
Jerrymouse: a tool for a flexible and dynamic
distribution of web service requests

Paulo S L de Souza, Bruno S Faiçal,
Marcos J Santana, Regina H C Santana

University of Sao Paulo - SSC/ICMC
Sao Carlos, Brazil

{pssouza, bsfaical, mjs, rcs}@icmc.usp.br

Jonathan de Matos
State University of Ponta Grossa - UEPG

Ponta Grossa, Brazil
jonathan@uepg.br

Ed Zaluska
Electronic and Computer Science

University of Southampton
Southampton, United Kingdom

ejz@ecs.soton.ac.uk

Abstract— This paper presents a novel architecture for
distributing web service requests on clusters of servers. The
architecture facilitates a transparent dynamic distribution of
requests according to a range of specified policies. This enables
a flexible performance in respect of different objectives,
services and platforms (typically based on server workload).
The architecture has been successfully demonstrated with a
prototype implementation (called “Jerrymouse”). Our
preliminary results with Jerrymouse indicate stable behaviour
and worthwhile performance gains (compared with Apache
HTTP Server). A specific policy to deliver reduced cluster
electricity savings has also been successfully implemented.

Keywords- web services, SOA; distributing requests; clusters;
monitoring; Ganglia.

I. INTRODUCTION

Service Oriented Architecture (SOA) allows the design,
implementation and use of services from a number of
different sources in a loosely-coupled and interoperable way
[1]. Web services provide a mechanism to expose services
for client applications using protocols such as HTTP. Web
services typically use languages such as XML and WSDL
(Web Service Description Language) together with protocols
such as SOAP (Simple Object Access Protocol) and REST
(Representational State Transfer). SOAP and REST describe
how parameters are sent to and received from services while
WSDL is a language that describes how to access web
services, including data types and functions [1].

Web services typically require at least two server-side
sub-systems: an application server and a web server. An
application server implements the delivery of the specific
service requested. JBoss, IBM WebSphere, Apache Axis and
Apache CXF are all examples of application servers with
different levels of functionality [1][2]. Web servers process
messages between clients and services using HTTP. JBoss
and WebSphere implement web servers as well. JBoss
derives from Apache Tomcat, with optimizations to process

requests with dynamic content using JSP (Java Server Pages)
and servlets [2]. Apache Tomcat was originally a servlet
reference implementation and this is one of the reasons for
its popularity. Frameworks can be inserted into Apache
Tomcat for web services execution, allowing both
publication of these services and interaction with clients and
other providers using HTTP.

Web services support distributed solutions which can
provide greater performance, scalability, fault tolerance and
good availability for systems with a high demand. Despite
these clear advantages, distributed solutions usually increase
the overall system complexity when compared to centralized
alternatives [3]. ’Request distribution’ on clusters of web
services is an example [4] which can be implemented in
several different ways: by DNS, by NAT, by interaction
between the Apache HTTP Server and Apache Tomcat, in
the EJB layer or even in the database layer [5].

DNS distribution has the potential for a simpler
implementation, but normally has problems with caching, the
target server state is not known and fault tolerance is not
supported. NAT distribution offers better support for fault
tolerance, but it has the same difficulty of obtaining state
information from the target server. When applying request
distribution in the database layer, the service will redirect the
request to a database cluster, considering load balancing in
this level. The distribution in database servers does not avoid
an eventual bottleneck in the web service nodes. MySQL
Cluster [6], PG Cluster [7] and Slony [8] are some examples
of this kind of distribution. The request distribution
performed by interaction between the Apache HTTP Server
and Apache Tomcat take into account the resources accessed
by the Apache HTTP server and hence achieve a potentially
optimum distribution. One possible implementation is the
mod_jk module (part of the Apache HTTP Server) which
supports a range of distribution policies: round-robin,
weighted round-robin, busy (i.e. considering the existing
server load), sections and network use. These policies
present significant performance-limitations because there is

2011 IEEE International Conference on Services Computing

978-0-7695-4462-5/11 $26.00 © 2011 IEEE

DOI 10.1109/SCC.2011.90

520

no dynamic feedback about the platform current state nor
flexibility to distribute the submitted requests according to
service demand.

The systems supporting web services ideally require a
flexible request distribution that offers a better efficiency to
the diversified demand generated by different services on
different distributed platforms. Transparency and portability
are equally important and desirable features. Monitoring of
the current server node status can be used to support an
improved dynamic distribution because it is based on more
accurate decisions. Some works considering monitoring in
this context can be seen in [9] and [10].

Many studies have been developed at "processes
scheduling" for High Performance Computing (HPC) and
Distributed Systems (DS). However, workloads distributed
on servers of web services are not "processes"; but "requests"
to services. Thus, processes scheduling policies need to be
adapted to the web services context, where its servers have
distinct features as: specific middlewares to support the
services, demands with services composition, objectives,
protocols and a high use of remote data bases.

Considering the web service context, this work proposes
an original architecture for a dynamic distribution of client
requests, offering flexibility, transparency and portability.
Flexibility allows a weak coupling between hardware and
software and is achieved by the use of several policies to
distribute the services. The proposed architecture has been
implemented in a prototype called Jerrymouse, which
demonstrates portability using different service providers,
such as Apache Tomcat and JBoss. The architecture and
prototype will act as a basement for future research works in
this area.

The performance of both the proposed architecture and
Jerrymouse has been evaluated using experimental studies,
performed on two different platforms: one homogeneous and
one heterogeneous. These experimental studies make use of
four different distributing policies, three of them similar to
the policies already existing in the mod_jk module (part of
the Apache HTTP server). This approach allows the
overhead introduced by Jerrymouse to be measured when it
is implementing a distribution algorithm similar to the
Apache HTTP Server. The fourth distribution policy
implemented allows explicit control of the number of server
nodes currently powered-up according to the overall system
load, hence reducing costs when possible by saving energy.

The results presented in this paper show that the
proposed architecture does not introduce a significant
execution overload and, at the same time, offers significant
performance gains and improves the service availability
when compared to Apache HTTP Server.

This paper is composed of 5 sections. Section II
describes the proposed architecture in a top-down approach.
Section III describes the Jerrymouse prototype. Section IV
discusses the main results obtained from the experimental
studies with Jerrymouse. Section V presents the conclusions.

II. ARCHITECTURE

Fig. 1 presents the proposed architecture together with a
message using SOAP. The SOAP message is received by a

network border element (step 1), implementing a NAT or
DNS distribution logic. After it has arrived, the request is
redirected to a web service provider acting as a front-end,
which will then either redirect the request to a target node or
service the request locally. In this example, the provider is
located in node 2. The decision to redirect is taken by a novel
distributor element in the provider (step 2), using a policy to
decide which distribution to apply. This policy uses data
from monitors running in every service node in the overall
distributed platform. The distributor selects an appropriate
service node and responds to the provider (step 3) with the
required destination. The provider forwards the message to
the destination node (step 4) in order to execute the service.
The target node, node 1 in this case, receives the request
using its framework (step 5). The response from the service
reaches the front-end first (step 6) and then the provider
forwards it (step 7) to the client. There are alternative
solutions, using connections-migration, which allow the
service response to be forwarded directly to the client [11].
However, these solutions require changes either to the
system core or to the TCP protocol for both servers and
clients. This means that this alternative is unattractive
because transparency is usually required on the client side
and modifications inside the system core will make it
difficult to maintain independence between software and
hardware.

Figure 1. Novel architecture for distributing requests to web services
providers.

The proposed architecture does not mandate a rigid (and
inflexible) location for the software and hardware
components. The front-end can respond to a service request
directly (if allowed by the policy and the current load
distribution). More than one front-end can co-exist if there is
sufficient client demand. When this occurs a logical link is
required between the front-ends in order to provide
consistency for overall system. Nodes 3 and 4 do not have a
distributor because they are back-end servers and thus not
able to receive requests directly from a client.

A filter is inserted into the service provider enabling it to
communicate with the Distributor (see section 3). Fig. 2
gives the internal components of the Distributor, which are

521

described below. In Fig. 2 we can also see the components
responsible to connect the Distributor to Tomcat, Ganglia
and other Distributor.

Figure 2. Distributor internal components.

A. The Distributor
The Distributor components are currently the Core, the

Setting Manager, the Adaptors Manager for Monitoring, the
Connector Manager and the Policies Manager. In addition,
there are also Adapters for Monitoring, Connectors and the
Requests-Distribution Policies. These components are
dynamic and can be added, removed or replaced at run-time.
This approach increases the flexibility of the architecture,
since they can be created and compiled as separate libraries.
Adapters for monitoring support the communication between
the Distributor and the Monitors. The Connectors support
communication between the Distributor and the target web
service provider. The Policies define the high-level system
requirements and effectively decide how to redirect the
requests.

B. The Core
The Core is the main Distributor element (the first one to

be executed), responsible for managing all other components
and acting as a bridge between connectors, policies and
monitors. The Core loads the settings at the start of
Distributor execution and then loads the Managers that stay
running concurrently.

C. The Setting Manager
The Setting manager unifies all information about the

architecture, so that every Distributor component can access
it. Its initial functionality is to load the system settings
(described in an XML file) and then validate them using
XML Schema or DTD. The parsing of the settings
information creates a binary representation which is used by
the components. When the initial setting is complete, the
Setting Manager remains active and returns execution back
to the Core. New settings can be established at runtime
through a direct interaction from the system administrator or
from another distributor. This Distributor dynamic
reconfiguration does not require execution to be suspended.
The Settings Manager can also change the status of
Connectors, Adapters and Policies between active and
inactive and in addition these components can also be
deleted and inserted. This process requires that the
configuration´s data are always consistent because the
Distributor remains active and is continually receiving

service requests for distribution. The Settings Manager also
propagates updates to other Distributors and can register
their actions in a log file. The granularity of the stored
information can be configured in the settings file.

D. The Connectors Manager
Connectors ensure that the Distributor is loosely coupled

to the web service providers and removes from the Core the
necessity to store the interaction details required to
communicate with different providers. All Connectors use a
standard interface with the Core and are responsible for
managing any differences. The Connectors Manager reads
the connectors settings already established by the Setting
Manager and executes them. The Connectors Manager
maintains a reference to all active connectors and when it
receives a new instruction from the Setting Manager it
notifies the connector as appropriate (e.g. activation,
deactivation (but remain in memory), inclusion or removal).

E. The Policies Manager
The provision of multiple policies provides maximum

flexibility for the Distributor. The design concept is to make
available a number of different policies able to redirect
service requests. Using the same mechanism implemented
for the Connectors Manager, this manager also receives
notifications from the Settings Manager. When the Policy
Manager starts, it uses the data present in the Distributor to
load the required policies. Policies, unlike connectors, do not
remain active during Distributor execution. They are
executed only when a decision is requested by the
Distributor, saving processor clock cycles and memory
space. The decision to avoid continuous execution was taken
because probably there will be several policies running
concurrently to support different service requests. Policies
can be enabled, disabled, added and removed using this
Manager.

F. The Adaptor Manager for Monitoring
The Adapter Manager loads the adapters that are

connected to all of the monitors present in the system. It can
enable, disable, add and remove adapters from the
Distributor. Besides this management role, it also serves as
the bridge between politics and adapters. The adapters are
started by this Manager and remain active until a closing
notification is received. The policies are able to load indices
internally from a specific function that uses the Adapters
Manager to query the active adapters (all adapters are
queried until information is returned). The internal structure
of adapters is designed to avoid bottlenecks in the expected
return of information. Another concern is the complexity of
the adaptors, which has been minimized because they are all
queried and this therefore imposes a limit on the scalability
of the architecture at present.

III. JERRYMOUSE

The architecture described above has been successfully
implemented in a prototype called Jerrymouse. The
Jerrymouse implementation has required the development of
both distributor and filter elements associated with the web

522

services provider. The implementation was based on C, Perl
and programming scripts in GNU/LINUX. Fig. 3 shows the
relationship of Jerrymouse with the Apache Tomcat
provider.

Figure 3. Interactions between Apache Tomcat, Jerrymouse and Ganglia.

The filter is a design pattern of the servlets specification
that implements a sequence of steps to be executed between
two elements. In Apache Tomcat, for example, filters are
running in the HTTP server called Coyote, the Catalina
servlet container and Jasper (which is responsible for
executing servlets). The parameters and the content of the
HTTP request are accessible by these filters. The Jerrymouse
implementation requires the inclusion of a filter in Apache
Tomcat to intercept HTTP requests and then send a request
to Jerrymouse asking which node should be used to run the
service. Jerrymouse determines the policy to be used, applies
this policy to select the service node to forward the request to
and then returns this back to the filter. The filter in the
provider recreates the HTTP request and sends it to the
required node. The HTTP message is received by the Coyote
component in the target node, which invokes the Catalina
and Jasper modules for service execution. When the service
is complete, the front-end (where the filter was invoked)
receives the response and returns the result to the client. In
this example, the front-end provider has used just the HTTP
Server, because the filter inhibits the usual request-path to
the Catalina and Jasper modules. In the event that there is
any failure in Jerrymouse or in the communication with other
remote providers, the filter can forward the message directly
to the local Catalina and Jasper modules to provide a local
fall-back execution of the service. This can also be an
advantage in times of low client demand and hence low
overall workload. Installing the filter inside Apache Tomcat
is not intrusive, since there is no necessity to change any
source code. For installation, the filter class has to be enabled
in the Apache Tomcat class loader and then the settings file
can be changed for this class to run as a filter.

Fig. 3 also shows the relationship between Jerrymouse
and the Ganglia monitoring tool. The choice of Ganglia is
because of its scalability and existing use on large platforms
[12]. It operates in a hierarchical way and supports cluster

federation, offering monitoring either periodically or after
state changes. The Ganglia monitor runs on all cluster nodes
that need to be monitored and the monitoring information
can be obtained directly via TCP/IP. New metrics can be
inserted into Ganglia, making it a highly-flexible monitoring
tool and thus contributing to the overall flexibility of
Jerrymouse as well.

Jerrymouse connects with Ganglia via an adapter using a
TCP/IP connection and stores the collected load indices from
nodes in a hash table. When a policy requires data from the
indices, the search for the desired value can be undertaken in
O(1). The memory storage complexity is proportional to the
amount of indices and nodes. The communication between
the Ganglia monitors and Jerrymouse is non-blocking and
therefore does not interrupt Jerrymouse execution.
Managers, adapters and connectors are all executed using
threads hence all of the adapters remain active collecting
data from monitors asynchronously. All communication
between Jerrymouse and adapters is performed using shared
memory. When a connection arrives, the connector calls the
appropriate function inside the Core which performs a query
on a hash table containing web services and policies before
invoking the appropriate policy.

Connectors, adapters, and policies are all loaded using
dynamic libraries which ensures that elements can be loaded
and unloaded without interrupting Jerrymouse execution.

The policies are the most important elements in
Jerrymouse, because they can specify different distributing
behaviours for each individual web service. Policies can
nevertheless have simple implementations and can make use
of data persistence.

IV. RESULTS

The performance of the overall proposed new
architecture and the Jerrymouse prototype implementation
were compared to the existing solutions provided by the
standard Apache HTTP Server, which uses the mod_jk
module to provide connections to Apache Tomcat. The
objective is firstly to demonstrate that Jerrymouse does not
generate significant overhead and thus to reduce the request
performance as experienced by the client application.

The experiments described here have considered two
example web services. The first example service models
financial transaction authorization using credit cards, using a
service based on EJB with requirements for data validation
and data persistence. The second example service supports
the recognition of characters and images and was
implemented using the framework provided by Axis2 and
Apache Tomcat.

Each service was requested from 3 concurrent clients,
each one generating 1, 3, 5, 7 and 10 threads. Each thread
requested 100 times sequentially the same service. In this
way, considering 10 threads from 3 clients, for example,
there were 30 clients performing a total of 3000 requests.

Fig. 4 illustrates the platform structure used in the
experiments. Mod_jk (fig. 4a) runs in the Apache HTTP
Server, redirecting messages to the nodes using Apache
Tomcat. Jerrymouse (fig. 4b) uses Apache Tomcat directly
in the front-end to receive requests to the web services.

523

Jerrymouse is also connected directly to the monitors that
gather the workload indices from each node.

Figure 4. Experimental platforms used for the experiments (a)
homogeneous and (b) heterogeneous

The experiments were performed using two different
platforms: one homogeneous and the other heterogeneous (in
respect of constituent nodes). The tests conducted in the
homogeneous platform used six nodes: thee of these being
clients, one front-end and two web service servers. The
heterogeneous platform used eight nodes: three clients, one
front-end and four servers. The clients and front-end systems
used Intel Core 2 Quad processors in both scenarios
(heterogeneous and homogeneous). The heterogeneous
platform used servers on processors ranging from 800 MHz
up to 1.8 GHz and RAM memory from 256 MBytes up to
512 MBytes. These same nodes in the homogeneous
platform have a clock of 3.4 GHz and 2 GBytes of memory.
For all experiments a 100Mbps network was used.

Three different pairs of policies were compared in the
experiments. The first comparison considered the round-
robin policy (as used in mod_jk) with a round-robin variant,
especially developed for Jerrymouse. The goal is to identify
possible overloads in Jerrymouse when it uses similar
distribution policies to mod_jk on homogeneous platforms.
The second comparison considered weighted round-robin
policies on both mod_jk and Jerrymouse, allowing the
behaviour of Jerrymouse on heterogeneous platforms to be
investigated. The third comparison considered the server-
occupation policy (busy) used in mod_jk with a Jerrymouse
policy based on memory and processor usage, using an
exponential moving average in order to reduce peaks of
performance.

The policy flexibility developed for Jerrymouse has been
analyzed with the use of a GreenPolicy aiming to reduce the
energy consumed by the overall distributed platform. Liu et

al. [13] and Bertini et al. [14] present prior research in this
area and other previous paper have also discussed this
approach [15][16][17].

The GreenPolicy developed in this paper is designed to
activate nodes “on demand” using workload monitoring. The
node activation is based on the WOL (Wake-on-Lan)
resource, thus reducing the electricity consumption of the
nodes. A server turned on all day long for one year can
present consumption of 523.8Kwh/year, according to EU
Energy Star [18]. Considering that this server can be required
just 6h/day, when there is high demand, the GreenPolicy
could be used to save 392.85KWh/year, just for one server.
This economy is meaningful in large data centers and could
be applied orthogonally to the clients and requested services.

Due to limited space, only the main results will be
highlighted in this paper although more extensive results are
now available, with similar results to the results presented
here. All graphs shown in Figures 7 up to 10 consider the
web service implementing financial transaction
authorisations.

Fig. 5 shows the results for the homogeneous platform
and policies round-robin. It is possible to observe that the
Jerrymouse performance was superior to the mod_jk results
at all load levels. This confirms that the proposed Jerrymouse
structure does not increase the processing overhead
significantly (which could potentially invalidate the
advantages of the dynamical flexibility provided by the
architecture).

Figure 5. Results for the homogeneous platform and policies round-
robin executing the financial transaction authorization service.

Fig. 6 shows the results for the homogeneous platform,
but now using the mod_jk busy policy and Jerrymouse
policy based on memory and processor usage. It is possible
to observe that both Jerrymouse and mod_jk present a
statistically similar performance, determined by hypothesis
tests and by a high confidence interval from mod_jk. This
result is probably due to the load index used by the
Jerrymouse policy, which does not match the demand
generated by the service.

Fig. 7 shows the results for the heterogeneous platform
with a round-robin policy. Jerrymouse provided superior

524

performance for all cases, with the exception of the test with
10 threads. This occurred because of the behaviour of
requests by mod_jk when it was under high demand - it did
not execute the service, instead returning an "overloaded"
message to the client. Jerrymouse in contrast served all
requests, even when a high delay would be necessary. This
scenario demonstrates that Jerrymouse has provided a higher
availability than mod_jk, although of course the policy can
be adjusted to meet different requirements and discards
requests in a similar fashion to mod_jk if required. Such a
policy might be important to guarantee a particular quality of
service requirement.

Figure 6. Results for the homogeneous platform and mod_jk busy policy
vs. Jerrymouse policy based on memory and processor usage executing

the financial transaction authorization service.

Fig. 8 shows the results for the heterogeneous platform,
but now using the mod_jk busy policy and a Jerrymouse
policy based on memory and processor usage. In this
experiment, Jerrymouse demonstrated a performance
statistically equivalent to mod_jk. This result is similar to the
result obtained for the homogeneous platform shown in Fig.
6.

Figure 7. Results for the heterogeneous platform and policies round-
robin executing the financial transaction authorization service.

Fig. 9 shows the results for the heterogeneous platform
and weighted round-robin policies for Jerrymouse and
mod_jk. In this experiment Jerrymouse also produced a
higher performance when compared to mod_jk.

The results obtained for the pattern recognition service
show that Jerrymouse produces similar performance gains to
those reported above for the financial transaction
authorization service.

Figure 8. Results for the heterogeneous platform and mod_jk busy
policy vs. Jerrymouse policy based on memory and processor usage,

executing the financial transaction authorization service.

The experiments conducted with the GreenPolicy were
performed on a homogeneous platform with two servers,
with one of them receiving all requests and the other one
normally turned off. The second server was activated when
the load index of the first server reached a defined threshold.
The scenario used was the financial transaction authorization
service with 1, 3, 7, 15 and 31 concurrent threads.

Figure 9. Results for the heterogeneous platform and policies weighted
round-robin for Jerrymouse and mod_jk, when executing the financial

transaction authorization service.

Fig. 10 shows the client response time increasing as the
load increases. The loads are identified with labels in the
graph, which shows a response time peak close to 5700
requests. This represents the moment that the second server

525

was activated and started to serve requests. This peak occurs
owing to the loading of the second provider and decreases
shortly as soon this server starts to respond. In this
experiment was saved 36.31% of energy.

Fig. 11 compares the same service execution, but now
showing the behaviour with one server and two servers being
activated on demand. It is possible to observe the difference
in response time when using one or two nodes for the
increased load. The transparency and flexibility of the
architecture proposed in this paper simplify the use of
features such as WOL.

Figure 10. Results from GreenPolicy using two servers and executing the
financial transaction authorization service.

V. CONCLUSIONS

This paper proposes a novel software architecture for the
distribution of requests inside web service clusters. This
architecture is flexible, dynamic and transparent both to the
end-user and also web service developers. The architecture
has been implemented in a prototype called Jerrymouse and
has had its performance evaluated by experimental tests. The
performance of Jerrymouse was evaluated by comparison
with the distribution of requests made by the Apache HTTP
Server mod_jk module for Apache Tomcat providers in
remote nodes.

The results obtained with round-robin and weighted
round-robin policies on both homogeneous and
heterogeneous platforms have demonstrated that Jerrymouse
delivers a lower overhead for distributing requests when
compared to the existing mechanisms built into Apache
HTTP Server.

The results for Jerrymouse policies gathering load indices
from servers introduce an overhead because of the
performance monitoring, but nevertheless provide a similar
overall performance to that obtained directly from the
Apache HTTP Server. Another relevant point is the
requirement to determine the service demand, in order to
design the best policies to support that service. In fact, the
studies carried out in this initial work did not have the
specific objective of analyzing the performance of possible
distribution policies, but rather to compare the behaviour of

both architecture and Jerrymouse when using default
policies, already well-known and currently available in
Apache HTTP Server.

The GreenPolicy developed for energy-saving also
demonstrates that it is possible to offer the user a
straightforward system which will reduce energy costs and
optimize computing resources usage.

Figure 11. Results from Policy for Energy Saving using one and two
servers when executing the financial transaction authorization service.

The Jerrymouse prototype uses existing software
solutions, such as monitoring and component libraries. Its
design provides scalability, performance and the flexibility to
change components without suspending execution.

Our preliminary results show that the Jerrymouse has
stable behaviour and is able to support future research works
in this area.

Current research is being directed to investigate the
relationship between load indices and overall web service
performance. In addition, new distributing policies will be
devised for Jerrymouse using load indices especially
designed to reduce the demand imposed by clients on
servers.

ACKNOWLEDGMENT

This work has been supported by FAPESP, a Brazilian
funding agency, under processes: 07/57971-7, 08/00553-1
and 09/06670-2. The authors thank its financial support.

REFERENCES

[1] Liu, Dong; Deters, Ralph . Management of service-oriented systems .
Service Oriented Computer Applications. Springer-Verlag London.
(2008) , v.2 p.51-64.

[2] Red Hat. Jboss.org – community driven: JBoss Web. Available in:
<http://www.jboss.org/jbossweb>. Last access: 14/Feb/2011

[3] Huhns, M.N.; Singh, M.P.; "Service-oriented computing: key
concepts and principles,"IEEE Internet Computing, vol.9, no.1, pp.
75- 81, Jan-Feb 2005 doi: 10.1109/MIC.2005.21

[4] Mei-Ling Chiang, Chun-Hung Wu, Yi-Jiun Liao, Yu-Fen Chen, New
Content-aware Request Distribution Policies in Web Clusters
Providing Multiple Services, Proceeding, In.: SAC '09 Proceedings of
the 2009 ACM Symposium on Applied Computing, 2009, pp 79-83.

526

[5] Brittain, Jason; Darwin, Ian F. Tomcat: The Definitive Guide.
Sebastopol: O'Reilly. p. 336, 2003.

[6] Mysql AB. Mysql cluster. Available in:
<http://www.mysql.com/products/database/cluster/>. Last access:
25/Feb/2011.

[7] Pgcluster top page. Available in:
<http://pgcluster.projects.postgresql.org/>. Last access: 14/Jan/2011.

[8] Slony-lpg. Available in: <http://slony.info/>. Last access:
25/Feb/2011.

[9] Barbon, F.; Traverso, P.; Pistore, M.; and Trainotti M. Run-Time
Monitoring of Instances and Classes of Web Service Compositions.
In Proceedings of the IEEE International Conference on Web
Services (ICWS '06). IEEE Computer Society, Washington, DC,
USA, 63-71, 2006. DOI=10.1109/ICWS.2006.113

[10] Pallickara, S.L.; Plale, B.; Jensen, S.; Sun, Y.; , "Monitoring access to
stateful resources in grid environments," IEEE International
Conference on Services Computing, vol.1, no., pp. 343- 346 vol.1,
2005 doi: 10.1109/SCC.2005.68

[11] Sultan, F.; Srinivasan, K.; Iyer, D.; Iftode, L. Migratory TCP:
connection migration for service continuity in the Internet.
Proceedings 22nd International Conference on Distributed Computing
Systems, 2002. p. 469-470.

[12] Massie, Matthew L.; Chun, Brent N.; Culler, David E. The ganglia
distributed monitoring system: design, implementation, and

experience. Parallel Computing, North-holland, v. 30, n. 7, p.817-
840, 2004.

[13] Bin Liu, Jian Yang, Yu Zhao, Online prediction-based dynamic
cluster configuration for energy conservation, In.: Proc of 2nd Int.
Conference on Advanced Computer Control (ICACC), vol.4, pp.247-
251, 2010.

[14] Luciano Bertini, Julius C.B. Leite, Daniel Mossé. Power and
performance control of soft real-time web server clusters, Information
Processing Letters 110 (2010) p.767–773.

[15] Elnozahy, E. N.; Kistler, Michael; Rajamony, Ramakrishnan. Energy-
Efficient Server Clusters. Power-Aware Computer Systems. LNCS.
Springer: Berlin, 2003. vol. 2325/2003. p. 179-197.

[16] Horvath, Tibor; Skadron, Kevin. Multi-mode energy management for
multi-tier server clusters. Proceedings of the 17th international
conference on Parallel architectures and compilation techniques.
Toronto, 2008. p. 270-279.

[17] Lefurgy, C.; Rajamani, K.; Rawson, F.; Felter, W.; Kistler, M.;
Keller, T. W. Energy management for commercial servers. Computer.
IEEE Computer Society: Los Alamitos, 2003. vol. 36, ed. 12, p. 39-
48.

[18] EU Energy Star. European Community Energy Star Programme for
energy efficient office equipment. Available in: <http://www.eu-
energystar.org/en/index.html>. Last acess: 25/Feb/2011.

527

