of qk
ij is computed so that the best normalized

values are equal to 0, the worst equal to 1. Thus, higher
normalized values indicate worse quality. Nominal attributes
are exceptional, since the candidate either has the same value

as the required one or not. Additionally, each QoS attribute
can have a weight to express its importance in the global
context. For example, availability could be given a higher
weight than reputation because the latter values are specified
by the provider and might therefore not be fully trusted. The
user-defined attribute weights wk are used for computing the
weighted normalized value as follows: wnqk

ij = nqk
ij ·wk. All

these weights can be predefined as constant values during the
optimization and are usually application dependent.

Local constraint violations are incorporated by calculating
a penalty for a candidate. Therefore, we map the strength
levels of the constraint hierarchy H to numeric values. We
use the following mapping: {required = 20, strong =
10,medium = 5, weak = 2.5}. For simplicity, we assume
that lc sk

i and also gc sk return the mapped value of a
local and global constraint, respectively. The penalty value
pvk

ij for qk
ij is set to the lc sk

i of the local constraint if the
candidates’ QoS value is less (asc) or greater (desc) than
the local required value lc rvk

i . For nominal attributes, the
situation is more complex. Only in case each candidate has
the same nominal value, the aggregated value will be equal to
this value, otherwise it will be undefined. Thus, if a global
constraint for a nominal attribute exists, all candidates selected
for each abstract service must “support” the required value
gc rvk, otherwise the constraint cannot be satisfied. Thus, a
global constraint of a nominal attribute has the same semantic
as applying a local constraint for the same nominal attribute to
each abstract service with the same required value. It should
be clear, that a user must not define contradictory global and
local nominal constraints. Therefore, the penalty value for
nominal attributes is the sum of both local lc sk

i and global
constraint strengths gc sk in case they are violated. In any
other case, the penalty is set to 0. These penalty values need
to be combined into a single value reflecting the overall local
penalty of a candidate Cij : clp(Cij) =

∑d
k=1 pv

k
ij . The overall

candidate score of Cij can then be computed as follows:
csc(Cij) =

∑d
k=1 wnq

k
ij+clp(Cij). It consists of the weighted

normalized values and the overall local penalty. The first part
is helpful to find candidates satisfying local constraints. The
second part reflects the overall quality of the candidate from
a local and global perspective.

2) Solution Evaluation: Solutions created during the opti-
mization process also require a score and a penalty. The score
should reflect the overall QoS quality and the global/local
constraint satisfaction. Additionally, the overall global and
local penalty values should reflect the constraint violations.
These values allow the optimization to distinguish between
good and bad solutions. This leads the search process into
promising directions. The evaluation of the objective function
is, therefore, highly critical for the success and quality of the
optimization.

First of all, the aggregated QoS value aqk
s of solution S has

to be computed for each quality attribute Qk. This is achieved
by providing aggregation functions specifically for each QoS
attribute and composition construct. For example, abstract
services s1 and s3 in Figure 1 are conditionally executed,
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Sequence

Parallel Loop[10] s6

Condition

Branch1
[0.30]

Branch2
[0.70]

s4

s2 s3

s5

Type ... Control Flow 
Node

Legend:

... Abstract Service 
        Node (constrained)

s1

Fig. 2. Normalized Abstract Composition for Figure 1

therefore, it is necessary to know the execution probabilities
of both branches. Another example is the loop enclosing
t5, where the expected loop iterations need to be specified.
Therefore, we represent the composition as a tree (Figure 2)
by getting rid of the cycle caused by the loop. We call
this a normalized abstract composition as shown in Figure 2
for the composite service depicted in Figure 1. Internal tree
nodes represent the composition constructs (either sequential,
parallel, conditional or loop execution) whereas leaf nodes
represent the abstract services. The aggregation algorithm
traverses the tree and calculates the aggregated QoS values for
each attribute based on the atomic aggregation functions. Due
to space reasons, we cannot discuss the aggregation formulas
and algorithm and refer to [15] for a more detailed discussion.

Based on the aggregated value, we also need to normalize
the aggregated QoS values because of the different scales.
The normalized values naqk

s of aqk
s are calculated using

SAW similar to the candidate normalization. Thus, the best
normalized values are equal to 0, the worst equal to 1.
Again, nominal attributes do not need to be normalized, these
attributes are only relevant for the penalty values. Similar to
the candidate selection, the user-specific attribute weights wk

are used to compute a weighted normalized value for each
Qk as follows: wnaqk

s = naqk
s · wk. These values are then

combined into a single solution quality value (sqv) as follows:
sqvs =

∑d
k=1 wnaq

k
s .

As the next step, the penalty values for violating global
constraints have to be computed. It should reflect both, the dis-
tance to the required values gc rvk and the constraint strengths
gc sk. For nominal attributes, let Invs be a set containing all
(invalid) candidates selected where qk

i sel(S,i) 6= gc rvk for all
abstract services Si. Let spvk

s denote the penalty value for the
aggregated value aqk

s :

spvk
s =



gc rvk

aqk
s

· gc sk if asc(Qk) and aqk
s < gc rvk

aqk
s

gc rvk
· gc sk if desc(Qk) and aqk

s > gc rvk

|Invs|
n
· gc sk if nom(Qk) and aqk

s 6= gc rvk

0 otherwise

Since there are potentially different scales for different metric
attributes, the difference between the required and actual value
cannot be directly used. Therefore, ratios are used to express
how far a value is away from satisfying a constraint. For
ascending metric attributes, the global required value gc rvk

is divided by aqk, for descending metric attributes the fraction
is inversed. These values are always greater than 1 and become
higher the worse the found values get (in a scale-independent
way due to the fraction). For nominal attributes the distance
to satisfaction is computed by dividing the number of selected
invalid candidates by the number of abstract services n. By
multiplying these values with the constraint strength gc sk,
we receive an expressive penalty value.

Now the global penalty values need to be combined into
a single value reflecting the solution global penalty. It sums
up the penalty values for each attribute Qk: sgp(S) =∑d

k=1 spv
k
s . Since we do not deal with global constraints

only, we also have to consider local penalties. Therefore, the
overall local penalty for solution S is the sum of the local
penalties of all selected candidates (expressed as Ci sel(S,i)):
slp(S) =

∑n
i=1 clp(Ci sel(S,i)).

Solutions that violate constraints must always have a higher
score than those satisfying all, thus the following solution
penalty value is computed:

sp(S) =

{∑d
k=1 w

k if(sgp(S) + slp(S)) > 0
0 otherwise

In case there is any constraint violation, the value is equal
to the sum of the weights of all defined QoS attributes. By
adding this value to the overall score (see below), a solution
that violates any constraint will always have a higher score
than one that does not.

Finally, the different factors need to be combined into
a single expressive value. The overall solution score that
represents the objective function is then computed as follows:

ssc(S) = w sqv·sqvs+w sgp·sgp(S)+w slp·slp(S)+sp(S)

The score is higher the “worse” the solution is (with 0 being
the lower bound). The user-defined weights w sqv, w sgp
and w slp again allow to customize and balance the different
factors and can be defined as constants.

C. Solution Modification

The convergence of purely random solution modification op-
erators is really slow, particularly for large composite services.
Situations were only very specific abstract service/candidate
assignments will lead to constraint satisfaction are extremely
improbable to be fulfilled in a specific amount of time.
Although random modification might lead to near-optimal
results in the end, it needs much time and computational re-
sources. Therefore, we propose an approach to better meet the
requirements of QoS-aware service composition. The approach
still uses randomization to a certain degree to avoid ending up
in local optima.

1) Improved Mutation: The main task of mutation and
neighbor generation is the creation of a new solution based on
an existing one by modifying it in a way that it is more likely to
fulfill all QoS constraints. Algorithm 2 shows the basic outline
of our improved mutation algorithm. For a given solution,
it checks whether it satisfies all global and local constraints
(line 2). If satisfied, the mutation is trying to improve the
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overall quality (see Algorithm 2). Otherwise, it checks whether
the solution’s global or local penalty is higher (line 5) and then
either improves the global or local penalty (line 6 and line 8).
In the following, we discuss all operations in more detail.

Algorithm 1 Improved Mutation Algorithm
1: procedure MUTATEimp(solution)
2: if sat(solution) then
3: IMPROVE QUALITY(solution)
4: else
5: if sgp(solution) > slp(solution) then
6: IMPROVE GLOBAL PENALTY(solution)
7: else
8: IMPROVE LOCAL PENALTY(solution)
9: end if

10: end if
11: end procedure

a) Quality Improvement: Algorithm 2 depicts the IM-
PROVE QUALITY operation that tries to improve the overall
quality of a solution which is known to satisfy all constraints.

Algorithm 2 Quality Improvement
1: procedure IMPROVE QUALITY(solution)
2: tot ex = GET EXCHANGE( )
3: per attr = split tot ex proportionally between attributes
4: for all 〈attr, ex〉 in per attr do
5: METRIC ATTRIBUTE IMPROVEMENT(solution,attr,ex)
6: end for
7: end procedure

First, the algorithm determines the number of abstract
service/candidate assignment exchanges in total by selecting
a random number between 1 and a configurable parameter
maxExchanges. In line 3 the total number of exchanges is
split, as the quality of multiple attributes should be improved
at the same time. The number of exchanges per attribute is
based on the proportional selection mode using the following
value: wk · naqk

solution. Thus, attributes with a high weight
(important) and a high normalized aggregated value (i.e.,
far away from the best possible value) are selected with
higher probability. The choice to include normalized values
is motivated by the fact that QoS attributes with a very
low normalized value can be hardly improved. Afterwards
the METRIC ATTRIBUTE IMPROVEMENT operation is used
for each 〈attr, ex〉 pair. It is responsible for improving the
solutions quality of exactly one metric attribute. The basic
idea is to exchange assigned candidates with low (ascending)
or high (descending) QoS values by better ones. Nominal
QoS attributes cannot be further improved after constraint
satisfaction because normalized aggregated values of nominal
attributes are always equal to 0, there is no chance they
are selected. Therefore, they are not considered for quality
improvement. However, they need to be considered in case an
solution does not satisfy all the constraints as discussed next.

b) Improving the Global Penalty: The implementation
of the IMPROVE GLOBAL PENALTY operation is similar to
the one above. Instead of improving the overall quality, it
tries to lower the global penalty, thus nominal attributes

have to be considered. It basically needs to determine the
unsatisfied global constraints and then split the number of
exchanges proportionally among them based on the the weight
of the global constraint gcw. This ensures that constraints
of higher importance are more probable to be selected and
are, therefore, earlier satisfied in the optimization process.
Finally, for each exchange pair, the referenced QoS attribute
is improved using the METRIC ATTRIBUTE IMPROVEMENT
or NOMINAL ATTRIBUTE IMPROVEMENT operation.

c) Improving the Local Penalty: If the solution’s penalty
is lower or equals the overall solution’s local penalty, the mu-
tation’s local penalty needs to be improved (cf. Algorithm 1,
line 5). This is achieved by running a tournament selection [12]
to determine the abstract service/candidate assignments that
need to be exchanged. Generally, for the selection of m items
out of n, m tournaments of a given size are held. In each
tournament the best item wins and is added to the result set.
This requires a better function to be specified that returns
true if the randomly selected item is better than the current
best item. In the IMPROVE LOCAL PENALTY operation, the
exchange is performed if the randomly selected candidate
assigned to an abstract service has a higher local penalty (clp)
as the currently best candidate in the tournament. For each
identified abstract service where the candidate needs to be
exchanged, the algorithms checks if other candidates with a
lower penalty exist. If this is the case, another tournament is
executed among those candidates to select the candidate with
the lowest penalty.

2) Neighbor Generation: In contrast to mutation, neighbor
generation creates multiple copies of an existing solution
(based on a configurable amount parameter). Other than that,
it is similar to the improved mutation because it leverages the
same set of operations as mutation (algorithm not shown for
space reasons). In fact, it could be implemented by invoking
the mutation for each clone. Unfortunately, all neighbors
would then fall into the same improvement category (quality,
global and local penalty). However, this is not optimal if
both global and local constraints are violated. Therefore, we
use a proportional selection to distribute whether the local
or the global penalties should be improved (proportional to
the solution’s penalty value). This broadens the neighborhood
search and leads to better results in case of TS where multiple
neighbors are generated in each iteration.

D. Specialized Metaheuristic Algorithm

We have created two implementation of each metaheuristic
algorithm. The basic version uses purely random operators
whereas the specialized version uses the aforementioned oper-
ations. Due to space limitations, we only show the implemen-
tation of SA. The implementation of the improved TS closely
follows its basic version. The GA is more complex because
an efficient crossover operator needs to be provided but this
is out of scope of this paper.

SA originates from the process of physical annealing of
solids [17]. A crystalline solid is heated and then cooled
down very slowly. This allows the solid to achieve its most
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regular possible crystal lattice configuration having its mini-
mum lattice energy state. During cooling, different states with
different energies are passed through. Typically, transitions to
states with lower energy are preferred, still it is possible that a
transition to a state with a slightly higher energy is taken. The
Metropolis criterion is used for simulating this behavior [18].
Thus, the objective function is minimized with the help of
a fictitious temperature. The temperature is in this case a
controllable parameter of the algorithm. The implementation
is illustrated in Algorithm 3.

Algorithm 3 Simulated Annealing
1: function SA OPTIMIZE(composition, condition)
2: solution = CREATE INITIAL SOLUTION(composition)
3: temp = GET INITIAL TEMPERATURE(composition)
4: EVALUATE(solution)
5: best = solution
6: while condition does not fire do
7: neighbour = GENERATE NEIGHBOR(solution)
8: EVALUATE(neighbour)
9: if ACCEPT(neighbour) then solution = neighbour

10: if solution better than best then
11: best = solution
12: end if
13: end if
14: UPDATE(temp)
15: end while
16: return best
17: end function

First, an initial solution and temperature are determined
(lines 2–3). Instead of using a random initial solution (as
common for basic SA implementations), we use a best can-
didates initial solution. This means that the candidate with
the best score is selected for each abstract service. Thus,
for abstract service Si the candidate with the lowest score
is chosen because a lower score is better (mi is the number
of candidates for Si):

min csc(Cij) ∀j ≤ mi

The candidate’s score is a good indicator for its value for
the whole composite service. This usually leads to a feasible
solution much faster than the random one.

The GET INITIAL TEMPERATURE operation follows the
geometric cooling schedule [12]. It is computed as the dif-
ference between the maximum and minimum solution score.
For determining the maximum score the following estimation
is used. A solution Smax is created such that for each abstract
service Si the candidate with the worst score is selected:

max csc(Cij) ∀j ≤ mi

The score of Smax is then used as maximum score. As
the theoretically lowest score is 0, this value is used as
an estimation for the minimum score. Therefore the initial
temperature temp becomes: temp = ssc(Smax).

The solution is then evaluated and stored as best solution
(lines 4-5). As long as the termination condition (line 6) is
not satisfied, the improvement of the solution is performed.
In each iteration, a neighbor solution neighbour is generated
(line 7). For creating a neighbor of the current solution,

we do not rely on randomized neighbor generation as the
standard SA implementation. Instead, the improvement SA
neighbor generation leverages the MUTATEimp(neighbour)
as described in Algorithm 1.

The newly created solution is accepted as base solution
for the next iteration either if it is better than the current
solution or if the Metropolis criterion is satisfied (lines 8–9). If
neighbour is even better than the best one, best is accordingly
updated (lines 10–12). Following the typical acceptance crite-
rion of simulated annealing the current solution is replaced
by neighbour in the following cases:

• the neighbour’s score is better than the solution’s one:

ssc(neighbour) < ssc(solution)

• the metropolis criterion is satisfied. This is implemented
by generating a random double number in (0,1) and
checking whether the following statement is true:

rand ≤ exp
(

ssc(solution)− ssc(neighbour)
temp

)
At the end of each iteration, the temperature is updated (line

14) by decreasing it in each iteration by using the following
function (again following the geometric cooling schedule):
temp = temp · α, α ∈ [0, 1). If the termination condition
becomes satisfied, the best solution so far is finally returned
(line 16).

IV. IMPLEMENTATION AND EVALUATION

We implemented the optimization framework using C#.NET
by focusing on extensibility with respect to the composition
constructs, termination conditions, the QoS model and its
aggregation functions. Additionally, we provided connectors
to the VRESCO platform [19]. VRESCO offers a simple
domain-specific language called VCL (Vienna Composition
Language) that implements the composition model described
in this paper [15]. By providing these connectors, the opti-
mization framework can work with compositions specified in
VCL, read the QoS data and perform the optimization.

Based on the implementation and integration in VRESCO,
we performed a number of experiments by using generated
compositions with different complexity. All metaheuristic im-
plementations (GA, SA and TS) use a set of “optimal” config-
uration parameters. They were determined by experimenting
with different parameter settings to find the lower and upper
bound. Due to space reasons, a detailed description of this
pre-evaluation is out of scope.

All experiments were executed on a Intel Core 2 Duo E6600
CPU with 2.4 GHz and 2 GB DDR II 667 MHz RAM using
Windows XP SP3 as operation system and .NET 3.5 SP1.

A. Composition Tree Generation

A composition generator generates large in-memory
VRESCO composition trees by using the following distribu-
tion of composition constructs: Sequence - 0.50, conditional
- 0.30, parallel - 0.15, loop - 0.05. The maximum branches
for sequence nodes are set to 10, for parallel nodes to 5 and
for conditionals to 5. The maximum number of rounds of a
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Fig. 3. Performance and Score Comparison

loop node is set to 5. A recursive algorithm then generates
the desired compositions of the given size. Additionally, we
use the following QoS attributes (values in brackets denote the
distribution): response time [100-300], price [10-20], availabil-
ity [0.95-1], accuracy [0.95-1], throughput [100-150], reliable
messaging [0,1] and security [0,1,2,3,4]. The algorithm ran-
domly selects 5 QoS attributes as global constraints. Local
constraints are added to abstract services with a probability
of 0.30. The number of constraints per abstract service is
determined by selecting a random value between 1 and 5. The
required QoS values are determined by randomly selecting a
quality of 50% to 70% of the attribute range for each abstract
service. For nominal attributes, always the highest nominal
value is chosen.

B. Performance Comparison

Figure 3(a) shows the difference between the basic SA im-
plementation (B) and the specialized implementation (S) using
the efficient operators developed in this work. The specialized
version is almost up to a 100 times faster. Higher numbers
of abstract services are not shown because the runtime of the
basic SA grows fast and it would not be readable in one plot.

Figure 3(b) depicts the average time for finding a feasible
solution for compositions ranging from 2500 to 5000 abstract
services (smaller ones are omitted for readability). For each
abstract service size 200 random compositions are built and
optimized. If no solution could be found within 5000 ms, the
optimization process was stopped. It can be seen that the GA
performs worse than the SA and TS approaches. For small
candidate sizes, SA is even a bit faster than TS. However,
the SA approach was not able to find a feasible solution for
compositions consisting of 1250 abstract services twice. The
TS approach also did not find a feasible solution for two
generated compositions consisting of 2000 abstract services.
In contrast, the GA always identified a solution satisfying all
constraints. Interestingly, the standard deviation of SA and
TS is much higher for small candidate sizes (not shown as
a plot). A possible explanation is that the scores computed for
the candidates during the candidate evaluation are much more
expressive if a lot of candidates are available for each abstract
service. Thus, the initial solution built is less vulnerable to
superficially “good” candidates that eventually prove to be

unsuitable for finding a solution satisfying all constraints.
Finally, the score depending on the time passed is evaluated.

Typical abstract service sizes have been chosen: 250, 500,
1000, 2000. For each size, 20 compositions were created and
optimized for 1000 ms each. Figure 3(c) shows the average
scores reached by each algorithm for candidate sizes of 10-
50 per abstract service. For larger candidate sizes comparable
results are reached, thus, they are not further shown and
discussed. As can be easily determined, the GA needs the
most time for converging, while SA generally shows the fastest
convergence behavior. TS can be found in between. After
about 300 ms, the score improved only very little for all
metaheuristics.

V. RELATED WORK

Most QoS-aware composition approaches focus on variants
of linear programming methods to solve the optimization
problem. Little work on metaheuristic approaches is available
that design operators specifically for the optimization of large-
scale QoS-aware compositions.

Zeng et al. [7] present two approaches, one focusing on
the local optimization, the second one on global optimiza-
tion. For solving the global optimization problem, they use
Integer Linear Programming (ILP). The objective function
is formulated to maximize the overall QoS and global QoS
constraints are considered. Since not all QoS aggregation
formulas are linear, they need to be linearized (e.g., by
using the natural logarithm). This can have an (unwanted)
impact on the objective function, although the constraints still
hold. Berbner et al. [20] implemented three heuristics: (i) a
MILP formulation solved through IP relaxation; (ii) one that
randomly replaces abstract service/candidate assignments; (iii)
an SA algorithm to temporarily accept worse solutions to leave
local optima and possible find the global optimum. Ardagna
and Pernici [9] leverage Mixed Integer Linear Programming
(MILP) to propose an improved version of the work from Zeng
et al. They introduce advanced concepts such as loop peeling
and negotiation mechanisms to address situation where no
feasible solution can be found. Alrifai and Risse [10] propose
a solution where they decompose global QoS constraints into
local constraints with conservative upper and lower bounds.
These local constraints are resolved by using an efficient
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distributed local selection strategy.
All of the aforementioned approaches do not leverage

metaheuristics but they provide a good performance for small
and a reasonable performance for medium scale compositions.
However, they do not support the definition of user-defined
hard and soft QoS constraints.

Canfora et al. [21] were the first to use GA for the
optimization of QoS-aware compositions. The main advantage
with respect to ILP approaches is that any kind of constraint
and objective/fitness function (not only linear ones) can be
used as in our approach. The results show that their GA
implementation scales much better than the ILP approach
present for example by Zeng et al. Jaeger and Muehl [22]
present another GA-based approach that uses a slightly dif-
ferent fitness function and a special crossover variant where
the fitter parent is dominant. Their results show reasonable
performance but the solutions are far from being optimal.
Kobti and Zhiyang [23] present a GA and Cultural Algorithm
(CA). While the first one is similar to Canfora et al., the latter
uses a global belief space and an influence function that should
accelerate the convergence of the population. However, they
do not consider global nor local constraints.

In contrast to our work, existing metaheuristics based ap-
proaches generally do not provide operators specialized on the
optimization problem of large-scale QoS-aware compositions.
Instead, standard operators such as two-points-crossover for
GA are used, which solely depend on randomness. While this
might be applicable to find a good solution for small-sized
problems, it does not lead to satisfying results when applied
to larger-scale problems. Convergence will also suffer, since
the chance of creating a better solution by randomly replacing
abstract service/candidate assignments is limited.

VI. CONCLUSIONS

In this paper we have proposed a metaheuristic framework
for the QoS-aware composition problem. It is novel in the
sense that it supports (i) a flexible way to specify the QoS
requirements using constraint hierarchies; (ii) a extensible
and user-defined QoS model and (iii) improved mutation and
neighbor generation heuristics. We have implemented three
specialized versions of well-known metaheuristics, namely
GA, SA and TS. The optimization outperforms existing ap-
proaches with regard to the optimization time, especially for
large-scale services. This makes the framework useful for
runtime composition and re-composition in enterprise environ-
ments because the overhead is minimal for small to medium
size compositions. Additionally, it is applicable in domains
where performance and large-scale systems are dominant, such
as scientific computing or computational science.

Our future work will explore the problem of dependent and
conflicting QoS attributes and how this can be considered
during the optimization. Additionally, we will extend the
support for nominal QoS attributes. Currently, QoS constraints
on nominal attributes require all services in a composition to
support them. However, this is very inflexible and leads to
frequent constraint violations.
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