
A Formal Service Contract Model for Accountable SaaS and Cloud Services

Joe Zou Yan Wang Kwei-Jay Lin

IBM Australia Department of Computing Department of EECS
Macquarie University Macquarie University University of California

Sydney, NSW, Australia Sydney, NSW, Australia Irvine, CA 92697, USA
joezou@au1.ibm.com yanwang@science.mq.edu.au klin@uci.edu

Abstract— Enabled by Service-Oriented Architecture (SOA),

recently Software as a Service (SaaS) and Cloud computing are

gaining momentum in the industry. An open issue is how to

ensure accountability in business services offered through

Internet. Traditionally a contract is an effective legal means to

uphold accountability in business transactions. In this paper,

we propose a novel service contract model called OWL-SC for

e-Services. Based on OWL-DL and SWRL, OWL-SC model

can be used to disclose obligations of both e-Services consumer

and e-Services provider. More importantly, the model allows

service participants to monitor the service contract execution

and keep track of obligation fulfillment for each party during

service delivery. We also propose a graphical model SC-CPN

based on Colored Petri-Nets (CPN) to formally model contract

obligations and their interdependencies. SC-CPN can also be

used to validate the correctness of obligations in OWL-SC

through simulation and state space analysis. Finally, we use the

Congo Book service as an example to illustrate how to use

OWL-SC and SC-CPN to build a service contract model.

Keywords: Service Contract, Accountability, Cloud, SaaS

I. INTRODUCTION

Based on the principles of SOA, SaaS and Cloud
Computing are emerging as the new business models that
have the potential to transform the IT industry. In contrast
with traditional on-line services, SaaS and Cloud
Computing turn non-trivial software and infrastructure
capabilities into business services that can be massively
subscribed and consumed through the internet. The viability
of these business models thus depends on the service
providers’ reputations and more importantly, consumers’
confidences on the services offered. The critical factor that
underpins these reputations and confidences is the
accountability of the services. By accountability, we mean
clear disclosure of service obligations; faithfully honoring of
disclosed obligations, or otherwise assuming the liability for
the non-performance of the obligations.

Traditionally, accountability is achieved through the
enforcement of a legal, paper-based contract. In SaaS,
service providers generally publish a terms and conditions
page for their offerings on their web-site. Upon clicking on
the acceptance link, the consumer enters a binding contract
with the service provider. Essentially, this is a “web-
enabled” version of the paper-based contract, which
presents serious accountability challenges in cyberspace. In
its plain-text form, a web-enabled paper-based contract can
neither be interpreted by software agents, nor be used as a

basis for contract execution monitoring and state reasoning.
Thus it does not enable service obligation disclosure, nor
allows software agents to decide which party is responsible
for what action, and which party is liable for what result.
Moreover, the virtualized nature of the e-Services makes it
even more difficult for liability settlement. This may
become a major obstacle for the take up of these e-Services.

 The criticality of these issues motivates the need for a
formal construct that maps the obligations in a paper-based
contract to machine interpretable capability statements. We
call this formal construct a service contract model. Current
SOA standards such as WS-* and REST do not provide a
service contract model. Without that, the obligation
monitoring and liability assignment would be baseless. This
presents an accountability gap in current implementations of
SOA that underpins the SaaS and Cloud platforms.

In this paper, we propose a formal service contract
model OWL-SC to bridge the accountability gap in current
SOA implementations. OWL-SC defines an ontology for
service contract. It captures the obligations of service
participants in a legal contract, representing them as a
machine-interpretable formalism based on OWL-DL and
SWRL. Such formalism facilitates obligation disclosure,
monitoring and contract state reasoning for service
participants during the full-lifecycle of service consumption.
To assist in OWL-SC model development and validation,
we also propose a graphical service contract model called
SC-CPN. SC-CPN is an extension of Colored Petri-Nets
(CPN), which offers strengths in both state-based and event-
based modeling approaches. With SC-CPN, the behavioral
aspect of a service contract can be visually modeled; the
contract execution can be simulated; and the properties of
the contract can be analyzed to ensure model validity.

The next section reviews related work. Section III
outlines the OWL-SC model. This is followed by section IV
that discusses the SC-CPN model. An example using Congo
Book service to illustrate the use of OWL-SC and SC-CPN
models is presented in section V. Finally, we conclude this
paper and discuss our future work in section VI.

II. RELATED WORK

While the term accountability is frequently used in
different contexts, Schedler provides a definition that
succinctly captures the essence of accountability: “A is
accountable to B when A is obliged to inform B about A’s
(past or future) actions and decisions, or justify them and to

be punished in the case of misconduct” [1]. The early work
on accountability in IT focuses on certain properties such as
non-repudiation, fairness of interactions, tamper-evident, etc.
at a technical protocol level. Recent research begins to
address accountability concerns such as quality of services
(QoS), root cause analysis, autonomous recoverability,
reputation and provenance at an architect level. Refer to [2]
for a detailed review on Accountability literature. Overall,
accountability research in IT literature mainly focuses on
some technical properties and rarely addresses the
accountability concerns in the underlying business contract.
Such accountability concerns are obligation disclosure and
liability for misconduct, as suggested in Schedler’s
definition. While Service Level Agreement (SLA) is a kind
of contract, it normally only records the non-functional
aspect of obligations and falls short on the functional aspect
of service obligations, which is the key concern for business.

On the other hand, e-Contract is an extensive researched
area in the IT literature. IBM’s Trading Partner Agreement
(TPA) defines e-contract as an XML document (TPAml)
that stipulates the general contract terms, conditions,
participant roles, communication and security protocols, and
business process [3]. TPAml has been submitted to OASIS
and used as a basis for developing ebXML Collaboration
Protocol Profile (CPP) and Collaboration Protocol
Agreement (CPA). TPAml and ebXML CPP/CPA are
designed for business to business (B2B) process integration
which requires a full stack of infrastructure support on both
sides. This heavy weight approach is not suitable for e-
Services, especially for SaaS or Cloud services. In [4], the
author proposes a multi-party e-Contract model that maps a
paper-based contract into contract actions and contract
commitments. An algorithm is outlined to detect contract
violation based on the commitment graph. In [5], an e-
Contract model based on Modal Action Logic, Deontic
Logic and Subjective Logic is presented. In [6], a Business
Contract Language (BCL) and Formal Contract Language
(FCL) are proposed using Defeasible Logic and Deontic
Logic. Other approaches include applying Event Calculus to
e-Contract (ecXML) [7] and extending First Order Logic
(FOL) to handle dynamic aspect of service contract [8].
Most of these approaches use some variant of FOL to
represent e-Contract, which is not easy to seamlessly
integrate into SOA architecture; and moreover, most of
these approaches favour expressiveness at the expense of
decidability—as we can see that FOL is not decidable.

An interesting contribution on service contract based on
Description Logic (DL) is presented in [9]. The authors
outline a logic framework that incorporates concrete domain

and action theory into an expressive DL called ALCQO(Q*).
The logic framework has the expressive power to describe
both static information and dynamic behaviour aspects of a
service contract while still remains decidability. The authors
do not provide a service contract representation in their
work and it is not clear how the service contract is used in
an SOA environment. This logic framework may have a

limitation on its reasoning power as DL has limited
reasoning capability on relationships between roles.

Grosof and Poon address this problem by combining
RuleML and DAML+OIL in [10]. They use DAML+OIL to
represent MIT Process Handbook’s process ontology and
also present a contract ontology for the process. Then they
outline an approach to specify RuleML rules “on top of”
DAML + OIL ontology to enable specification of more
complex behaviors in the contract. While their approach has
more expressiveness, the implication of decidability issue
was not discussed. Also how to apply the contract model in
a service environment was not covered either.

While the above models make significant contributions
on the topic of e-Contract, we have yet to find a model
which can be easily used to enable accountability for SaaS.

III. A PRO-ACCOUNTABILITY SERVICE CONTRACT MODEL

A. Requirements for Accountability Management

For SaaS and Cloud in particular, we can summarize the
core requirements for enabling accountability as below:

AR 1: Obligations for both service provider and consumer can be
specified unambiguously and interpretable by software agents.
AR 2: Obligations can be readily disclosed and accessible in a
Web based environment.
AR 3: Obligations can be monitored and breaches can be
immediately tracked; the status of contract execution can be
reasoned by software agents.
AR 4: Evidence of obligation fulfillment can be easily examined
and reported.

B. A Service Contract Model for SaaS and Cloud

In order to meet the above requirements, we propose a
service contract model as a formal construct for SaaS. The
service contract specifies obligations of both service
provider and service consumer, which can be used as a basis
for service participants to justify or explain their actions.
Moreover, it can also be used as a baseline for obligation
tracking and breach determination. It is formally defined as:

Definition 1: A service contract is a tuple SC = (s, D, P, Op, Oc,

Seq, st, R, T), where: s is a service offered; D is a finite set of
domain specific contract term definitions; P is a pair of involved
parties (provider pr and consumer pc); Op (Provider Obligation) is

a finite set of (Action, Evidence) pair: Op = {(ap1, ep1), (ap2, ep2),
…, (apn, epn) }; Oc (Consumer Obligation) is a finite set of
(Action, Evidence) pair: Oc = {(ac1, ec1), (ac2, ec2), …, (ack, eck)}.
In Op and Oc, Action is a tuple: a = (input, output, pre, post),

where input, output∈ D, both pre and post are binary condition
expressions; Evidence is a finite set of evidence object, timestamp
and condition triple: E = {(o1, t1, c1), (o2, t2, c2), …, (on, tn, cn)},

where oi ∈ D, ti is the creation timestamp of the evidence object, ci
is a condition expression that is evaluated to true, 1 ñ i ñ n; Seq is a
finite set of sequences Seq = {s1, s2, …, sn}, where each si is a

sequence of actions; Contract State st∈S, S = {st1, st2, …, stn},
where sti is one of user defined contract states, for example,
initialisation, in progress, provider breaching contract, etc; Rules:
R = { r1, r2, … rn } is a horn clause: consequent ← antecedent;
Time Period T = {contract_start_time, contract_end_time}.■

Definition 1 provides a generic two-party service

contract structure that captures the key accountability
elements. We don’t deal with multi-party service contract
model in this paper, mainly because most contracts in SaaS
only involve two parties. Even if multiple parties are
involved in the underlying contract, the service contract
model can always be decomposed into multiple two-party
service contracts. Note that a SaaS normally is not an atomic
service that only involves one interaction between a service
consumer and a service provider. Instead, it is a composite
service that may involve a series of conversations between a
service consumer and a service provider. Each conversation
is an instance of service contract execution that involves a
series of actions performed by both parties. Also during the
valid contact period, the service can be executed multiple
times, i.e. multiple conversations.

Using the Congo Book service [11] as an example, the
FullCongoBuy composite service can be offered as a SaaS
or Cloud service. The consumer can invoke FullCongoBuy
many times to buy different books during the valid period of
the underlying contract. Each execution may involve a
series of actions performed by either the consumer or the
provider. An example of a consumer’s action can be
inputting the book name, whereas a provider’s action can be
executing the atomic LocateBook service for locating the
book. Considering this characteristic, Definition 1 does not
capture detailed information in each execution. Thus we
need another definition for service contract execution:

Definition 2: A service contract execution is a tuple SCE = (sc, I,
Op, Oc, se, R), where: sc is an individual of service contract SC; I
is execution information, I = (start_time, complete_time,
timeout_value); Op is a set of obligations (see Definition 1) that are
successfully completed by the provider; same applied to Oc as the
completed obligations by the consumer; se is Contract Execution

State: se∈SE, SE = {se1, se2, …, sen}, where sei is one of the user
defined contract execution states, for example, in progress,
complete, pending provider obligation etc; Rules: R = {r1, r2, …,
rn}, rj is a horn clause: consequent ← antecedent. ■

C. Service Contract Model Representation

The above section provides definitions for the structure
of our service contract model. However, to satisfy
requirements listed in Section III.A, we need to first have a
representation mechanism. As suggested in our studies in
Section II, most of the existing e-Contract models in
literature use some logic models with strong expressiveness
power to represent a legal contract at the expense of
computation decidability. Moreover most of the e-Contract
models are theory-based, lack of tooling support and
implementation. Conversely, our approach to service

contract model is to make trade-offs amongst
expressiveness, decidability and existing tooling support.
The ultimate choice should satisfy the requirements in
Section III.A, yet retain computation decidability and can be
implemented with existing products and technologies.

As services may vary in different domains, a service

contract model needs to capture the domain concepts and

their relationships, and has the reasoning capability to
ensure consistency. An ontology provides exactly these
required capabilities; thus a service contract model should
be based an ontology. In the meantime, it should allow
capturing of service contract execution information in a
knowledge base (KB) so that the service contract execution
can be tracked and execution states can be reasoned.

An ontology can be specified using Web Ontology
Language (OWL), which is recommended by W3C as the
standard for representing ontologies on the Web. As a
revision of DAML+OIL, OWL provides three sub-
languages with increasing level of expressiveness: OWL-

Lite (corresponding to SHIF (D) [12]); OWL-DL

(corresponding to SHOIN(D) [12]); and OWL-Full which is
an extension to Resource Definition Framework (RDF).
Both OWL-Lite and OWL-DL provide computation
completeness and decidability [13], whereas OWL-Full has
maximum expressiveness but no computational guaranteed.

We have chosen OWL-DL to represent our service

contract model since it has the better trade-off between
expressiveness and decidability, and it also has mature
tooling support. But OWL-DL has its limitations. OWL 1
does not support role chaining. For example, given
hasParent and hasBrother roles, OWL 1 ontology can not
entail “hasUncle” role. OWL 2 partially solves this through
property chains. To address this limitation, we augment
OWL-DL with Semantic Web Rule Language (SWRL).
SWRL is a W3C submission, extending OWL-DL axioms
with a set of horn clause rules. It is basically a combination
of OWL-DL/OWL-Lite with the unary/binary Datalog
sublanguages of the Rule Markup Language (RuleML) [14].
Therefore, in our case, OWL-DL can be used to define the
concepts and roles in our service contract ontology while
SWRL can be used to define rules for contract execution
state reasoning. With this in mind, we here define:

Definition 3. A service contract model SC can be represented as a

KB that is a triple Ksc = (T, A, H), where:

• A TBox T consists of a finite set of concept inclusion axioms of
the form C b D, a finite set of role inclusion axioms of the form
R b S and transitivity axioms Trans(R), where C and D are
concepts, R and S are roles;

• An ABox A consists of a finite set of concept and role assertions

and individual equalities/inequalities C(a), R(a, b), a = b, and a
g b, respectively;

• A horn rule set H consists of a finite set of horn clause axioms.

A horn rule axiom consists of an antecedent (body) and a
consequent (head) in the form of: a ← a1.a2.….an, where a, ai
(0 ñ i ñ n) are atoms in rules that can be of the form C(x), P(x,

y), Q(x, z), sameAs(x, y) or differentFrom(x, y), and C is a
concept; P is an individual-valued property; Q is a data-valued

property; x, y are either variables or individuals; and z is either a
variable or a data value. Variables x, y, z must be bound to
named individuals in the KB to satisfy the DL-Safe criteria. ■

The other challenge that DL has is that it lacks of an
action semantic to describe the dynamic world. In [15],
Baader and et al integrate action theory into DL ALCQIO(D)

and explore the computation properties of such extension.
Based on their approach, the authors in [9] propose a service

contract model based on ALCQO(Q*), with a slightly
different action semantics. While executability and
projection are the major concerns in [15], the key concern in
our model is determining if an obligation is fulfilled.

We thus introduce an evidence concept and use SWRL
rules to simplify action state reasoning. Intuitively, the
evidence concept reflects how a particular action’s
fulfilment is verified in real life. An evidence object, created
as a result of the action can be used as a record to prove the
occurrence of that particular action. For example in a real
life scenario, a receipt can be used as an evidence object to
prove that a book selling action has occurred. We adopt a
similar action structure as [15, 16] with simplified semantics:

Definition 4: An action is a quadruple AC = (in, pre, out, post)
where: in is the input of the action, which is a finite set of
individuals in Ksc; pre (precondition) is a finite set of assertions in

A, out is the action output, which is a finite set of individuals in

Ksc; and post (post-condition) consists of a set of finite set of

conditional expressions in the form of ϕ /χ, where ϕ is a set of

assertions in A, χ is a set of assertions of primitive literals for T. ■

For example the LocateBook action: in = a book name

individual: “Twin Cities”, pre = º(a), out ∈ {ISBN,

“OutofStock”, “NotFound”}, post = {∃inStock.Book(a) /

LocatedBook(a), ¬∃Exists.Book(a) / NotFoundBook(a),

∃Exists.Book(a) 6 ¬∃inStock.Book(a) / OutofStock(a) }
where a is an individual of book “Twin Cities”.

Definition 5: An evidence object is a triple E = (obj, timestamp,
cond) where: obj is an individual in Ksc; timestamp is a data
property of obj representing the timestamp that obj is created; and
cond is a set of assertions w.r.t. obj. ■

An example of evidence can be: obj = an acknowledgement
message ack, timestamp = Timestamp(ack); cond =

∃Log.Msg(ack) 6 ∃Header.Label(“Ack_Locate Book”) 6

∃ValidSignature.Msg(ack).
As we use the evidence object as a proxy for the

occurrence of an action, we thus have the obligation
fulfilment axiom:

Axiom 1: Obligation (?a) ∧ mustDo(?a, ?b) ∧ verifiedBy(?b, ?c)

→ fullfilled (?a)

This axiom semantic is equivalent to a trigger rule [17]
semantic C u D where C, D are concepts. The trigger rule
can be translated into the inclusion axiom with epistemic
operator K [24]: KC b D. Intuitively, the K operator
denotes that the rule only applies to those individuals that
KB “knows” to be the instance of concept C, not to arbitrary
domain elements. In our case, the rule only applies to those
known instances of evidence objects.

In our service contract model, a predefined list of valid
sequence of actions will regulate the action performing
order from both the provider and the consumer. We can use
the List class as in [18] to represent the action sequence.
However, we don’t include other control constructs such as

if-else or split, as the actions in service contract is more
coarse-grained than atomic process in [18]. From a business
perspective, the main concern is on the correct performing
sequence of the high-level obligations, not on the low level
logic of atomic tasks as dealing with traditional workflow.

Based on the above definitions, a service contract
ontology can be defined. Fig. 1 shows a simplified version
of the ontology. The highlighted scContract class has
contract term definitions (Defintions class), and it links to a
predefined service p1:Service which can be semantically
described by OWL-S[18]. The contract class involves
ServiceProvider and ServiceConsumer, both of which have
a super class Party. Each party has Obligation which
consists of multiple Action and Evidence pairs. scContract
also has a ActionSequence class, which defines the valid
action sequences. An execution instance of scContract will
be defined by the highlighted scContractExecution class.
The scContractExecution keeps track of the fulfilled
obligations from both the service provider and the service
consumer.

scContract

scContractExecution

Party

Obligation

ContractState

ContractExecutionState

Action

Evidence

ServiceConsumer

ServiceProvider

Definitions

isa hasProperty

EvidenceObject

TimeStamp

EvidenceCondition

ProviderObligation

ConsumerObligation

Input

Output

Precondition
Postcondition

ConditionExpression

Role

Consumer

Providerp1:Service

Parameter

ActionSequence

Figure 1. A Simplified Version of the Service Contract Ontology

We name a service contract model built on top of this
ontology as OWL-SC, which complements a service defined
by OWL-S with clear obligations spelled out for the service
participants. An example is that for FullCongoBuy service
[18], a domain specific contract class CongoBookContract
can inherit from the generic scContract class. Such domain
specific contract instance may be executed multiple times.
Each execution can be an instance of
CongBookContractExecution class, which inherits from the
scContractExecution class. A KB can monitor the obligation
fulfillment situation and moreover, reason the contract state
and execution state based on the defined rules in the KB.

D. Properties of Service Contract Model OWL-SC

1) Expressiveness

The underlying DL in OWL-SC is currently SHOIN(D),

with intention to move to OWL 2 SROIQ(D) when tooling

support for OWL 2 is mature. SHOIN(D)’s expressiveness is
constrained by its syntax and semantics, which is listed in
Fig. 1 in [12]. As mentioned earlier, OWL-DL has limit in
role chaining expressiveness. Moreover built-in data type in

OWL 1 is limited to xsd:string and xsd:integer. In OWL-SC,
we augment OWL-DL with SWRL, which extends OWL
DL’s expressiveness power at two fronts: firstly it allows
reasoning of role chaining; secondly, SWRL built-ins can
increase expressiveness significantly on datatypes and the
operations on them. These extensions allow us to bring in
reasoning power in action semantics in our model. SWRL’s
limitation is that it does not allow disjunction and negation
in the rules; moreover explicit qualification over rules is
also not supported. However, a combined OWL-DL and
SWRL can leverage both strengths and provide the
expressiveness to satisfy the requirements in section III.A.

2) Computational Properties

While OWL-DL is a decidable logic, SWRL is proven
not decidable [19]. As the authors suggest, this is because
that DL algorithm can always reach a finite tree model for
satisfiability check, but adding the rules breaks the tree
model and therefore becomes undecidable. To avoid the
problem, the authors propose so called DL-Safe rule. A rule
r is called DL-safe if each variable in r occurs in a non-DL-
atom in the rule body. A program P is DL-safe if all its rules
are DL-Safe (see [19] for more details). The DL-Safe
restriction is only exposed to ensure that the variables in the
rule body are bound to only explicitly existing individuals in
the KB. In our model, anonymous individuals are
disregarded as we apply the DL-Safe rule restriction.

From a computational complexity perspective, reasoning

in SHOIN(D) has a worst-case nondeterministic exponential
time (NExpTime) [20]. Research on sound and complete
reasoning algorithm for OWL DL and rules is still an
ongoing effort. Various approaches [21, 22, 23] have been
proposed but each has limitations. In particular, we are
interested in [22, 23] for our service contract model as the
reasoning is based on an efficient production rule algorithm
– Rete. According to Forgy, Rete’s worst complexity for the
set of satisfied rules is linear in the number of rules, and
polynomial in the number of objects [24].

3) Tooling Support

The basic requirements for tooling in our service contract
model are the reasoning engine, ontology editor and rule
editor. We choose Protégé 3.4.3 [25] as our ontology editor
and rule editor. Protégé 3.4.3 supports OWL-DL, it bundles
with Pellet and also provides a DIG interface for other
reasoners like KAON2 and RACER. Moreover, it bundles
with SWRLtab, which allows SWRL rules editing. There is
also a SWRLJessTab [22] plug-in available for Protégé
3.4.3, which can translate OWL facts to Jess facts and
SWRL rules to Jess Rules. It then allows invocation of the
Jess rule engine that implements the RETE algorithm to do
reasoning on the translated rules and facts.

4) Meeting the Requirements in Section III.A

Compared to other e-Contract approaches, the
differentiation of our service contract model is that it is not
just a theoretical model, but can be practically implemented
with existing standards and tools; moreover, the action

semantics and evidence concept closely mimic how
accountability is treated in real situations in business
domain. In summary, with OWL-SC, obligations can be
clearly specified, and interpreted by software agents. This
satisfies AR 1 in Section III.A. Secondly, obligations
specified in OWL-SC can also be referred through URI on
the web, which meets AR 2 and suits the SaaS and Cloud
environment. Finally the action semantic and the concept of
evidence of OWL-SC allow accountability solutions to be
built to satisfy AR 3 and AR 4 respectively.

IV. A GRAPHICAL MODEL– SC-CPN

A. Coloured Petri-nets

OWL-SC provides a structure and semantics for
modelling obligations and actions in a service contract. But
neither OWL-DL nor Protégé provides an easy way for
modelling the sequence of the obligations. On the other
hand, Coloured Petri-Nets (CP-Nets) provide an intuitive
graphical representation underpinned by a rigorous
mathematics foundation; and more importantly, CP-Nets
have an explicit semantic to describe both actions and states
whereas most other formalisms can only focus on one aspect.
Furthermore, tools like CPN-Tools [26] are available to
assist in net editing, simulation and state space analysis.
Thus CP-Nets are ideal for visual modelling, analysis and
validation of our service contract model. We first outline
the definition of CP-Nets from [27]:

Definition 6: A CP-Net is a tuple CPN = (�, P, T, A, N, C, G, E, I)
where: � is a finite set of non-empty types, also called colour sets;
P is a finite set of places; T is a finite set of transitions; A is a finite
set of arcs such that: P 3 T = P 3 A = T 3 A = Ø; N is a node
function. It is defined from A into P % T 4 T % P; C is a colour
function. It is defined from P into �; G is a guard function. It is

defined from T into expressions such that: ≤t ∈ T: [Type(G(t)) = B .

Type(Var(G(t))) ` �]; E is an arc expression function. It is defined
from A into expressions such that: ≤a c A: [Type(E(a)) = C(p)MS .

Type(Var(E(a))) ` �] where p is the place of N(a); I is an
initialisation function. It is defined from P into closed expressions,
such that: ≤p c P: [Type(I(p)) = C(p)MS]. ■

B. CP-Nets Model for Service Contract – SC-CPN

We now define a set of one-to-one mapping rules to map
action semantics in OWL-SC to a CP-Net.

Definition 7: Given a KB defined in OWL-SC Ksc = (T, A, H), we

map each concept in T to a colour set Ø in a place p, Ø ∈ �, p ∈ P;

each assertion in A to a constant or variable declaration in the CP-

Net, therefore each model of T and A in J corresponds to an initial

marking in M0. We also map each consumer action in Ac to a
consumer transition in Tc, each provider action in Ap to a provider
transition in Tp, where Tc 3 Tp = Ø, Tc 4 Tp = T; input in and

output out to token colours in Pi, where Pi = •Tp 3 Tc• 4 •Tc 3 Tp•,
Pi ` P; precondition pre to i . g, where i is a set of token colours

in •T that satisfies with input inscription Ei, Ei ` E, g ∈ G, g is a
transition guard in T; also map post-condition post to Eo , where
Eo is output arc inscription, Eo ` E, Ei 3 Eo = Ø. ■

Based on Definition 7, we can construct a CP-Net from
OWL-SC, we call it as service contract CP-Net— SC-CPN.

Thus the standard CP-Net analysis techniques can be
applied to validate the correctness of the service contract
model w.r.t. the consumer and provider behaviour.
Intuitively, we can obtain two theorems on executability and
projection (see [15] for their definitions) based on the
mapping rules in Definition 7.

Theorem 1: Action executability problem in OWL-SC can be
translated to a transition fireability problem in SC-CPN.
Proof Sketch: Based on the mapping rules, it is obvious that the
theorem holds for one action. Assume it holds for (a1, ..., ak) where
1ñ i < k, i.e., for transitions (t1, …, tk), if t1..tk are fireable, then for
all models J of T and A, all interpretations J’ with J e Ta1, …, ai J’,

we have J’ ~ prei+1. Now assume transition tk+1 in (t1, …, tk+1)

sequence is also fireable. As defined in the mapping rules, all

initial markings M0 correspond to all models J of T and A. Prior to

transition tk+1, the marking is mk, which is fireable, i.e. tokens at
•tk+1 satisfy input inscription ei, as well as guard g at tk+1, this

implies that prek+1 holds. Since mk corresponds to J’’, where J’

eTai, ..., aj J’’, i ñ j < k+1, J’’ ~ prej+1, and therefore, J eTa1, ..,

ai, …, aj J’’, i ñ j < k+1, which suggests (a1, …, ak+1) is executable.

Theorem 2: Action projection problem in OWL-SC can be
translated to reachability problem in SC-CPN.

Similar approach like the one in Theorem 1 can be
applied to prove this theorem. We omit it due to space limit.

The ActionSequence in scContract contains the valid
action sequences to regulate the consumer and provider
interactions. Therefore to check whether or not a service
contract is breached in an execution instance, it is just a
matter of simply checking the actual action sequence in
scContractExecution, to see if it matches to any predefined
action sequence in ActionSequence in scContract. If not
matched, by locating which party’s action causes the
discrepancy we can identify the responsible party.

C. SC-CPN Properties

Due to the space limit, we briefly list the desired
properties of SC-CPN w.r.t. our service contract model.

Structural Boundedness: Assume place p in …N, m0 , b(p) =

sup{m[p] | m c RS(N, m0)}, a net is structural boundedness iff ≤p

b(p) < ∞, where sup is the token upper bound of p, RS is a
reachability set.
Liveness Properties: We always expect that the net can be
terminated at some state, i.e. there exists at least one dead marking
for any initial marking of the net. Also, each transaction should
have the possibility of firing, i.e. no dead transition exists. The SC-

CPN liveness property can be described as: ∃m ∈ RS(N, m0), for

≤t ∈ T such that t is not fireable at m, and for ≤t ∈ T , ∃m ∈ RS(N,

m0), ∃� such that m �t t m’.

Reversibility: We expect that the execution of service will lead to
a new state. Thus non-reversibility is a preferred property for SC-

CPN, which is defined as: ∃m c RS(N, m0), a� such that m �t m0.

D. Using SC-CPN to Model Service Contract Behaviour

SC-CPN provides an intuitive graphical model for
modelling action sequence for OWL-SC. Simulation can be
used to identify errors in the service contract’s action model.

Standard Petri-nets state and reachability analysis can be
used to analyse the executability and projection in OWL-SC.

V. USING OWL-SC & SC-CPN TO MODEL SERVICE

CONTRACT FOR CONGO BOOK SERVICE

Now we illustrate how to use OWL-SC and SC-CPN to
build a service contract model for the Congo Book service,
which is a widely used example of semantic web service.
We will first define the basic concepts and SWRL rules in
OWL-SC; then we use SC-CPN to model the obligation and
action sequence; next we will use Pallet reasoner to classify
and check consistency of the ontology; then we will use
Protégé’s SWRLJessTab to translate the OWL individuals
to Jess facts, SWRL rules to Jess rules and use Jess to entail
new facts; and finally we will use SQWRLQuerytab to
query the service contract knowledge base.

A. Defining Contract Service Ontology for CongoBook

We now use Protégé 3.4.3 to create the ontology based on
the model in Fig. 1. Firstly we extent scContract class to
create CongoBookServiceContract as the service contract
class for Congo Book service, then subclass
scContractExecution to create CongoBookServiceExecution
for the contract execution class. After that we can enter
some individuals. We use some candidate actions based on
the Congo Book semantic service CongoProcess.owl[18] as
a starting point: P_LocateBook, P_SignInUser, P_PutInCart,
etc.

B. Modeling Obligations using SC-CPN

Now we use SC-CPN to model the actions and verify the
correct sequence of actions. We leverage CPN-Tools’
hierarchical net feature [34] to create a hierarchy of service

contract nets across multiple pages for ease of modeling.
Fig. 2 shows the hierarchy page. Fig. 3 shows the top page
of CongoBookServiceContract, which can be used as a
generic high-level SC-CPN model for SaaS or Cloud
services. In the model, ServiceConsumer interacts with
ServiceProvider through the ServiceInput and ServiceOutput
places; each party maintains session information such as
shopping cart, credentials in ServiceSession place; and
ServiceConsumer pays for service with consideration and
ServiceProvider delivers service effect.

CongoBookServiceContract

ServiceConsumer

ServiceProvider

C_ProvideServiceInput

C_MaintainSession

C_ProcessServiceOutput

C_PayConsideration

P_ProcessServiceInput

P_MaintainSession

P_ProvideServiceOutput

P_ProcessPayment

P_DeliverSerivce
Figure 2. CongoBookServiceContract Hierarchy Page

Figure 3. CongoBookServiceContract Top Page

Fig. 4 shows the ServiceConsumer page, which further
breaks down the transitions to another level. Fig. 5 shows
the DeliverService page, which models the lowest
granularity of a transition, in this case is the Service
Provider’s obligation of Shipping book to the consumer.

Figure 4. ServiceConsumer Page

Figure 5. DeliverService Page

Once all of the net pages have been constructed, we run
simulations to see the inter-play between service consumer
and service provider. We next use CPN-Tools’ state space
analysis capability to analyze the SC-CPN properties. We
can continue to refine the SC-CPN model based on the
desired properties discussed in Section IV.C. Then from the
reachability graph, we produce the valid action sequence for
OWL-SC. For example, one normal action sequence is:
C_ProvBookName, P_LocateBook, C_PutInCart, P_GetSignOn,
C_ProvSignOn, P_SignUserIn, P_PutInCart, C_Checkout,
P_GetPaymentInfo, C_ProvPaymentInfo, P_ProcPayment,
P_GetAddInfo, C_ProvAddInfo, P_ReqAuthPay, C_AuthorizePay,

P_ShipBook, C_AcceptBook. Another sequence could be just
C_ProvideBookName, P_LocateBook, where the consumer
either just wants to search without intention to pursue the

purchase; or the book may be out of stock. Other valid
action sequences are omitted due to the page limit.

C. Reasoning of Congo Book Service Contract Model

With the valid action sequences identified, we now add
the action sequence instances into the ontology. Then we
input some evidence instances to simulate the collection of
action evidences in the service contract KB. Finally we
create rules to reason the completion of obligations and the
states of the contract execution. For example, axiom 1 for
CongoBookServiceContract can be input in SWRLTab as:

ServiceContractExecution(?x) . execute(?x, ?y)
. specifiedObligation(?y, ?z) . mustDo(?z, ?a) . verifiedBy(?a,
?b) . produceEvidence(?x, ?b) → fulfilledObligations(?x,?z)

Once the ontology and rules are finally built, we invoke
Pellet reasoner to classify the TBox and check consistency of
the ABox. Then through the SWRLJessTab, we convert
OWL individuals/SWRL rules to Jess facts/rules respectively;
and use Jess engines to do reasoning which can entail new
Jess facts. Fig. 6 shows an example of the reasoning result.
As we can see, the Jess engine inferred a lot of facts about
fulfilled obligations based on evidence produced by contract
execution instance CongoBookServiceExecution_1. It also
concluded that the CongoBookServiceExecution_1 is in
completion status based on the highlighted rule. After
reasoning, we can use SPARQL or SQWRLQueryTab to
query the KB.

Figure 6 Congo Book Service Contract Reasoning Results

D. Discussions

So far we have demonstrated the modelling of a pro-
accountability service contract model for an online service
using existing tools. Clearly this service contract model can
be applied to other SaaS and Cloud services to support
service obligation disclosure, monitoring and tracking of
non-compliance. The strengths of our model are that firstly it
addresses the accountability concerns through a formal
construct, which is firmly grounded on the intuitive concept
of service contract in the real world. Secondly the construct
is based on rigorous formalisms like OWL-DL/DL-Safe
SWRL and CP-Nets. The former allows machine
interpretation and web accessibility, yet provides
computation decidability. The later facilitates visual
modeling and simulation, yet is backed by solid mathematics.

Lastly our approach can be supported by existing tools and
readily applied in practical applications, rather than just a
theoretical model. We also notice that the weakness of the
model is in its expressiveness and reasoning power. For
example, it is quite difficult to reason whether a contract is
expired, since SWRL’s Temporal built-in [28] currently does
not provide the support for current time (e.g. now). Another
issue is that the translation from OWL-DL to Jess is not
complete; the anonymous individuals will not be translated
to Jess facts [23]. However this limitation does not impact
the completeness of our model because anonymous
individual information is not relevant to our model. The last
issue is that the inferred facts from Jess reasoning can
potentially make the initial OWL-DL ontology inconsistent
[23]. We suggest that a hybrid approach that leverages
strengths from different formalisms can best address the
weakness. We separate our service contract reasoning to
design-time reasoning and run-time reasoning stages. We
only use DL reasoner for concept consistency checking at
design-time while Jess rule engine is used to maintain the
KB at run-time. Other tasks such as comparison and
computation can be better handled via a combination of
traditional programming model and KB query. For example,
checking whether or not a contract is expired, it is easy to
query the KB, get the end time; then compare it to the
current time in a traditional program.

VI. CONCLUSION AND FUTURE WORK

High accountability standard not only benefits service
consumers as a whole, but also can be a differentiator for
service provider. As such, it is paramount to enable
accountability in SaaS and Cloud services. In contrast with
existing approaches that address accountability issues at a
technical protocol level, we address them at an architecture
level through a pro-accountability service contract
formalism, which closely mimics the contract concept in the
commercial world.

Our contribution can be therefore summarized as: firstly,
we analyze the accountability management requirements for
SaaS and Cloud services and define a formal construct for a
pro-accountability service contract model, proposing the
unique concepts such as service contract execution and
action evidence that are not seen in other e-Contract models.
We adopt the decidable OWL-DL, coupling with the
enhanced action semantics and DL-Safe SWRL rules to
represent the service contract construct, namely OWL-SC.
We also propose a novel approach to map OWL-SC action
semantics to a Colored Petri-Nets model, namely SC-CPN,
and thus enable visual modeling, validation and simulation
of action model in OWL-SC. We have used the Congo Book
service as an example to demonstrate how to use existing
tools to build the service contract model, and discussed the
strengths and weaknesses of the current model plus the
recommended approach to address the weaknesses. Other
domain specific application of such model is a future work.

REFERENCES

[1] A. Schedler, Self-Restraining State: Power and Accountability in New
Democracies, Lynne Reiner Publishers, 1999, pp. 13-28.

[2] Kwei-Jay Lin, Joe Zou and Yan Wang, Key Note, Accountability Computing
for e-Society, The International Conference on Advanced Information
Networking and Applications, IEEE, 2010.

[3] A. Dan and et al.: Business-to-Business Integration with TPAML and a
Business-to-Business Protocol Framework, IBM System Journal, 40(1),
IBM, 2001.

[4] L. Xu, Monitoring Multi-party Contracts for E-business, Dissertation, Doctor
of Philosophy, University of Toronto, 2004.

[5] A. Daskalopulu, Logic-Based Tools for the Analysis and Representation of
Legal Contracts, Dissertation, Doctor of Philosophy, University of London,
1999.

[6] G. Governatori and Z. Milosevic, A Formal Analysis of a Business Contract,
Language, Proc. Int’l J. Cooperative Info. Sys., vol. 15, no. 4, 2006, pp.
659–685.

[7] A.D.H. Farrell and et al, Performance Monitoring of Service-Level
Agreements for Utility Computing Using the Event Calculus, Proc. 1st Int’l
W’shop Electronic Contracting, IEEE CS Press, 2004, pp. 17–24.

[8] H. Davulcu, M. Kifer, and I.V. Ramakrishnan, “Ctr-s: A logic for specifying
contracts in semantic web services,” in Proc. WWW 2004, ACM, May 2004,
pp. 144–153.

[9] H. Liu and et al. Modeling and Reasoning about Semantic Web Services
Contract using Description Logic, The Ninth International Conference on
Web-Age Information Management, IEEE, 2008.

[10] B. Grosof and T. Poon, SweetDeal: Representing Agent Contracts with
Exceptions Using XML Rules, Proc. 12th Int’l Conf. World Wide Web,
ACM Press, 2003, pp. 340–349.

[11] A. Ankolekar and et al, DAML-S: Web Service Description for the
Semantic Web, DAML-S Coalition, Proc. Int’l Semantic Web Conf.
(ISWC), LNCS 2342, Springer Verlag, 2002, pp. 348-363.

[12] I. Horrocks, P.F. Patel-Schneider and F.V. Harmelen, From SHIQ and RDF
to OWL: The making of a web ontology language. J. of Web Semantics,
2003, 1(1):7–26.

[13] W3C, OWL web ontology language overview. http://www.w3.org/TR/owl-
features/

[14] I. Horrocks and P.F. Patel-Schneider, A proposal for an OWL rules
language. In The Thirteenth International World Wide Web Conference,
New York, May ACM Press, 2004.

[15] F. Baader and et al, Integrating description logics and action formalisms for
reasoning about web services, LTCS-Report 05-02, 2005.
http://lat.inf.tudresden.de/research/reports.html.

[16] S. Narayanan and S. A. McIlraith, Simulation, Verification and Automated
Composition of Web Services, 11th International World Wide Web
Conference, 2002.

[17] F. Baader, D. Calvanese and et al, The Description Logic Handbook,
Theory, Implementation and Applications, Cambridge Uni., 2003.

[18] D. Martin and et al, Describing Web Services using OWL-S and WSDL,
available at: http://www.ai.sri.com/daml/services/owl-s/1.1/owl-s-wsdl.html

[19] B. Motik, U. Sattler and R, Studer, Query Answering for OWLDL with
Rules, The SemanticWeb ISWC: 3rd International Semantic Web
Conference, Hiroshima, Japan, 2004.

[20] I. Horrocks and P.F. Patel-Schneider, Reducing OWL Entailment to
Description Logic Satisability, 2nd Intl. Semantic Web Conference, Florida,
USA, Oct, 2003

[21] A. Y. Levy and M.C. Rousset, Combining Horn rules and description logics
in CARIN, Artificial Intelligence 104 (1998) 165-209, 1998.

[22] C. Golbreich and A. Imai, Combining SWRL rules and OWL Ontologies
with Protégé OWL Plugin, Jess, and Racer. 7th International Protégé
Conference, Bethesda, MD, 2004.

[23] J. Mei, and E. Paslaru Bontas, Reasoning Paradigms for SWRL-enabled
Ontologies,Protégé With Rules Workshop, Madrid, 2005.

[24] C.L. Forgy, On the Efficient Implementation of Production Systems, Ph.D.
dissertation, Carnegie-Mellon University, 1979.

[25] Protégé, Available at http://protege.stanford.edu/
[26] CPN-Tools, http://wiki.daimi.au.dk/cpntools-help/_home.wiki
[27] K. Jensen: An Introduction to the Theoretical Aspects of Coloured Petri

Nets. In: J.W. de Bakker, W.-P. de Roever, G. Rozenberg (eds.): A Decade
of Concurrency, Lecture Notes in Computer Science vol. 803, Springer-
Verlag 1994, 230-272.

[28] Protegewiki, SWRLTemporalBuiltIns, 2002, Available at
http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTemporalBuiltIns.

