
Analyzing Communities vs. Single Agent-based Web Services: Trust Perspectives

Babak Khosravifar1, Jamal Bentahar1, Ahmad Moazin1

Zakaria Maamar2, and Philippe Thiran3
1Concordia University, Canada,2Zayed University, UAE,3University of Namur, Belgium

b khosr@encs.concordia.ca, bentahar@ciise.concordia.ca, a moazi@encs.concordia.ca
zakaria.maamar@zu.ac.ae, pthiran@fundp.ac.be

Abstract—Gathering functionally similar agent-based Web
services into communities has been proposed and promoted on
many occasions. In this paper, we compare the performance
of these communities with self-managed, single agent-based
Web services from trust perspective. To this end, we deploy
a reputation model that ranks communities and Web services
with respect to different reputation parameters. By relating
the parameters, we extend our discussion to analyze the
beneficial cases and incentives for a single Web service to join
a community even if this joining could negatively impact other
parameters. Besides theoretical discussions of this analysis, we
discuss the system implementation along with simulations that
depict diverse parameters and system performance.
Keywords. Community of agent-based Web service, Trust,
Reputation, Incentives.

I. I NTRODUCTION

The use of Web services is mostly motivated by devel-
oping loosely-coupled, cross-enterprize business processes
that process users’ requests. In this paper, each Web service
is associated with an agent that acts on its behalf and
oversees its performance, commitments, and availability
details [7]. Being overloaded, and hence poor responsiveness
are unavoidable facts that single Web services along with
their associated agents should manage. A solution is to
group similarly-functional Web services into communities
to improve their overall performance and/or availability [2].
Each Community of Web services (CWS) is led by a master
Web service, which is responsible for accepting or inviting
(hiring) new Web services to be members of the community
and excluding or rejecting (firing) existing Web services.
Deploying such a community is more cost-effective and
thus, a proper management is required to handle community
response. Recently, there have been few attempts to address
the formation of communities of Web services that we will
discuss later in Section VI. Since handling users’ requests
does not guarantee a high service quality, users always
consider the reputation of the service that could be provided
by a single Web service or a CWS in their service selection
process. The offered service is compared with the promised
quality of service and a corresponding feedback is submitted
by the users. Therefore, Web services or CWSs receive
continuous feedback on their performances.

Challenges. Excellent reputation is a double sword; it
brings high demands from users and results in overloading
service providers. The challenge is to identify a tradeoff be-
tween one’s capacity (maximum number of service offering
at a time) and market share (number of users that request
service) so that an efficient service can handle the requests in
a way that neither it gets overloaded quickly, nor it remains
idle. The ultimate objective of all Web services is to tackle
such a tradeoff in which the service gains a stable reputation
and market share level. For a service (that could be a single
Web service or a CWS) failing to respond with an acceptable
service quality (i.e., being overloaded) would cause negative
feedback and thus, reputation drop.

Contribution. In this paper, we investigate the incentives
that would make a single agent-based Web service join a
community. The join could be still preferable even under
the assumption that the further quality of service could
be decreased. We measure and analyze the benefits that
a single Web service gains once it joins a community. In
this analysis, we measure the general service reputation by
considering two factors: satisfaction and inDemand. These
factors are chosen to reflect the basic reputation assessment
of a Web service. However, more parameters could be
involved without changing the main results of this paper, but
they are considered here because of space limit. We represent
the reputation as a result of gained feedback (via users) on
efficiency and accuracy of previous provided services. In
our implemented system, we empirically elaborate on the
inter-relation between the two considered factors with the
general reputation and show their impacts on each other.
Using these relations, we analyze the efficiency of CWS
compared to a single Web service in different aspects.
For comparison purposes, individual Web services are also
considered as singleton communities. So the idea is to
compare communities having one (or very few) Web services
with those having many.

Organization. The remainder of this paper is as fol-
lows. In Section II, we define the reputation model using
some metrics and propose how they could be combined.
In Section III, we start the discussion about a CWS’s
performance versus a single Web service performance in
overall service quality. We elaborate on inter-relation of

involved metrics together with general reputation and extract
their dependencies. In Section IV, we extend our discussion
to theoretical analysis of the incentive that a single Web
service has to join a community providing the same service.
In Section V, we represent the simulation and outline the
properties of our model in the experimental environment.
Section VI discusses some relevant related work and finally,
Section VII concludes the paper.

II. REPUTATION MODEL

In this section, we introduce the reputation model, which
is inspired by the one proposed in [6]. We discuss about the
opportunities that a CWS offers over single Web services
with respect to reputation-model parameters. For simplifica-
tion reasons, in the remainder of this paper, we only consider
users’ point of view (rather than users and providers) in
reputation assessment. In order to assess the overall rep-
utation of a CWS, the user needs to take some correlated
factors into account. In Section II-A, we present the involved
metrics that a user may consider in this assessment. These
metrics are chosen with respect to their general impact
on one’s reputation level. In Section II-B, we explain the
methodology that the user uses to combine these metrics in
order to assess the reputation of a CWS.

A. Metrics
Responsiveness Metric:Let i be the community that is

under consideration by userj. Responsiveness metric depicts
the time that a CWS spends to answer a request. LetResj,t

i
be the time that communityi takes to answer the request
received at timet by userj (in the model proposed in [6],
this is managed with master agent as a component in the
structure of the community). This time includes the time
for selecting a Web service from the community and the
time taken by that Web service to provide the response back
to user j. Equation 1 computes the response time of the
community i, computed with userj during the period of
time [t1, t2] (Res

j,[t1,t2]
i).

Res
j,[t1,t2]
i =

∑t2
t=t1

Resj,t
i × e−λ(t2−t)

∑t2
t=t1

e−λ(t2−t)
(1)

Here the factore−λ(t2−t), whereλ ∈ [0, 1] reflects the time
recency of the received requests so that more emphasis on
the recent requests is given. If no request is received at a
given timet, we supposeResj,t

i = 0.

InDemand Metric: It depicts users’ interests in a com-
munity i in comparison to other communities. This factor is
computed in equation 2.

InD
[t1,t2]
i =

Req
[t1,t2]
i∑M

k=1 Req
[t1,t2]
k

(2)

In this equation,Req
[t1,t2]
i is defined as the number of

requests thati has received during[t1, t2], andM represents
the number of communities under consideration.

Satisfaction Metric: Let Satj,ti be a feedback rating value
(which is supposed to be between0 and 1) representing
the satisfaction of userj with the service regarding the
request he sent at timet to communityi. Equation 3 shows
the overall satisfaction of userj about communityi. In
this equation,Vt represents the importance of the service
received at timet. This importance would be represented by
the service value or price.

Sat
j,[t1,t2]
i =

∑t2
t=t1

Satj,t
i × e−λ(t2−t)×Vt

∑t2
t=t1

e−λ(t2−t)×Vt
(3)

B. Metric Combination
In order to compute the reputation value of a CWS (which

is between0 and1), it is needed to combine these metrics
in a particular way. Actually, theResponsivenessandSatis-
faction metrics are the direct evaluations of the interactions
between a user and a CWS, whereas theinDemandmetric is
an assessment of a community in relation to other commu-
nities [8]. In the first part, each user adds up his ratings
of the Responsivenessand Satisfactionmetrics for each
interaction he has had with the CWS. Equation 4 computes
the reputation of communityi during interval[t1, t2] from
user j’s point of view. In this equation,ν represents the
maximum possible response time, so that if a community
does not respond, we would haveRes

j,[t1,t2]
i = ν. In the

equation 5, theinDemandmetric is added to consider the
reputation of communityi from users’ point of view, where
coefficientsη + κ = 1 andχ + φ = 1 are generic values.

Rep
j,[t1,t2]
i = η(1− Res

j,[t1,t2]
i

ν
) + κSat

j,[t1,t2]
i (4)

Rep
[t1,t2]
i = χ

1

m

m∑
j=1

(
Rep

j,[t1,t2]
i

)
+ φ InD

[t1,t2]
i (5)

III. C OMMUNITY OF WEB SERVICES VERSUS SINGLE

WEB SERVICES

A general assumption in this paper is that Web services
are free to remain self-independent and act individually or
to join a community at any time1. The question that arises is
why a Web service that could individually survive in terms
of inDemand (receiving requests from the users) is encour-
aged to join a community that would possibly degrade its
reputation. The answer could be survival in the environment
is more critical than carrying on the current reputation level.
Also we would like to discuss about the incentive that this
single Web service has when it expresses interest in joining a
community. To begin our discussions, we first declare three
different relations that specify the proportional relevance
of discussed metrics for a particular community (or single
Web service)i: 1) inDemand as a function of reputation
(InD

[t1,t2]
i = Γ(Rep

[t0,t1]
i)); 2) satisfaction as a function of

inDemand (Sat
[t1,t2]
i = ∆(InD

[t0,t1]
i)); and 3) reputation

as a function of satisfaction (Rep
[t1,t2]
i = Π(Sat

[t0,t1]
i)).

1In this paper, only the join issue is being discussed. However, the issue
of when join event can take place is another important challenge that is out
of scope of the paper.

FunctionsΓ and Π are monotonically increasing, whereas
the function ∆ is monotonically decreasing. Considering
the time stepst0 < t1 < t2, the inDemandduring period
[t1, t2] is proportionally relevant to the obtained reputation at
time [t0, t1] (i.e., high (or low) reputation during[t0, t1] will
increase (or decrease) inDemand during[t1, t2] and so on for
other functions). The reason behind elaborating these links
between the parameters is the fact that a single Web service
can predict the expected parameter value in the future and
thus, may change its decision for the current moment. These
relations enhance the performance of communities or Web
services that analyze their current status in the environment.

A. inDemand and Reputation

We adopt the assumption that the propagated reputation
of a community among users highly influence its selection.
Normally users do not tend to always select the same
communities upon their need of a service and prefer to seek
the communities that fulfill their requirements at best. In fact,
the users select the best option for the first trial and if being
rejected (due to overloaded reasons) go to the second best
choice and so on, which would guide many users towards
the most reputable communities. Therefore, we define the
relation between the inDemand of a communityi and show
that over time the inDemand value approaches the portion of
community reputation to the sum of all other communities
reputation. This means the more reputable a community is,
the more inDemand it gets. Therefore, we define the relation
of the inDemand ofi during the period[t1, t2] as the ratio
of the reputation value of the communityi to the sum of all
other communities reputation.

In order to prove such approach, we need to define a
new parameter in equation 6, which represents the adjusted
percentage over the requests for a particular community
i in period [t1, t2] (βi can be positive/negative and is
corresponding to communityi). If the value is positive, this
means that the community was more reputable than many
others in the previous period, so the number of requests
towards this community would be most likely more than
the average of received requests and therefore, more than
its capacity. Similarly, the number of requests towards the
less reputable communities are most likely less than their
capacities. This is fair in the sense that users by nature look
for the first best choice and upon rejection they move to other
possible choices. In equation 6,M represents the number
of existing communities andRep

[t0,t1] denotes the average
reputation among communities.

βi =
Rep

[t0,t1]
i −Rep

[t0,t1]

M
(6)

Rep
[t0,t1]

=

∑M
j=1 Rep

[t0,t1]
j

M

The valueβi acknowledges that highly reputable com-
munities would obtain more requests, which overflow their

capacities. If the first best community already reached the
capacity of its handling requests, there would be no room
for new requests. Therefore, the best choice for the new
users would not be the first best community, whereas it
would be a community that might accept the request. In
equation 7, we estimate the expected number of requests
for the communityi during the period[t1, t2] related to
the capacity of the community (Capi) and how much its
reputation is greater or less than the average reputation in
period [t0, t1]. In this equation, the expected number of
requests are computed with respect to the fact that rejecting
requests (that could lead to overloading state) are cascaded
through users.

[Req
[t1,t2]
i] = (1 + βi)× Capi (7)

Assume in general the capacity of the communities are the
same, so we can consider a general value for the capacities.
We can rewrite the inDemand value obtained in equation 2
by factorizing theCapi and replacing the expected requests
in equation 8. The obtained inDemand is the expected
number of requests that are sent to the community given
that communityi currently holds a particular reputation and
thus, a particularβi value from previous interactions with
users.

InD
[t1,t2]
i =

1 +
Rep

[t0,t1]
i −Rep

[t0,t1]

M

∑M
k=1 1 +

Rep
[t0,t1]
k

−Rep
[t0,t1]

M

(8)

By multiplying the numerator and denominator of the
equation byM and taking out the constant1, we would
obtain the following equation.

InD
[t1,t2]
i =

M + Rep
[t0,t1]
i −Rep

[t0,t1]

M2 +
∑M

k=1 Rep
[t0,t1]
k −∑M

k=1 Rep
[t0,t1]

In the denominator we can also simplify
∑M

k=1 Rep
[t0,t1]
k

by
∑M

k=1 Rep
[t0,t1] as they both declare the total reputa-

tion value for all communities. Therefore, the most sim-
plified equation would be obtained in equation 9, where
Γ(Rep

[t0,t1]
i) is monotonically increasing.

InD
[t1,t2]
i =

1

M
(1 +

Rep
[t0,t1]
i −Rep

[t0,t1]

M
)

InD
[t1,t2]
i = Γ(Rep

[t0,t1]
i) (9)

We can multiply the two sides of the equation by the total
reputation value for the communities (

∑M
k=1 Rep

[t0,t1]
k).

Therefore, we can just rewriteRep
[t0,t1] when the total value

is multiplied by 1
M . To this end, we would obtain:

InD
[t1,t2]
i

M∑

k=1

Rep
[t0,t1]
k = Rep

[t0,t1]
(1+

Rep
[t0,t1]
i −Rep

[t0,t1]

M
)

In equation 6 we calculate the adjusted ratio (βi) of the
requests for a particular communityi. We also consider the

reputation of a community adjusted to the average reputa-
tion of communities, so that we substituteRep

[t0,t1](1 +
Rep

[t0,t1]
i −Rep

[t0,t1]

M) by τRep
[t0,t1]
i (where τ > 0), which

would result in equation 10, and define the relation between
the inDemand value of a community by its reputation among
all other communities. Basically this equation is obtained
over the assumptions that we made in computing the value
βi as adjustment percentage and this is possible when the
users network and communities are established and the
reputations are already propagated so that the parameters
can be expected to be rationally set.

[InD
[t1,t2]
i] =

τRep
[t0,t1]
i∑M

k=1 Rep
[t0,t1]
k

(10)

B. Satisfaction and inDemand

In this section, we discuss the relation between satisfac-
tion and inDemand values for a typical communityi. In
general,i is able to handle the requests submitted unless it
gets busy with an overloaded inDemand and thus, cannot
offer a good QoS to the number of users that exceeds
the community capacity. This chaotic situation would cause
inefficiency in offering service quality and consequently lead
to drop in the satisfaction value of the community that is
assigned by users. We refer to this drop by the parameter
µ, so that 1 − µ represents the community drop factor.
Obviously different communities have different drop factors.
For instance, the old communities are the ones that are more
familiar with the network of users and thus, the chaotic
situation would less affect them (small drop factor, i.e., high
µ value). This is due to the fact that a typical community
i with a capacityCapi serves the first group of users (with
quantity ofCapi) with its actual quality of service (QoSi)
and the second group ofCapi users withQoSi×µ, the third
group of users withQoSi×µ2, and so on. Therefore, in the
community in which the drop factor is smaller, the valueµ is
closer to1. The settled community’sQoS is the average of
its composed Web services (equation 11). In this equation,
the valueQoSij indicates the quality of represented service
by the Web servicej that belongs to communityi andm is
the number of Web services belonging to communityi.

QoSi =

∑m
j=1 QoSij

m
(11)

We compute the age of a community relative to the age
of all other communities. Equation 12 computes the age and
drop factor of communityi as the non-zero difference be-
tween the current timeCT and the community initialization
time ITi. In equation 12,α represents the best handling
parameter, and depends on the service time and loading
time (the assigning time that the master of CWS would take
to assign a proper Web service to a given user’s request
α = loadingTime

serviceT ime). The valueϕ is generic and depends on
the loading time and environment stability, which reflects
how crowded the service request line is and how easy CWSs
handle user requests.

Agei = |CT − ITi| µ = α + ϕln(Agei) (12)

Considering the factorµ, we can now compute the pro-
vided service quality and consequently rate the obtained
satisfaction from the served users. Equation 13 represents
the provided quality of servicePQoSi that communityi
provides for a fixed period of time servingn segments.

PQoS
[t0,t1]
i =

∑n−1
j=0 Seg

[t0,t1]
i ×QoSi × µj

∑n−1
j=0 Seg

[t0,t1]
i

(13)

In equation 13, parameterSeg
[t0,t1]
i counts the number of

users who received the sameQoS from communityi. For
simplicity reasons we assume the case that the segment sizes
are the same (same as community capacityCapi). To this
end, segment sizeSegi could be factored out and therefore
simplified.QoSi is also fixed and could be factored out and
therefore, we can rewrite equation 13 in equation 14, where
n represent the number of segments.

PQoS
[t0,t1]
i =

QoSi

∑n−1
j=0 µj

n
(14)

We assume that being aware of the community’s public
quality of service (QoSi is a public value and represents the
average QoS of its Web services), a user that is requesting
a service would be satisfied100% subject to obtaining the
promisedQoS (what is obtained is the same as what is
proposed). Similarly, the user would be less satisfied if the
QoS is decreased byµ. Here we calculate the fair feedback
of such user toµ as the provided quality of service isQoSi×
µ. The obtained satisfaction for each group of users with
the same served quality is considered the same. Thus in
equation 15, the obtained average satisfaction value in period
[t1, t2] is computed as the sum of all the provided feedback
in a similar way and written as a monotonically decreasing
function of inDemand (∆(InD

[t0,t1]
i)) in period [t0, t1].

Sat
[t1,t2]
i =

∑n−1
j=0 µj

n
=

1− µn−1

n(1− µ)
(15)

where n =
InD

[t0,t1]
i

Capi
⇒ Sat

[t1,t2]
i = ∆(InD

[t0,t1]
i)

C. Reputation and Satisfaction
In this section, we discuss the relation betweenRep and

Sat parameters. In equation 4, we define how reputation
is formed regarding the responsivenessRes and the ob-
tained satisfaction of a communitySat. In equation 15,
we compute the obtained satisfaction with respect to the
fact that the busy community starts decreasing its quality
and thus becomes less reputable for users. Now we dis-
cuss how the responsiveness (Res) value is computed. In
equation 7, we estimate the expected requests (that are all
accepted with the community) with respect to the valueβi
as adjustment percentage over the average reputation of a
community. In general, the responsiveness of a community
is computed as a percentage of the accepted requests to
the total filed requests from users in a specific time period
(TReq). Equation 16 computes the aforementioned portion

for a typical communityi. In equation 16, the parameterθ
is the percentage of the total requests that are attracted to
community i. Basically we declare thatθ is the portion of
users that know communityi (either they are in his network
1
|i| or indirectly connectedδ).

Resi =
(1 + βi)× Capi

θ × TReq
where θ =

1

|i| + δ (16)

Consider equation 4, the community would get more
reputation if theRes value is less. This is generic in terms
of time. However, here we address this issue in terms of the
percentage of accepting the filed requests. To this end, if
the community is accepting more than its capacity, the value
Res would be high and therefore, the totalRep value would
decrease. Therefore, in equation 17, we present the obtained
reputation of communityi during [t1, t2] as a monotonically
increasing function of satisfaction during[t0, t1].

Rep
[t1,t2]
i = Π(Sat

[t0,t1]
i) (17)

IV. T HEORETICAL ANALYSIS OF JOINING BENEFIT

In this section, we summarize the predefined relations and
conclude with a decision making strategy, which enables
the communities of single (or even few Web services) to
estimate their benefits in terms of joining another larger
community. In order to estimate the aforementioned benefit
and thus, enable communities to make decisions based on the
benefits they gain, we need to define a performance function
that measures the extent to which a community acts success-
fully. Then maximizing one’s performance, the community
would decide what course of actions to choose (join a larger
community or act self-independent). Consideri as a typical
community with a current performancePi. We call “join”
a beneficial act once communityi joins another community
and as a result its performance gets increased. Likewise,
we have the notion of degradation in performance and that
happens when a community could not stop decreasing its
performance (either by carrying on the same strategy or after
choosing an action like “join”). In addition, we consider
a performance loose when a community cannot optimally
use its allocated resources (Web services). In this case, a
number of Web services are not engaged upon user requests
and thus, the master of the community should lay off some
Web services to avoid decreasing performance. Of course
the extent to which a community is committed to satisfy
users’ requests depends on how successful the community
was in terms of quality of service and quick response to the
users.

So far we mentioned that performance would be affected
by the use of allocated Web services and a simultaneous
obtained feedback. As mentioned before, a community with
overloaded inDemand cannot obtain an acceptable feedback
and adversely, an idle community cannot manage to opti-
mally use its resources. Therefore, both cases are not pre-
ferred and in general, a community that can optimally bal-

ance its obtained inDemand and capacity would manage high
performance. In equation 18, we formulate the aforemen-
tioned performance function consideringInD

[t0,t1]
i , Capi,

and Rep
[t0,t1]
i parameters. In this equation, the parameter

$Rep
[t0,t1]
i is the weighted reputation value of the com-

munity. Coefficient$ reflects the importance of reputation
factor in the performance. In this equation, a community
that holds a high reputed community and also manages to
provide a balance between itsInD andCap, can range an
acceptable performance.

Pi =





$Rep
[t0,t1]
i

|InD
[t0,t1]
i −Capi|

, if InD
[t0,t1]
i 6= Capi;

$Rep
[t0,t1]
i if InD

[t0,t1]
i = Capi.

(18)

Pi is a heuristic that we use to reflect communities’
successes since they have been initialized. Since the master
oversees the community progress, a good decision making
mechanism is needed to enhance the efficiency of active
communities. To this end, masters of communities would
always compare their performance values with their previ-
ously rated values in order to figure out the extent to which
they are progressing. The comparison of these values are
also happening when a community that is not progressing
seeks to join another community hoping to increase or keep
its current value. We measure the benefit as a difference
between the values of future and current state. To this end,
the communities are encouraged to join other communities
when they observe a continuous decrease in their current
performance values. The decrease reflects the failure of the
community in its action among other communities, and
thus the community is encouraged to seek to join other
communities so that the performance function changes to
get a positive slope.

Consider the communityi (with cardinality |i| that could
be one) that seeks to join another communityj (with
cardinality |j|). Here we analyze the reasons and cases
that would make this join possible. Also, we elaborate the
cases that would make the join inappropriate. Obviously
a community i would consider the choice of join only
when the performance gets increased once the join is done.
Since the decision of join might end up with join denial,
we address the performance after the join as the estimated
performance value and denote it bŷPi→j (Pi < P̂i→j if join
is to be done). To this end, communityi considers to joinj
once the following inequality holds. Obviously, community
j as a bigger community needs to consider acceptance or
rejection ofi’s request for join, but because of lack of space,
more details about these issues are omitted.

$Rep
[t0,t1]
i

|InD
[t0,t1]
i − Capi|

<
$R̂ep

[t1,t2]

i→j

|ÎnD
[t1,t2]

i→j − Ĉapi→j |
where

R̂ep
[t1,t2]

i→j =
|j| ×Rep

[t0,t1]
j + Rep

[t0,t1]
i

|j|+ |i|

ÎnD
[t1,t2]

i→j = InD
[t0,t1]
i +InD

[t0,t1]
j Ĉapi→j = Capi +Capj

R̂ep
[t1,t2]

i→j represents the merged current reputation value
with the average reputation value of communityj. There-
fore, the obtained value would be the new average reputation

of communityj. ÎnD
[t1,t2]

i→j andĈapi→j respectively repre-
sent the new inDemand and capacity after join. The join is
encouraged either when the communityi is overloaded with
many users or when the communityi cannot attract enough
users that satisfy its Web services. In the first case, the master
of community i compares its current performance levelPi

with the expected of that (̂Pi→j) upon join to communityj.
In this case the overloaded users would be handled once the
capacity of the community would be increased. This means
that the communityj can share some of its own resources if
needed and thus, the total requests for communityi would
be handled. To this end, the value|InD

[t0,t1]
i − Capi| is

smaller than|ÎnD
[t1,t2]

i→j −Ĉapi→j | in the sense that the total
performance level is higher. This may even happen when
the communityi faces a decrease in its present reputation

value (Rep
[t0,t1]
i > R̂ep

[t1,t2]

i→j). We simplify the presented
inequality in order to obtain the following inequality, which
defines the threshold by which the join is preferred.

|InD
[t0,t1]
i − Capi| ×Θ− ν(1−Θ) > |ÎnD

[t1,t2]

i→j − Ĉapi→j |

whereΘ =
R̂ep

[t1,t2]
i→j

Rep
[t0,t1]
i

In the simplified inequality, the parameterΘ represents
the comparison of the communityi’s reputations before
and after join to communityj. Therefore, the community
i would be encouraged to join communityj even though
its reputation is decreased (Θ < 1). In this case, the join is
beneficial as long as the total performance is higher. Here
we can consider the generic case that the reputation remains
unchanged (Θ = 1). Therefore, the join is beneficial if we
get the following.

|InD
[t0,t1]
i − Capi| > |ÎnD

[t1,t2]

i→j − Ĉapi→j |
In the second case of failure in which the community

i cannot attract enough users with respect to its present

capacity, the value|ÎnD
[t1,t2]

i→j − Ĉapi→j | is still such high
that causes a low performance level for communityi. Of
course this community would be happy to join another
communityj as long as it can increase its inDemand (smaller

|ÎnD
[t1,t2]

i→j − Ĉapi→j |) and reputation values. In this case
the condition that is shown is the previous inequalities is
obtained easily.

V. EMPIRICAL OBSERVATIONS AND ANALYSIS

In this section, we provide an empirical analysis over
the observed results regarding characteristics of a typical
communityC and a single Web serviceS. We motivate the
join option by depicting the challenges that a single Web ser-
vice S faces when it cannot handle further requests because

Table I
ENVIRONMENT SUMMARIZATION OVER THE OBTAINED

MEASUREMENTS.

Type Density QoS Capacity µ
CWS 40.0% [20.0%, 80.0%] [100,300] 10.0%
SWS 60.0% [20.0%, 95.0%] [10,20] 15.0%

of capacity limitation (InD
[t0,t1]
S > CapS). In the imple-

mented prototype, CWSs are composed of distributed Web
services and community components (Java c©TM agents).
The agent reasoning capabilities are implemented as Java
modules. Agents are equipped with reasoning functional-
ities that enable them to decide about course of actions
to take. Besides communities, the testbed environment is
also populated with numerous users (Java c©TM agents)
that are programmed to look for services being offered
by service providers. Users in general provide feedback
regarding the quality of the offered service than rank com-
munity reputation. The simulation consists of a series of
empirical experiments tailored to show different parameters
of system components in diverse aspects. Table I summarizes
the simulated environment which is populated with users
and providers. Users are multiple and scattered over the
environment, but providers are divided into communities
(CWS) and Single Web Services (SWS). CWS cover40.0%
of providers while SWS are more (60.0%). In the simulated
environment, we deployed relatively lower quality of service
for CWSs to motivate their higher performance from their
request handling rather than solely their service qualities. In
general, CWS host at least10 Web services, which covers
at least100 requests at a time, while a single Web service
handles10 at a time. The drop factorµ is also relatively
small in a CWS due to its higher capabilities compared to
SWS.

One of the main reasons that distracts service provider’s
overall performance (PS or PC) is its reputation update
range. Since they are associated with a reputation level as
a result of provided feedback by the users, if the number
of interacting users is relatively low, the update over the
reputation rank would be more visible than the case when
the number of interacting users is relatively high. Figure 1
shows characteristics of CWS (C) in the left part and SWS
S in the right part. Plots reflect average values that have
been measured as a result of analysis over all communities
of the same type.Plots(a) and (c) respectively represent
the reputation increase for the same number of RUNs while
both C andS are gaining high reputation. Since number of
interacting users withS is lower than that ofC, the effect
that positive feedback make on the reputation value ofS
is relatively high compared to the effect onC. Similarly
reputation degradation (plot(b) for C and plot(d) for S)
shows dramatic change in single Web service compared to
CWS. Overall, such high range of change reflects lower
feedback density, which also reflects lower market share

Figure 1. Characteristics of CWSs vs. SWSs.

(InD
[t0,t1]
S < InD

[t0,t1]
C). This is normal since single Web

service would share a small portion of the market. We
elaborate on the effect of such a range more inplots(e)
and (g). In these plots, the horizontal line represents a
community’s capacity. What is interesting in these plots
is the way that inDemand approaches capacity. Inplot(e),
we observe closer oscillating curve compared to that in
plot(g). CommunityC handles its user increase until it gets
overloaded (InD

[t0,t1]
C > CapC) and starts to offer lower

quality services. Therefore, being overloaded,C gets some
negative feedback that cause a drop in inDemand. Once
handling the requests again (InD

[t0,t1]
C < CapC), C obtains

good feedback that increase its inDemand again (InD
[t1,t2]
C).

But not necessarilyC would obtain the same inDemand
as before (InD

[t1,t2]
C < InD

[t0,t1]
C), and that is simply as

a result of users’ evaluations that might not show interest
requestingC again. In general, inDemand value would be
relaxed by capacity and that is the point whereC handles
user requests at best thanks to collaboration between Web
services that share users. Such relaxation would take much
longer time with S and that is due to its lower number
of interacting users. As shown inplot(g), the inDemand
curve oscillates in a higher range and takes more time to
merge withS’s capacity level. We also show this fact with
performance parameter inplots(f) and (h). As discussed
in Section IV, performance is affected by community’s
efficiency in minimizing the difference between its capacity
and inDemand values. As shown inplot(f), C as a good
community obtains an interesting performance (∆PC > 0)
over time whileS (seeplot(h)) gets decreased (∆PS < 0).
Performance parameter can be considered as obtained utility
(or payoff) as a result of acting either alone or with other
Web services in a community.

We continue our discussions in more details by comparing
how the aforementioned parameters evolve over time. In
Figure 2, the reputation level of a typical single Web
serviceS is depicted inplot(k) while the horizontal line
representsS’s capacity (CapS). In these plots, character-
istic of a typical Web service is measured to observe its

Figure 2. Evolution of cooperative parameters for a single Web service
over time.

Figure 3. Evolution of cooperative parameters for a community of Web
services over time.

cooperative parameters impacts over time. In this case, once
the reputation increases, the users requesting the service
increase, and thus the dot points (assigned for each user)
look more crowded around the reputation curve. Once rep-
utation exceeds suchCapS value, users are dispersed and
inDemand undergoes a faster decrease.Plot(l) illustrates
more information as inDemand, reputation, and satisfactions
parameters are represented. In this plot, inDemand gets the
highest value since a high reputation is followed by a large
number of requests while satisfactions look more steady. In
contrast, after a low quality service, all curves head down
among which, inDemand decreases more since users stop
requesting until such a single Web service manages to handle
user requests again.

Figure 3 illustrates the same structure analyzing the pa-
rameters regarding typical communityC hosting some Web
services. In this Figure,plot(m) depicts a more normal rep-
utation adjustment over itsCapC value and the crowd over
such reputation value show a more stable inDemand, which
reflects C ’s stable market share. This is more elaborated

in plot(n) once the curves tend to approach each other at
the end. This extends to more details about parameters of
a stable community that managed to maintain a tradeoff
between its capacity and inDemand.

VI. RELATED WORK

In the literature, the reputation of Web services has
been intensively stressed [9], [10]. In [1], the authors have
developed a framework aiming to select Web services based
on trust policy that users express. The framework allows
the users to select a Web service matching their needs and
expectations. In [8], the authors have designed a multi-agent
framework based on an ontology for QoS. Users’ ratings
according to the different qualities are used to compute the
reputation of the Web service. In [5], [7], some Web services
reputation mechanisms have been proposed, that would lead
to an effective service selection, and in [4], service-level
agreements are discussed in order to set the penalties over
the lack of QoS for the Web services. All these models
address the reputation in environments where Web services
function alone. In these models, Web service performance
is not discussed in details and in general, handling is not
considered as an issue for Web service besides its reputation.

Recently, some works have been done regarding formation
(and reputation) of communities of Web services [2]. The
main property of a CWS is to facilitate and improve the
process of Web service selection and effectively regulate the
process of user requests [3]. In [2], Elnaffar et al. propose
a reputation-based architecture for CWSs and classify the
involved metrics that affect the reputation of a community.
The authors discuss the effect of different factors while
diverse reputation directions are analyzed. However, they
do not derive the overall reputation of a CWS from the
proposed metrics. In [6], the authors mainly address the
overall assessed reputation that is used as a main reason
for service selection. The authors do not consider handling
as a parameter that impacts service selection in future.
A sound logging mechanism is proposed that penalizes
malicious acts and maintains accurate reputation rankings.
In general, the recent aforementioned works motivate the
existence of communities rather than single functional Web
services, but fail to systematically provide potential benefits
and technically compare CWS and individual Web services.

VII. C ONCLUSION

The contribution of this paper is the analysis over the
existence of communities of Web services and their overall
comparison in different aspects with single Web services.
The analysis covers the inter-relation between inDemand,
satisfaction, and reputation parameters. Such analysis is
concluded with performance measurement by which a single
Web service is encouraged to join a community within
which a better handling ability over the users’ requests is
guaranteed. The analysis performed in this paper is the first

theoretical and empirical work that takes into account the
system parameters and motivates higher performance even
under lower reputation level. In this analysis, single Web
services are allowed to predict their further reputation level
(and thus, performance) that let them make the best decision.

Our plan for future work is to advance the discussion to
analyze the concept of join in a more systematic way. To this
end, a repeated game can be defined between a community
and a single Web service with assigned payoffs as a result
of their selected strategies. In the performance analysis, we
need to elaborate more on the expected performance after
join and consider possible cases that might discourage a
single Web service to join a larger community. Similarly,
we need to discuss more about the community that could
refuse to accept the join of a single Web service.

Acknowledgments. Jamal Bentahar is supported by
NSERC (Canada) and FQRSC (Quebec).

REFERENCES

[1] A.S. Ali, S.A. Ludwig, and O.F. Rana. A cognitive trust-based
approach for Web service discovery and selection. In Proc. of
the 3’rd European Conf. on WS, pp. 38-40, ECOWS 2005.

[2] S. Elnaffar, Z. Maamar, H. Yahyaoui, J. Bentahar, and Ph. Thi-
ran. Reputation of communities of Web services -preliminary
investigation. In Proc. of the 22’nd IEEE Int. Conf. on Ad-
vanced Inf. Networking and App., pp. 1603-1608, AINA 2008.

[3] M. Jacyno, S. Bullock, M. Luck, T.R. Payne. Emergent Service
Provisioning and Demand Estimation through Self-Organizing
Agent Communities. 8’th International Joint Conference on
Autonomous Agents and Multiagent Systems, pp. 481-488,
AAMAS 2009.

[4] R. Jurca, B. Faltings, and W. Binder. Reliable QoS monitoring
based on client feedback. In Proc. of the 16’th International
World Wide Web Conference, pp. 1003-1011, WWW 2007.

[5] S. Kalepu, S. Krishnaswamy, and S. W. Loke. A QoS metric
for selecting Web services and providers. In Proc. 4’th Inter-
national Conference on Web Information Systems Engineering
Workshops, pp. 131-139, 2003.

[6] B. Khosravifar, J. Bentahar, P. Thiran, A.Moazin, and A. Guiot.
An approach to incentive-based reputation for communities of
Web services. In Proc. of IEEE 7’th International Conference
on Web Services, pp. 303-310, ICWS 2009.

[7] E.M. Maximilien and M.P. Singh. Conceptual model of Web
service reputation. SIGMOD Record 31(4):36-41, 2002.

[8] E.M. Maximilien. Multiagent system for dynamic Web services
selection. The 1’st Workshop on Service-Oriented Computing
and Agent-based Eng., pp. 25-29, SOCABE 2005.

[9] S. Rosario, A. Benveniste, S. Haar, and C. Jard. Probabilistic
QoS and soft contracts for transaction based Web services.
IEEE Int. Conf. on Web Services, pp. 126-133, ICWS 2007.

[10] M. Ruth and T. Shengru. Concurrency issues in automating
RTS for Web services. IEEE International Conference on Web
Services, pp. 1142-1143, ICWS 2007.

