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Abstract— Enabled by Service-Oriented Architecture (SOA), 

recently Software as a Service (SaaS) and Cloud computing are 

gaining momentum in the industry. An open issue is how to 

ensure accountability in business services offered through 

Internet. Traditionally a contract is an effective legal means to 

uphold accountability in business transactions. In this paper, 

we propose a novel service contract model called OWL-SC for 

e-Services. Based on OWL-DL and SWRL, OWL-SC model 

can be used to disclose obligations of both e-Services consumer 

and e-Services provider. More importantly, the model allows 

service participants to monitor the service contract execution 

and keep track of obligation fulfillment for each party during 

service delivery. We also propose a graphical model SC-CPN 

based on Colored Petri-Nets (CPN) to formally model contract 

obligations and their interdependencies. SC-CPN can also be 

used to validate the correctness of obligations in OWL-SC 

through simulation and state space analysis. Finally, we use the 

Congo Book service as an example to illustrate how to use 

OWL-SC and SC-CPN to build a service contract model.  
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I.  INTRODUCTION  

Based on the principles of SOA, SaaS and Cloud 
Computing are emerging as the new business models that 
have the potential to transform the IT industry. In contrast 
with traditional on-line services, SaaS and Cloud 
Computing turn non-trivial software and infrastructure 
capabilities into business services that can be massively 
subscribed and consumed through the internet. The viability 
of these business models thus depends on the service 
providers’ reputations and more importantly, consumers’ 
confidences on the services offered. The critical factor that 
underpins these reputations and confidences is the 
accountability of the services. By accountability, we mean 
clear disclosure of service obligations; faithfully honoring of 
disclosed obligations, or otherwise assuming the liability for 
the non-performance of the obligations. 

Traditionally, accountability is achieved through the 
enforcement of a legal, paper-based contract. In SaaS, 
service providers generally publish a terms and conditions 
page for their offerings on their web-site. Upon clicking on 
the acceptance link, the consumer enters a binding contract 
with the service provider. Essentially, this is a “web-
enabled” version of the paper-based contract, which 
presents serious accountability challenges in cyberspace. In 
its plain-text form, a web-enabled paper-based contract can 
neither be interpreted by software agents, nor be used as a 

basis for contract execution monitoring and state reasoning. 
Thus it does not enable service obligation disclosure, nor 
allows software agents to decide which party is responsible 
for what action, and which party is liable for what result. 
Moreover, the virtualized nature of the e-Services makes it 
even more difficult for liability settlement. This may 
become a major obstacle for the take up of these e-Services. 

 The criticality of these issues motivates the need for a 
formal construct that maps the obligations in a paper-based 
contract to machine interpretable capability statements. We 
call this formal construct a service contract model. Current 
SOA standards such as WS-* and REST do not provide a 
service contract model. Without that, the obligation 
monitoring and liability assignment would be baseless. This 
presents an accountability gap in current implementations of 
SOA that underpins the SaaS and Cloud platforms. 

In this paper, we propose a formal service contract 
model OWL-SC to bridge the accountability gap in current 
SOA implementations. OWL-SC defines an ontology for 
service contract. It captures the obligations of service 
participants in a legal contract, representing them as a 
machine-interpretable formalism based on OWL-DL and 
SWRL. Such formalism facilitates obligation disclosure, 
monitoring and contract state reasoning for service 
participants during the full-lifecycle of service consumption. 
To assist in OWL-SC model development and validation, 
we also propose a graphical service contract model called 
SC-CPN. SC-CPN is an extension of Colored Petri-Nets 
(CPN), which offers strengths in both state-based and event-
based modeling approaches. With SC-CPN, the behavioral 
aspect of a service contract can be visually modeled; the 
contract execution can be simulated; and the properties of 
the contract can be analyzed to ensure model validity. 

The next section reviews related work. Section III 
outlines the OWL-SC model. This is followed by section IV 
that discusses the SC-CPN model. An example using Congo    
Book service to illustrate the use of OWL-SC and SC-CPN 
models is presented in section V. Finally, we conclude this 
paper and discuss our future work in section VI. 

II. RELATED WORK 

While the term accountability is frequently used in 
different contexts, Schedler provides a definition that 
succinctly captures the essence of accountability: “A is 
accountable to B when A is obliged to inform B about A’s 
(past or future) actions and decisions, or justify them and to 



be punished in the case of misconduct” [1]. The early work 
on accountability in IT focuses on certain properties such as 
non-repudiation, fairness of interactions, tamper-evident, etc. 
at a technical protocol level. Recent research begins to 
address accountability concerns such as quality of services 
(QoS), root cause analysis, autonomous recoverability, 
reputation and provenance at an architect level. Refer to [2] 
for a detailed review on Accountability literature. Overall, 
accountability research in IT literature mainly focuses on 
some technical properties and rarely addresses the 
accountability concerns in the underlying business contract. 
Such accountability concerns are obligation disclosure and 
liability for misconduct, as suggested in Schedler’s 
definition.  While Service Level Agreement (SLA) is a kind 
of contract, it normally only records the non-functional 
aspect of obligations and falls short on the functional aspect 
of service obligations, which is the key concern for business.  

On the other hand, e-Contract is an extensive researched 
area in the IT literature. IBM’s Trading Partner Agreement 
(TPA) defines e-contract as an XML document (TPAml) 
that stipulates the general contract terms, conditions, 
participant roles, communication and security protocols, and 
business process [3]. TPAml has been submitted to OASIS 
and used as a basis for developing ebXML Collaboration 
Protocol Profile (CPP) and Collaboration Protocol 
Agreement (CPA). TPAml and ebXML CPP/CPA are 
designed for business to business (B2B) process integration 
which requires a full stack of infrastructure support on both 
sides. This heavy weight approach is not suitable for e-
Services, especially for SaaS or Cloud services. In [4], the 
author proposes a multi-party e-Contract model that maps a 
paper-based contract into contract actions and contract 
commitments. An algorithm is outlined to detect contract 
violation based on the commitment graph. In [5], an e-
Contract model based on Modal Action Logic, Deontic 
Logic and Subjective Logic is presented. In [6], a Business 
Contract Language (BCL) and Formal Contract Language 
(FCL) are proposed using Defeasible Logic and Deontic 
Logic. Other approaches include applying Event Calculus to 
e-Contract (ecXML) [7] and extending First Order Logic 
(FOL) to handle dynamic aspect of service contract [8]. 
Most of these approaches use some variant of FOL to 
represent e-Contract, which is not easy to seamlessly 
integrate into SOA architecture; and moreover, most of 
these approaches favour expressiveness at the expense of 
decidability—as we can see that FOL is not decidable.  

An interesting contribution on service contract based on 
Description Logic (DL) is presented in [9]. The authors 
outline a logic framework that incorporates concrete domain 

and action theory into an expressive DL called ALCQO(Q*). 
The logic framework has the expressive power to describe 
both static information and dynamic behaviour aspects of a 
service contract while still remains decidability. The authors 
do not provide a service contract representation in their 
work and it is not clear how the service contract is used in 
an SOA environment. This logic framework may have a 

limitation on its reasoning power as DL has limited 
reasoning capability on relationships between roles.  

Grosof and Poon address this problem by combining 
RuleML and DAML+OIL in [10]. They use DAML+OIL to 
represent MIT Process Handbook’s process ontology and 
also present a contract ontology for the process. Then they 
outline an approach to specify RuleML rules “on top of” 
DAML + OIL ontology to enable specification of more 
complex behaviors in the contract. While their approach has 
more expressiveness, the implication of decidability issue 
was not discussed. Also how to apply the contract model in 
a service environment was not covered either.   

While the above models make significant contributions 
on the topic of e-Contract, we have yet to find a model 
which can be easily used to enable accountability for SaaS.   

III. A PRO-ACCOUNTABILITY SERVICE CONTRACT MODEL 

A. Requirements for Accountability Management 

For SaaS and Cloud in particular, we can summarize the 
core requirements for enabling accountability as below: 

AR 1: Obligations for both service provider and consumer can be 
specified unambiguously and interpretable by software agents.  
AR 2: Obligations can be readily disclosed and accessible in a 
Web based environment. 
AR 3: Obligations can be monitored and breaches can be 
immediately tracked; the status of contract execution can be 
reasoned by software agents. 
AR 4: Evidence of obligation fulfillment can be easily examined 
and reported. 

B. A Service Contract Model for SaaS and Cloud  

In order to meet the above requirements, we propose a 
service contract model as a formal construct for SaaS. The 
service contract specifies obligations of both service 
provider and service consumer, which can be used as a basis 
for service participants to justify or explain their actions. 
Moreover, it can also be used as a baseline for obligation 
tracking and breach determination. It is formally defined as:  

Definition 1: A service contract is a tuple SC = (s, D, P, Op, Oc, 

Seq, st, R, T), where: s is a service offered; D is a finite set of 
domain specific contract term definitions; P is a pair of involved 
parties (provider pr and consumer pc); Op (Provider Obligation) is 

a finite set of (Action, Evidence) pair: Op = {(ap1, ep1), (ap2, ep2), 
…, (apn, epn) }; Oc (Consumer Obligation) is a finite set of 
(Action, Evidence) pair: Oc = {(ac1, ec1), (ac2, ec2), …, (ack, eck)}. 
In Op and Oc, Action is a tuple: a = (input, output, pre, post), 

where input, output∈ D, both pre and post are binary condition 
expressions; Evidence is a finite set of evidence object, timestamp 
and condition triple: E = {(o1, t1, c1), (o2, t2, c2), …, (on, tn, cn)}, 

where oi ∈ D, ti is the creation timestamp of the evidence object, ci 
is a condition expression that is evaluated to true, 1 ñ i ñ n; Seq is a 
finite set of sequences Seq = {s1, s2, …, sn}, where each si is a 

sequence of actions; Contract State st∈S, S = {st1, st2, …, stn}, 
where sti is one of user defined contract states, for example, 
initialisation, in progress, provider breaching contract, etc; Rules: 
R = { r1, r2, … rn } is a horn clause: consequent ← antecedent; 
Time Period T = {contract_start_time, contract_end_time}.■ 



Definition 1 provides a generic two-party service 

contract structure that captures the key accountability 
elements. We don’t deal with multi-party service contract 
model in this paper, mainly because most contracts in SaaS 
only involve two parties. Even if multiple parties are 
involved in the underlying contract, the service contract 
model can always be decomposed into multiple two-party 
service contracts. Note that a SaaS normally is not an atomic 
service that only involves one interaction between a service 
consumer and a service provider. Instead, it is a composite 
service that may involve a series of conversations between a 
service consumer and a service provider. Each conversation 
is an instance of service contract execution that involves a 
series of actions performed by both parties. Also during the 
valid contact period, the service can be executed multiple 
times, i.e. multiple conversations.  

Using the Congo Book service [11] as an example, the 
FullCongoBuy composite service can be offered as a SaaS 
or Cloud service. The consumer can invoke FullCongoBuy 
many times to buy different books during the valid period of 
the underlying contract. Each execution may involve a 
series of actions performed by either the consumer or the 
provider. An example of a consumer’s action can be 
inputting the book name, whereas a provider’s action can be 
executing the atomic LocateBook service for locating the 
book. Considering this characteristic, Definition 1 does not 
capture detailed information in each execution. Thus we 
need another definition for service contract execution:  

Definition 2: A service contract execution is a tuple SCE = (sc, I, 
Op, Oc, se, R), where: sc is an individual of service contract SC; I 
is execution information, I = (start_time, complete_time, 
timeout_value); Op is a set of obligations (see Definition 1) that are 
successfully completed by the provider; same applied to Oc as the 
completed obligations by the consumer; se is Contract Execution 

State: se∈SE, SE = {se1, se2, …, sen}, where sei is one of the user 
defined contract execution states, for example, in progress,  
complete, pending provider obligation etc; Rules: R = {r1, r2, …, 
rn}, rj  is a horn clause: consequent ← antecedent. ■ 

C. Service Contract Model Representation 

The above section provides definitions for the structure 
of our service contract model. However, to satisfy 
requirements listed in Section III.A, we need to first have a 
representation mechanism. As suggested in our studies in 
Section II, most of the existing e-Contract models in 
literature use some logic models with strong expressiveness 
power to represent a legal contract at the expense of 
computation decidability. Moreover most of the e-Contract 
models are theory-based, lack of tooling support and 
implementation. Conversely, our approach to service 

contract model is to make trade-offs amongst 
expressiveness, decidability and existing tooling support. 
The ultimate choice should satisfy the requirements in 
Section III.A, yet retain computation decidability and can be 
implemented with existing products and technologies.  

As services may vary in different domains, a service 

contract model needs to capture the domain concepts and 

their relationships, and has the reasoning capability to 
ensure consistency. An ontology provides exactly these 
required capabilities; thus a service contract model should 
be based an ontology. In the meantime, it should allow 
capturing of service contract execution information in a 
knowledge base (KB) so that the service contract execution 
can be tracked and execution states can be reasoned.  

An ontology can be specified using Web Ontology 
Language (OWL), which is recommended by W3C as the 
standard for representing ontologies on the Web. As a 
revision of DAML+OIL, OWL provides three sub-
languages with increasing level of expressiveness: OWL-

Lite (corresponding to SHIF (D) [12]); OWL-DL 

(corresponding to SHOIN(D) [12]); and OWL-Full which is 
an extension to Resource Definition Framework (RDF). 
Both OWL-Lite and OWL-DL provide computation 
completeness and decidability [13], whereas OWL-Full has 
maximum expressiveness but no computational guaranteed.  

We have chosen OWL-DL to represent our service 

contract model since it has the better trade-off between 
expressiveness and decidability, and it also has mature 
tooling support. But OWL-DL has its limitations. OWL 1 
does not support role chaining. For example, given 
hasParent and hasBrother roles, OWL 1 ontology can not 
entail “hasUncle” role. OWL 2 partially solves this through 
property chains. To address this limitation, we augment 
OWL-DL with Semantic Web Rule Language (SWRL). 
SWRL is a W3C submission, extending OWL-DL axioms 
with a set of horn clause rules. It is basically a combination 
of OWL-DL/OWL-Lite with the unary/binary Datalog 
sublanguages of the Rule Markup Language (RuleML) [14]. 
Therefore, in our case, OWL-DL can be used to define the 
concepts and roles in our service contract ontology while 
SWRL can be used to define rules for contract execution 
state reasoning. With this in mind, we here define:  

Definition 3. A service contract model SC can be represented as a 

KB that is a triple Ksc = (T, A, H), where:  

• A TBox T consists of a finite set of concept inclusion axioms of 
the form C b D, a finite set of role inclusion axioms of the form 
R b S and transitivity axioms Trans(R), where C and D are 
concepts, R and S are roles;  

• An ABox A consists of a finite set of concept and role assertions 

and individual equalities/inequalities C(a), R(a, b), a = b, and a 
g b, respectively; 

• A horn rule set H consists of a finite set of horn clause axioms. 

A horn rule axiom consists of an antecedent (body) and a 
consequent (head) in the form of: a ← a1.a2.….an,  where a, ai 
(0 ñ i ñ n) are atoms in rules that can be of the form C(x), P(x, 

y), Q(x, z), sameAs(x, y) or differentFrom(x, y), and C is a 
concept; P is an individual-valued property; Q is a data-valued 

property; x, y are either variables or individuals; and z is either a 
variable or a data value. Variables x, y, z must be bound to 
named individuals in the KB to satisfy the DL-Safe criteria. ■ 

The other challenge that DL has is that it lacks of an 
action semantic to describe the dynamic world. In [15], 
Baader and et al integrate action theory into DL ALCQIO(D) 



and explore the computation properties of such extension. 
Based on their approach, the authors in [9] propose a service 

contract model based on ALCQO(Q*), with a slightly 
different action semantics. While executability and 
projection are the major concerns in [15], the key concern in 
our model is determining if an obligation is fulfilled.  

We thus introduce an evidence concept and use SWRL 
rules to simplify action state reasoning. Intuitively, the 
evidence concept reflects how a particular action’s 
fulfilment is verified in real life. An evidence object, created 
as a result of the action can be used as a record to prove the 
occurrence of that particular action. For example in a real 
life scenario, a receipt can be used as an evidence object to 
prove that a book selling action has occurred. We adopt a 
similar action structure as [15, 16] with simplified semantics:  

Definition 4: An action is a quadruple AC = (in, pre, out, post) 
where: in is the input of the action, which is a finite set of 
individuals in Ksc; pre (precondition) is a finite set of assertions in 

A, out is the action output, which is a finite set of individuals in 

Ksc; and post (post-condition) consists of a set of finite set of 

conditional expressions in the form of ϕ /χ, where ϕ is a set of 

assertions in A, χ is a set of assertions of primitive literals for T. ■ 

For example the LocateBook action: in = a book name 

individual: “Twin Cities”, pre = º(a), out ∈ {ISBN, 

“OutofStock”, “NotFound”}, post = {∃inStock.Book(a) / 

LocatedBook(a), ¬∃Exists.Book(a) / NotFoundBook(a), 

∃Exists.Book(a) 6 ¬∃inStock.Book(a) / OutofStock(a) } 
where a is an individual of book “Twin Cities”.  

Definition 5: An evidence object is a triple E = (obj, timestamp, 
cond) where: obj is an individual in Ksc; timestamp is a data 
property of obj representing the timestamp that obj is created; and 
cond is a set of assertions w.r.t. obj. ■ 

An example of evidence can be: obj = an acknowledgement 
message ack, timestamp = Timestamp(ack); cond = 

∃Log.Msg(ack) 6 ∃Header.Label(“Ack_Locate Book”) 6 

∃ValidSignature.Msg(ack).   
As we use the evidence object as a proxy for the 

occurrence of an action, we thus have the obligation 
fulfilment axiom: 

Axiom 1: Obligation (?a) ∧ mustDo(?a, ?b) ∧ verifiedBy(?b, ?c) 

→ fullfilled (?a) 

This axiom semantic is equivalent to a trigger rule [17] 
semantic C u D where C, D are concepts. The trigger rule 
can be translated into the inclusion axiom with epistemic 
operator K [24]: KC b D. Intuitively, the K operator 
denotes that the rule only applies to those individuals that 
KB “knows” to be the instance of concept C, not to arbitrary 
domain elements. In our case, the rule only applies to those 
known instances of evidence objects. 

In our service contract model, a predefined list of valid 
sequence of actions will regulate the action performing 
order from both the provider and the consumer. We can use 
the List class as in [18] to represent the action sequence. 
However, we don’t include other control constructs such as 

if-else or split, as the actions in service contract is more 
coarse-grained than atomic process in [18]. From a business 
perspective, the main concern is on the correct performing 
sequence of the high-level obligations, not on the low level 
logic of atomic tasks as dealing with traditional workflow. 

Based on the above definitions, a service contract 
ontology can be defined. Fig. 1 shows a simplified version 
of the ontology. The highlighted scContract class has 
contract term definitions (Defintions class), and it links to a 
predefined service p1:Service which can be semantically 
described by OWL-S[18]. The contract class involves 
ServiceProvider and ServiceConsumer, both of which have 
a super class Party. Each party has Obligation which 
consists of multiple Action and Evidence pairs. scContract 
also has a ActionSequence class, which defines the valid 
action sequences. An execution instance of scContract will 
be defined by the highlighted scContractExecution class. 
The scContractExecution keeps track of the fulfilled 
obligations from both the service provider and the service 
consumer.  

scContract

scContractExecution

Party

Obligation

ContractState

ContractExecutionState

Action

Evidence

ServiceConsumer

ServiceProvider

Definitions

isa hasProperty

EvidenceObject

TimeStamp

EvidenceCondition

ProviderObligation

ConsumerObligation

Input

Output

Precondition
Postcondition

ConditionExpression

Role

Consumer

Providerp1:Service

Parameter

ActionSequence

 
Figure 1. A Simplified Version of the Service Contract Ontology 

We name a service contract model built on top of this 
ontology as OWL-SC, which complements a service defined 
by OWL-S with clear obligations spelled out for the service 
participants. An example is that for FullCongoBuy service 
[18], a domain specific contract class CongoBookContract 
can inherit from the generic scContract class. Such domain 
specific contract instance may be executed multiple times. 
Each execution can be an instance of 
CongBookContractExecution class, which inherits from the 
scContractExecution class. A KB can monitor the obligation 
fulfillment situation and moreover, reason the contract state 
and execution state based on the defined rules in the KB.  

D. Properties of Service Contract Model OWL-SC 

1) Expressiveness 

The underlying DL in OWL-SC is currently SHOIN(D), 

with intention to move to OWL 2 SROIQ(D) when tooling 

support for OWL 2 is mature. SHOIN(D)’s expressiveness is 
constrained by its syntax and semantics, which is listed in 
Fig. 1 in [12]. As mentioned earlier, OWL-DL has limit in 
role chaining expressiveness. Moreover built-in data type in 



OWL 1 is limited to xsd:string and xsd:integer. In OWL-SC, 
we augment OWL-DL with SWRL, which extends OWL 
DL’s expressiveness power at two fronts: firstly it allows 
reasoning of role chaining; secondly, SWRL built-ins can 
increase expressiveness significantly on datatypes and the 
operations on them. These extensions allow us to bring in 
reasoning power in action semantics in our model. SWRL’s 
limitation is that it does not allow disjunction and negation 
in the rules; moreover explicit qualification over rules is 
also not supported. However, a combined OWL-DL and 
SWRL can leverage both strengths and provide the 
expressiveness to satisfy the requirements in section III.A. 

2) Computational Properties 

While OWL-DL is a decidable logic, SWRL is proven 
not decidable [19]. As the authors suggest, this is because 
that DL algorithm can always reach a finite tree model for 
satisfiability check, but adding the rules breaks the tree 
model and therefore becomes undecidable. To avoid the 
problem, the authors propose so called DL-Safe rule. A rule 
r is called DL-safe if each variable in r occurs in a non-DL-
atom in the rule body. A program P is DL-safe if all its rules 
are DL-Safe (see [19] for more details). The DL-Safe 
restriction is only exposed to ensure that the variables in the 
rule body are bound to only explicitly existing individuals in 
the KB. In our model, anonymous individuals are 
disregarded as we apply the DL-Safe rule restriction. 

From a computational complexity perspective, reasoning 

in SHOIN(D) has a worst-case nondeterministic exponential 
time (NExpTime) [20]. Research on sound and complete 
reasoning algorithm for OWL DL and rules is still an 
ongoing effort. Various approaches [21, 22, 23] have been 
proposed but each has limitations. In particular, we are 
interested in [22, 23] for our service contract model as the 
reasoning is based on an efficient production rule algorithm 
– Rete. According to Forgy, Rete’s worst complexity for the 
set of satisfied rules is linear in the number of rules, and 
polynomial in the number of objects [24].  

3) Tooling Support 

The basic requirements for tooling in our service contract 
model are the reasoning engine, ontology editor and rule 
editor. We choose Protégé 3.4.3 [25] as our ontology editor 
and rule editor. Protégé 3.4.3 supports OWL-DL, it bundles 
with Pellet and also provides a DIG interface for other 
reasoners like KAON2 and RACER. Moreover, it bundles 
with SWRLtab, which allows SWRL rules editing. There is 
also a SWRLJessTab [22] plug-in available for Protégé 
3.4.3, which can translate OWL facts to Jess facts and 
SWRL rules to Jess Rules. It then allows invocation of the 
Jess rule engine that implements the RETE algorithm to do 
reasoning on the translated rules and facts. 

4) Meeting the Requirements in Section III.A 

Compared to other e-Contract approaches, the 
differentiation of our service contract model is that it is not 
just a theoretical model, but can be practically implemented 
with existing standards and tools; moreover, the action 

semantics and evidence concept closely mimic how 
accountability is treated in real situations in business 
domain. In summary, with OWL-SC, obligations can be 
clearly specified, and interpreted by software agents. This 
satisfies AR 1 in Section III.A. Secondly, obligations 
specified in OWL-SC can also be referred through URI on 
the web, which meets AR 2 and suits the SaaS and Cloud 
environment. Finally the action semantic and the concept of 
evidence of OWL-SC allow accountability solutions to be 
built to satisfy AR 3 and AR 4 respectively.  

IV. A GRAPHICAL MODEL– SC-CPN 

A. Coloured Petri-nets  

OWL-SC provides a structure and semantics for 
modelling obligations and actions in a service contract. But 
neither OWL-DL nor Protégé provides an easy way for 
modelling the sequence of the obligations. On the other 
hand, Coloured Petri-Nets (CP-Nets) provide an intuitive 
graphical representation underpinned by a rigorous 
mathematics foundation; and more importantly, CP-Nets 
have an explicit semantic to describe both actions and states 
whereas most other formalisms can only focus on one aspect. 
Furthermore, tools like CPN-Tools [26] are available to 
assist in net editing, simulation and state space analysis. 
Thus CP-Nets are ideal for visual modelling, analysis and 
validation of our service contract model. We first outline 
the definition of CP-Nets from [27]: 

Definition 6: A CP-Net is a tuple CPN = (�, P, T, A, N, C, G, E, I) 
where: � is a finite set of non-empty types, also called colour sets; 
P is a finite set of places; T is a finite set of transitions; A is a finite 
set of arcs such that: P 3 T = P 3 A = T 3 A = Ø; N is a node 
function. It is defined from A into P % T 4 T % P; C is a colour 
function. It is defined from P into �; G is a guard function. It is 

defined from T into expressions such that: ≤t ∈ T: [Type(G(t)) = B . 

Type(Var(G(t))) ` � ]; E is an arc expression function. It is defined 
from A into expressions such that: ≤a c A: [Type(E(a)) = C(p)MS . 

Type(Var(E(a))) ` � ] where p is the place of N(a); I is an 
initialisation function. It is defined from P into closed expressions, 
such that: ≤p c P: [Type(I(p)) = C(p)MS]. ■ 

B. CP-Nets Model for Service Contract – SC-CPN  

We now define a set of one-to-one mapping rules to map 
action semantics in OWL-SC to a CP-Net. 

Definition 7: Given a KB defined in OWL-SC Ksc = (T, A, H), we 

map each concept in T  to a colour set Ø in a place p,  Ø ∈ �, p ∈ P; 

each assertion in A to a constant or variable declaration in the CP-

Net, therefore each model of T  and A in J  corresponds to an initial 

marking in M0. We also map each consumer action in Ac to a 
consumer transition in Tc, each provider action in Ap to a provider 
transition in Tp, where Tc 3 Tp = Ø, Tc 4 Tp = T; input in and 

output out to token colours in Pi, where Pi = •Tp 3 Tc• 4 •Tc 3 Tp•, 
Pi ` P; precondition pre to i . g, where i is a set of token colours 

in •T that satisfies with input inscription Ei, Ei ` E, g ∈ G, g is a 
transition guard in T;  also map post-condition post to Eo , where 
Eo is output arc inscription, Eo ` E, Ei 3 Eo = Ø. ■ 



Based on Definition 7, we can construct a CP-Net from 
OWL-SC, we call it as service contract CP-Net— SC-CPN.  

Thus the standard CP-Net analysis techniques can be 
applied to validate the correctness of the service contract 
model w.r.t. the consumer and provider behaviour. 
Intuitively, we can obtain two theorems on executability and 
projection (see [15] for their definitions) based on the 
mapping rules in Definition 7. 

Theorem 1: Action executability problem in OWL-SC can be 
translated to a transition fireability problem in SC-CPN. 
Proof Sketch: Based on the mapping rules, it is obvious that the 
theorem holds for one action. Assume it holds for (a1, ..., ak) where 
1ñ i < k, i.e., for transitions (t1, …, tk), if t1..tk are fireable, then for 
all models J of T  and A, all interpretations J’ with J e Ta1, …, ai J’, 

we have J’ ~ prei+1. Now assume transition tk+1 in (t1, …, tk+1) 

sequence is also fireable. As defined in the mapping rules, all 

initial markings M0 correspond to all models J of T  and A. Prior to 

transition tk+1, the marking is mk, which is fireable, i.e. tokens at 
•tk+1 satisfy input inscription ei, as well as guard g at tk+1, this 

implies that prek+1 holds. Since mk corresponds to J’’, where J’ 

eTai, ..., aj J’’, i ñ j < k+1, J’’ ~ prej+1, and therefore, J eTa1, .., 

ai, …, aj J’’, i ñ j < k+1, which suggests (a1, …, ak+1) is executable. 

Theorem 2: Action projection problem in OWL-SC can be 
translated to reachability problem in SC-CPN. 

Similar approach like the one in Theorem 1 can be 
applied to prove this theorem. We omit it due to space limit.  

The ActionSequence in scContract contains the valid 
action sequences to regulate the consumer and provider 
interactions. Therefore to check whether or not a service 
contract is breached in an execution instance, it is just a 
matter of simply checking the actual action sequence in 
scContractExecution, to see if it matches to any predefined 
action sequence in ActionSequence in scContract. If not 
matched, by locating which party’s action causes the 
discrepancy we can identify the responsible party.  

C. SC-CPN Properties     

Due to the space limit, we briefly list the desired 
properties of SC-CPN w.r.t. our service contract model. 

Structural Boundedness: Assume place p in …N, m0 , b(p) = 

sup{m[p] | m c RS(N, m0)}, a net is structural boundedness iff ≤p 

b(p) < ∞, where sup is the token upper bound of p, RS is a 
reachability set.  
Liveness Properties: We always expect that the net can be 
terminated at some state, i.e. there exists at least one dead marking 
for any initial marking of the net. Also, each transaction should 
have the possibility of firing, i.e. no dead transition exists. The SC-

CPN liveness property can be described as: ∃m ∈ RS(N, m0), for 

≤t ∈ T such that t is not fireable at m, and for ≤t ∈ T , ∃m ∈ RS(N, 

m0), ∃� such that m �t t m’. 

Reversibility: We expect that the execution of service will lead to 
a new state. Thus non-reversibility is a preferred property for SC-

CPN, which is defined as: ∃m c RS(N, m0), a� such that m �t m0. 

D. Using SC-CPN to Model Service Contract Behaviour  

SC-CPN provides an intuitive graphical model for 
modelling action sequence for OWL-SC. Simulation can be 
used to identify errors in the service contract’s action model. 

Standard Petri-nets state and reachability analysis can be 
used to analyse the executability and projection in OWL-SC. 

V. USING OWL-SC & SC-CPN TO MODEL SERVICE 

CONTRACT FOR CONGO BOOK SERVICE  

Now we illustrate how to use OWL-SC and SC-CPN to 
build a service contract model for the Congo Book service, 
which is a widely used example of semantic web service. 
We will first define the basic concepts and SWRL rules in 
OWL-SC; then we use SC-CPN to model the obligation and 
action sequence; next we will use Pallet reasoner to classify 
and check consistency of the ontology; then we will use 
Protégé’s SWRLJessTab to translate the OWL individuals 
to Jess facts, SWRL rules to Jess rules and use Jess to entail 
new facts; and finally we will use SQWRLQuerytab to 
query the service contract knowledge base. 

A. Defining Contract Service Ontology for CongoBook  

We now use Protégé 3.4.3 to create the ontology based on 
the model in Fig. 1. Firstly we extent scContract class to 
create CongoBookServiceContract as the service contract 
class for Congo Book service, then subclass 
scContractExecution to create CongoBookServiceExecution 
for the contract execution class. After that we can enter 
some individuals. We use some candidate actions based on 
the Congo Book semantic service CongoProcess.owl[18] as 
a starting point: P_LocateBook, P_SignInUser, P_PutInCart,  
etc.  

B. Modeling Obligations using SC-CPN  

Now we use SC-CPN to model the actions and verify the 
correct sequence of actions. We leverage CPN-Tools’ 
hierarchical net feature [34] to create a hierarchy of service 

contract nets across multiple pages for ease of modeling. 
Fig. 2 shows the hierarchy page. Fig. 3 shows the top page 
of CongoBookServiceContract, which can be used as a 
generic high-level SC-CPN model for SaaS or Cloud 
services. In the model, ServiceConsumer interacts with 
ServiceProvider through the ServiceInput and ServiceOutput 
places; each party maintains session information such as 
shopping cart, credentials in ServiceSession place; and 
ServiceConsumer pays for service with consideration and 
ServiceProvider delivers service effect. 

CongoBookServiceContract

ServiceConsumer

ServiceProvider

C_ProvideServiceInput

C_MaintainSession

C_ProcessServiceOutput

C_PayConsideration

P_ProcessServiceInput

P_MaintainSession

P_ProvideServiceOutput

P_ProcessPayment

P_DeliverSerivce  
Figure 2. CongoBookServiceContract Hierarchy Page 



 
Figure 3. CongoBookServiceContract Top Page 

Fig. 4 shows the ServiceConsumer page, which further 
breaks down the transitions to another level. Fig. 5 shows 
the DeliverService page, which models the lowest 
granularity of a transition, in this case is the Service 
Provider’s obligation of Shipping book to the consumer.  

 
Figure 4. ServiceConsumer Page 

 
Figure 5. DeliverService Page 

Once all of the net pages have been constructed, we run 
simulations to see the inter-play between service consumer 
and service provider. We next use CPN-Tools’ state space 
analysis capability to analyze the SC-CPN properties. We 
can continue to refine the SC-CPN model based on the 
desired properties discussed in Section IV.C. Then from the 
reachability graph, we produce the valid action sequence for 
OWL-SC. For example, one normal action sequence is: 
C_ProvBookName, P_LocateBook, C_PutInCart, P_GetSignOn, 
C_ProvSignOn, P_SignUserIn, P_PutInCart, C_Checkout, 
P_GetPaymentInfo, C_ProvPaymentInfo, P_ProcPayment, 
P_GetAddInfo, C_ProvAddInfo, P_ReqAuthPay, C_AuthorizePay, 

P_ShipBook, C_AcceptBook. Another sequence could be just 
C_ProvideBookName, P_LocateBook, where the consumer 
either just wants to search without intention to pursue the 

purchase; or the book may be out of stock. Other valid 
action sequences are omitted due to the page limit. 

C. Reasoning of Congo Book Service Contract Model  

With the valid action sequences identified, we now add 
the action sequence instances into the ontology. Then we 
input some evidence instances to simulate the collection of 
action evidences in the service contract KB. Finally we 
create rules to reason the completion of obligations and the 
states of the contract execution. For example, axiom 1 for 
CongoBookServiceContract can be input in SWRLTab as: 

ServiceContractExecution(?x) . execute(?x, ?y)  
. specifiedObligation(?y, ?z) . mustDo(?z, ?a) . verifiedBy(?a, 
?b) . produceEvidence(?x, ?b) → fulfilledObligations(?x,?z) 

Once the ontology and rules are finally built, we invoke 
Pellet reasoner to classify the TBox and check consistency of 
the ABox. Then through the SWRLJessTab, we convert 
OWL individuals/SWRL rules to Jess facts/rules respectively; 
and use Jess engines to do reasoning which can entail new 
Jess facts. Fig. 6 shows an example of the reasoning result. 
As we can see, the Jess engine inferred a lot of facts about 
fulfilled obligations based on evidence produced by contract 
execution instance CongoBookServiceExecution_1. It also 
concluded that the CongoBookServiceExecution_1 is in 
completion status based on the highlighted rule. After 
reasoning, we can use SPARQL or SQWRLQueryTab to 
query the KB. 

 
Figure 6 Congo Book Service Contract Reasoning Results 

D. Discussions  

So far we have demonstrated the modelling of a pro-
accountability service contract model for an online service 
using existing tools. Clearly this service contract model can 
be applied to other SaaS and Cloud services to support 
service obligation disclosure, monitoring and tracking of 
non-compliance. The strengths of our model are that firstly it 
addresses the accountability concerns through a formal 
construct, which is firmly grounded on the intuitive concept 
of service contract in the real world. Secondly the construct 
is based on rigorous formalisms like OWL-DL/DL-Safe 
SWRL and CP-Nets. The former allows machine 
interpretation and web accessibility, yet provides 
computation decidability. The later facilitates visual 
modeling and simulation, yet is backed by solid mathematics. 



Lastly our approach can be supported by existing tools and 
readily applied in practical applications, rather than just a 
theoretical model. We also notice that the weakness of the 
model is in its expressiveness and reasoning power. For 
example, it is quite difficult to reason whether a contract is 
expired, since SWRL’s Temporal built-in [28] currently does 
not provide the support for current time (e.g. now). Another 
issue is that the translation from OWL-DL to Jess is not 
complete; the anonymous individuals will not be translated 
to Jess facts [23]. However this limitation does not impact 
the completeness of our model because anonymous 
individual information is not relevant to our model. The last 
issue is that the inferred facts from Jess reasoning can 
potentially make the initial OWL-DL ontology inconsistent 
[23]. We suggest that a hybrid approach that leverages 
strengths from different formalisms can best address the 
weakness. We separate our service contract reasoning to 
design-time reasoning and run-time reasoning stages. We 
only use DL reasoner for concept consistency checking at 
design-time while Jess rule engine is used to maintain the 
KB at run-time. Other tasks such as comparison and 
computation can be better handled via a combination of 
traditional programming model and KB query. For example, 
checking whether or not a contract is expired, it is easy to 
query the KB, get the end time; then compare it to the 
current time in a traditional program.  

VI. CONCLUSION AND FUTURE WORK 

High accountability standard not only benefits service 
consumers as a whole, but also can be a differentiator for 
service provider. As such, it is paramount to enable 
accountability in SaaS and Cloud services. In contrast with 
existing approaches that address accountability issues at a 
technical protocol level, we address them at an architecture 
level through a pro-accountability service contract 
formalism, which closely mimics the contract concept in the 
commercial world.  

Our contribution can be therefore summarized as: firstly, 
we analyze the accountability management requirements for 
SaaS and Cloud services and define a formal construct for a 
pro-accountability service contract model, proposing the 
unique concepts such as service contract execution and 
action evidence that are not seen in other e-Contract models. 
We adopt the decidable OWL-DL, coupling with the 
enhanced action semantics and DL-Safe SWRL rules to 
represent the service contract construct, namely OWL-SC. 
We also propose a novel approach to map OWL-SC action 
semantics to a Colored Petri-Nets model, namely SC-CPN, 
and thus enable visual modeling, validation and simulation 
of action model in OWL-SC. We have used the Congo Book 
service as an example to demonstrate how to use existing 
tools to build the service contract model, and discussed the 
strengths and weaknesses of the current model plus the 
recommended approach to address the weaknesses. Other 
domain specific application of such model is a future work.   
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