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Abstract— This paper presents a novel architecture for 
distributing web service requests on clusters of servers. The 
architecture facilitates a transparent dynamic distribution of 
requests according to a range of specified policies. This enables 
a flexible performance in respect of different objectives, 
services and platforms (typically based on server workload). 
The architecture has been successfully demonstrated with a 
prototype implementation (called “Jerrymouse”). Our 
preliminary results with Jerrymouse indicate stable behaviour 
and worthwhile performance gains (compared with Apache 
HTTP Server). A specific policy to deliver reduced cluster 
electricity savings has also been successfully implemented. 

Keywords- web services, SOA; distributing requests; clusters; 
monitoring; Ganglia. 

I. INTRODUCTION

Service Oriented Architecture (SOA) allows the design, 
implementation and use of services from a number of 
different sources in a loosely-coupled and interoperable way 
[1]. Web services provide a mechanism to expose services 
for client applications using protocols such as HTTP. Web 
services typically use languages such as XML and WSDL 
(Web Service Description Language) together with protocols 
such as SOAP (Simple Object Access Protocol) and REST 
(Representational State Transfer). SOAP and REST describe 
how parameters are sent to and received from services while 
WSDL is a language that describes how to access web 
services, including data types and functions [1]. 

Web services typically require at least two server-side 
sub-systems: an application server and a web server. An 
application server implements the delivery of the specific 
service requested. JBoss, IBM WebSphere, Apache Axis and 
Apache CXF are all examples of application servers with 
different levels of functionality [1][2]. Web servers process 
messages between clients and services using HTTP. JBoss 
and WebSphere implement web servers as well. JBoss 
derives from Apache Tomcat, with optimizations to process 

requests with dynamic content using JSP (Java Server Pages) 
and servlets [2]. Apache Tomcat was originally a servlet 
reference implementation and this is one of the reasons for 
its popularity. Frameworks can be inserted into Apache 
Tomcat for web services execution, allowing both 
publication of these services and interaction with clients and 
other providers using HTTP. 

Web services support distributed solutions which can 
provide greater performance, scalability, fault tolerance and 
good availability for systems with a high demand. Despite 
these clear advantages, distributed solutions usually increase 
the overall system complexity when compared to centralized 
alternatives [3]. ’Request distribution’ on clusters of web 
services is an example [4] which can be implemented in 
several different ways: by DNS, by NAT, by interaction 
between the Apache HTTP Server and Apache Tomcat, in 
the EJB layer or even in the database layer [5].  

DNS distribution has the potential for a simpler 
implementation, but normally has problems with caching, the 
target server state is not known and fault tolerance is not 
supported. NAT distribution offers better support for fault 
tolerance, but it has the same difficulty of obtaining state 
information from the target server. When applying request 
distribution in the database layer, the service will redirect the 
request to a database cluster, considering load balancing in 
this level. The distribution in database servers does not avoid 
an eventual bottleneck in the web service nodes. MySQL 
Cluster [6], PG Cluster [7] and Slony [8] are some examples 
of this kind of distribution. The request distribution 
performed by interaction between the Apache HTTP Server 
and Apache Tomcat take into account the resources accessed 
by the Apache HTTP server and hence achieve a potentially 
optimum distribution. One possible implementation is the 
mod_jk module (part of the Apache HTTP Server) which 
supports a range of distribution policies: round-robin, 
weighted round-robin, busy (i.e. considering the existing 
server load), sections and network use. These policies 
present significant performance-limitations because there is 

2011 IEEE International Conference on Services Computing

978-0-7695-4462-5/11 $26.00 © 2011 IEEE

DOI 10.1109/SCC.2011.90

520



no dynamic feedback about the platform current state nor 
flexibility to distribute the submitted requests according to 
service demand. 

The systems supporting web services ideally require a 
flexible request distribution that offers a better efficiency to 
the diversified demand generated by different services on 
different distributed platforms. Transparency and portability 
are equally important and desirable features. Monitoring of 
the current server node status can be used to support an 
improved dynamic distribution because it is based on more 
accurate decisions. Some works considering monitoring in 
this context can be seen in [9] and [10]. 

Many studies have been developed at "processes 
scheduling" for High Performance Computing (HPC) and 
Distributed Systems (DS).  However, workloads distributed 
on servers of web services are not "processes"; but "requests" 
to services. Thus, processes scheduling policies need to be 
adapted to the web services context, where its servers have 
distinct features as: specific middlewares to support the 
services, demands with services composition, objectives, 
protocols and a high use of remote data bases. 

Considering the web service context, this work proposes 
an original architecture for a dynamic distribution of client 
requests, offering flexibility, transparency and portability. 
Flexibility allows a weak coupling between hardware and 
software and is achieved by the use of several policies to 
distribute the services. The proposed architecture has been 
implemented in a prototype called Jerrymouse, which 
demonstrates portability using different service providers, 
such as Apache Tomcat and JBoss. The architecture and 
prototype will act as a basement for future research works in 
this area. 

The performance of both the proposed architecture and 
Jerrymouse has been evaluated using experimental studies, 
performed on two different platforms: one homogeneous and 
one heterogeneous. These experimental studies make use of 
four different distributing policies, three of them similar to 
the policies already existing in the mod_jk module (part of 
the Apache HTTP server). This approach allows the 
overhead introduced by Jerrymouse to be measured when it 
is implementing a distribution algorithm similar to the 
Apache HTTP Server. The fourth distribution policy 
implemented allows explicit control of the number of server 
nodes currently powered-up according to the overall system 
load, hence reducing costs when possible by saving energy. 

The results presented in this paper show that the 
proposed architecture does not introduce a significant 
execution overload and, at the same time, offers significant 
performance gains and improves the service availability 
when compared to Apache HTTP Server.  

This paper is composed of 5 sections. Section II 
describes the proposed architecture in a top-down approach. 
Section III describes the Jerrymouse prototype. Section IV 
discusses the main results obtained from the experimental 
studies with Jerrymouse. Section V presents the conclusions. 

II. ARCHITECTURE

Fig. 1 presents the proposed architecture together with a 
message using SOAP. The SOAP message is received by a 

network border element (step 1), implementing a NAT or 
DNS distribution logic. After it has arrived, the request is 
redirected to a web service provider acting as a front-end, 
which will then either redirect the request to a target node or 
service the request locally. In this example, the provider is 
located in node 2. The decision to redirect is taken by a novel 
distributor element in the provider (step 2), using a policy to 
decide which distribution to apply. This policy uses data 
from monitors running in every service node in the overall 
distributed platform. The distributor selects an appropriate 
service node and responds to the provider (step 3) with the 
required destination. The provider forwards the message to 
the destination node (step 4) in order to execute the service. 
The target node, node 1 in this case, receives the request 
using its framework (step 5). The response from the service 
reaches the front-end first (step 6) and then the provider 
forwards it (step 7) to the client. There are alternative 
solutions, using connections-migration, which allow the 
service response to be forwarded directly to the client [11]. 
However, these solutions require changes either to the 
system core or to the TCP protocol for both servers and 
clients. This means that this alternative is unattractive 
because transparency is usually required on the client side 
and modifications inside the system core will make it 
difficult to maintain independence between software and 
hardware. 

Figure 1. Novel architecture for distributing requests to web services 
providers. 

The proposed architecture does not mandate a rigid (and 
inflexible) location for the software and hardware 
components. The front-end can respond to a service request 
directly (if allowed by the policy and the current load 
distribution).  More than one front-end can co-exist if there is 
sufficient client demand. When this occurs a logical link is 
required between the front-ends in order to provide 
consistency for overall system. Nodes 3 and 4 do not have a 
distributor because they are back-end servers and thus not 
able to receive requests directly from a client. 

A filter is inserted into the service provider enabling it to 
communicate with the Distributor (see section 3). Fig. 2 
gives the internal components of the Distributor, which are 
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described below. In Fig. 2 we can also see the components 
responsible to connect the Distributor to Tomcat, Ganglia 
and other Distributor. 

Figure 2. Distributor internal components. 

A. The Distributor 
The Distributor components are currently the Core, the 

Setting Manager, the Adaptors Manager for Monitoring, the 
Connector Manager and the Policies Manager. In addition, 
there are also Adapters for Monitoring, Connectors and the 
Requests-Distribution Policies. These components are 
dynamic and can be added, removed or replaced at run-time. 
This approach increases the flexibility of the architecture, 
since they can be created and compiled as separate libraries. 
Adapters for monitoring support the communication between 
the Distributor and the Monitors. The Connectors support 
communication between the Distributor and the target web 
service provider. The Policies define the high-level system 
requirements and effectively decide how to redirect the 
requests. 

B. The Core 
The Core is the main Distributor element (the first one to 

be executed), responsible for managing all other components 
and acting as a bridge between connectors, policies and 
monitors. The Core loads the settings at the start of 
Distributor execution and then loads the Managers that stay 
running concurrently. 

C. The Setting Manager 
The Setting manager unifies all information about the 

architecture, so that every Distributor component can access 
it. Its initial functionality is to load the system settings 
(described in an XML file) and then validate them using 
XML Schema or DTD. The parsing of the settings 
information creates a binary representation which is used by 
the components. When the initial setting is complete, the 
Setting Manager remains active and returns execution back 
to the Core. New settings can be established at runtime 
through a direct interaction from the system administrator or 
from another distributor. This Distributor dynamic 
reconfiguration does not require execution to be suspended. 
The Settings Manager can also change the status of 
Connectors, Adapters and Policies between active and 
inactive and in addition these components can also be 
deleted and inserted. This process requires that the 
configuration´s data are always consistent because the 
Distributor remains active and is continually receiving 

service requests for distribution. The Settings Manager also 
propagates updates to other Distributors and can register 
their actions in a log file. The granularity of the stored 
information can be configured in the settings file.

D. The Connectors Manager 
Connectors ensure that the Distributor is loosely coupled 

to the web service providers and removes from the Core the 
necessity to store the interaction details required to 
communicate with different providers. All Connectors use a 
standard interface with the Core and are responsible for 
managing any differences. The Connectors Manager reads 
the connectors settings already established by the Setting 
Manager and executes them. The Connectors Manager 
maintains a reference to all active connectors and when it 
receives a new instruction from the Setting Manager it 
notifies the connector as appropriate (e.g. activation, 
deactivation (but remain in memory), inclusion or removal). 

E. The Policies Manager 
The provision of multiple policies provides maximum 

flexibility for the Distributor. The design concept is to make 
available a number of different policies able to redirect 
service requests. Using the same mechanism implemented 
for the Connectors Manager, this manager also receives 
notifications from the Settings Manager. When the Policy 
Manager starts, it uses the data present in the Distributor to 
load the required policies. Policies, unlike connectors, do not 
remain active during Distributor execution. They are 
executed only when a decision is requested by the 
Distributor, saving processor clock cycles and memory 
space. The decision to avoid continuous execution was taken 
because probably there will be several policies running 
concurrently to support different service requests. Policies 
can be enabled, disabled, added and removed using this 
Manager. 

F. The Adaptor Manager for Monitoring 
The Adapter Manager loads the adapters that are 

connected to all of the monitors present in the system. It can 
enable, disable, add and remove adapters from the 
Distributor. Besides this management role, it also serves as 
the bridge between politics and adapters. The adapters are 
started by this Manager and remain active until a closing 
notification is received. The policies are able to load indices 
internally from a specific function that uses the Adapters 
Manager to query the active adapters (all adapters are 
queried until information is returned). The internal structure 
of adapters is designed to avoid bottlenecks in the expected 
return of information. Another concern is the complexity of 
the adaptors, which has been minimized because they are all 
queried and this therefore imposes a limit on the scalability 
of the architecture at present. 

III. JERRYMOUSE

The architecture described above has been successfully 
implemented in a prototype called Jerrymouse. The 
Jerrymouse implementation has required the development of 
both distributor and filter elements associated with the web 
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services provider. The implementation was based on C, Perl 
and programming scripts in GNU/LINUX. Fig. 3 shows the 
relationship of Jerrymouse with the Apache Tomcat 
provider. 

Figure 3. Interactions between Apache Tomcat, Jerrymouse and Ganglia. 

The filter is a design pattern of the servlets specification 
that implements a sequence of steps to be executed between 
two elements. In Apache Tomcat, for example, filters are 
running in the HTTP server called Coyote, the Catalina 
servlet container and Jasper (which is responsible for 
executing servlets). The parameters and the content of the 
HTTP request are accessible by these filters. The Jerrymouse 
implementation requires the inclusion of a filter in Apache 
Tomcat to intercept HTTP requests and then send a request 
to Jerrymouse asking which node should be used to run the 
service. Jerrymouse determines the policy to be used, applies 
this policy to select the service node to forward the request to 
and then returns this back to the filter. The filter in the 
provider recreates the HTTP request and sends it to the 
required node. The HTTP message is received by the Coyote 
component in the target node, which invokes the Catalina 
and Jasper modules for service execution. When the service 
is complete, the front-end (where the filter was invoked) 
receives the response and returns the result to the client. In 
this example, the front-end provider has used just the HTTP 
Server, because the filter inhibits the usual request-path to 
the Catalina and Jasper modules. In the event that there is 
any failure in Jerrymouse or in the communication with other 
remote providers, the filter can forward the message directly 
to the local Catalina and Jasper modules to provide a local 
fall-back execution of the service. This can also be an 
advantage in times of low client demand and hence low 
overall workload. Installing the filter inside Apache Tomcat 
is not intrusive, since there is no necessity to change any 
source code. For installation, the filter class has to be enabled 
in the Apache Tomcat class loader and then the settings file 
can be changed for this class to run as a filter. 

Fig. 3 also shows the relationship between Jerrymouse 
and the Ganglia monitoring tool. The choice of Ganglia is 
because of its scalability and existing use on large platforms 
[12]. It operates in a hierarchical way and supports cluster 

federation, offering monitoring either periodically or after 
state changes. The Ganglia monitor runs on all cluster nodes 
that need to be monitored and the monitoring information 
can be obtained directly via TCP/IP. New metrics can be 
inserted into Ganglia, making it a highly-flexible monitoring 
tool and thus contributing to the overall flexibility of 
Jerrymouse as well. 

Jerrymouse connects with Ganglia via an adapter using a 
TCP/IP connection and stores the collected load indices from 
nodes in a hash table. When a policy requires data from the 
indices, the search for the desired value can be undertaken in 
O(1). The memory storage complexity is proportional to the 
amount of indices and nodes. The communication between 
the Ganglia monitors and Jerrymouse is non-blocking and 
therefore does not interrupt Jerrymouse execution. 
Managers, adapters and connectors are all executed using 
threads hence all of the adapters remain active collecting 
data from monitors asynchronously. All communication 
between Jerrymouse and adapters is performed using shared 
memory. When a connection arrives, the connector calls the 
appropriate function inside the Core which performs a query 
on a hash table containing web services and policies before 
invoking the appropriate policy.  

Connectors, adapters, and policies are all loaded using 
dynamic libraries which ensures that elements can be loaded 
and unloaded without interrupting Jerrymouse execution.  

The policies are the most important elements in 
Jerrymouse, because they can specify different distributing 
behaviours for each individual web service. Policies can 
nevertheless have simple implementations and can make use 
of data persistence. 

IV. RESULTS

The performance of the overall proposed new 
architecture and the Jerrymouse prototype implementation 
were compared to the existing solutions provided by the 
standard Apache HTTP Server, which uses the mod_jk 
module to provide connections to Apache Tomcat. The 
objective is firstly to demonstrate that Jerrymouse does not 
generate significant overhead and thus to reduce the request 
performance as experienced by the client application.  

The experiments described here have considered two 
example web services. The first example service models 
financial transaction authorization using credit cards, using a 
service based on EJB with requirements for data validation 
and data persistence. The second example service supports 
the recognition of characters and images and was 
implemented using the framework provided by Axis2 and 
Apache Tomcat. 

Each service was requested from 3 concurrent clients, 
each one generating 1, 3, 5, 7 and 10 threads. Each thread 
requested 100 times sequentially the same service. In this 
way, considering 10 threads from 3 clients, for example, 
there were 30 clients performing a total of 3000 requests. 

Fig. 4 illustrates the platform structure used in the 
experiments. Mod_jk (fig. 4a) runs in the Apache HTTP 
Server, redirecting messages to the nodes using Apache 
Tomcat. Jerrymouse (fig. 4b) uses Apache Tomcat directly 
in the front-end to receive requests to the web services. 
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Jerrymouse is also connected directly to the monitors that 
gather the workload indices from each node. 

Figure 4. Experimental platforms used for the experiments (a) 
homogeneous and (b) heterogeneous 

The experiments were performed using two different 
platforms: one homogeneous and the other heterogeneous (in 
respect of constituent nodes). The tests conducted in the 
homogeneous platform used six nodes: thee of these being 
clients, one front-end and two web service servers. The 
heterogeneous platform used eight nodes: three clients, one 
front-end and four servers. The clients and front-end systems 
used Intel Core 2 Quad processors in both scenarios 
(heterogeneous and homogeneous). The heterogeneous 
platform used servers on processors ranging from 800 MHz 
up to 1.8 GHz and RAM memory from 256 MBytes up to 
512 MBytes. These same nodes in the homogeneous 
platform have a clock of 3.4 GHz and 2 GBytes of memory. 
For all experiments a 100Mbps network was used. 

Three different pairs of policies were compared in the 
experiments. The first comparison considered the round-
robin policy (as used in mod_jk) with a round-robin variant, 
especially developed for Jerrymouse. The goal is to identify 
possible overloads in Jerrymouse when it uses similar 
distribution policies to mod_jk on homogeneous platforms. 
The second comparison considered weighted round-robin 
policies on both mod_jk and Jerrymouse, allowing the 
behaviour of Jerrymouse on heterogeneous platforms to be 
investigated. The third comparison considered the server-
occupation policy (busy) used in mod_jk with a Jerrymouse 
policy based on memory and processor usage, using an 
exponential moving average in order to reduce peaks of 
performance. 

The policy flexibility developed for Jerrymouse has been 
analyzed with the use of a GreenPolicy aiming to reduce the 
energy consumed by the overall distributed platform. Liu et 

al. [13] and Bertini et al. [14] present prior research in this 
area and other previous paper have also discussed this 
approach [15][16][17].  

The GreenPolicy developed in this paper is designed to 
activate nodes “on demand” using workload monitoring. The 
node activation is based on the WOL (Wake-on-Lan) 
resource, thus reducing the electricity consumption of the 
nodes. A server turned on all day long for one year can 
present consumption of 523.8Kwh/year, according to EU 
Energy Star [18]. Considering that this server can be required 
just 6h/day, when there is high demand, the GreenPolicy 
could be used to save 392.85KWh/year, just for one server. 
This economy is meaningful in large data centers and could 
be applied orthogonally to the clients and requested services. 

Due to limited space, only the main results will be 
highlighted in this paper although more extensive results are 
now available, with similar results to the results presented 
here. All graphs shown in Figures 7 up to 10 consider the 
web service implementing financial transaction 
authorisations. 

Fig. 5 shows the results for the homogeneous platform 
and policies round-robin. It is possible to observe that the 
Jerrymouse performance was superior to the mod_jk results 
at all load levels. This confirms that the proposed Jerrymouse 
structure does not increase the processing overhead 
significantly (which could potentially invalidate the 
advantages of the dynamical flexibility provided by the 
architecture). 

Figure 5. Results for the homogeneous platform and policies round-
robin executing the financial transaction authorization service. 

Fig. 6 shows the results for the homogeneous platform, 
but now using the mod_jk busy policy and Jerrymouse
policy based on memory and processor usage. It is possible 
to observe that both Jerrymouse and mod_jk present a 
statistically similar performance, determined by hypothesis 
tests and by a high confidence interval from mod_jk. This 
result is probably due to the load index used by the 
Jerrymouse policy, which does not match the demand 
generated by the service. 

Fig. 7 shows the results for the heterogeneous platform 
with a round-robin policy. Jerrymouse provided superior 
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performance for all cases, with the exception of the test with 
10 threads. This occurred because of the behaviour of 
requests by mod_jk when it was under high demand - it did 
not execute the service, instead returning an "overloaded" 
message to the client. Jerrymouse in contrast served all 
requests, even when a high delay would be necessary. This 
scenario demonstrates that Jerrymouse has provided a higher 
availability than mod_jk, although of course the policy can 
be adjusted to meet different requirements and discards 
requests in a similar fashion to mod_jk if required. Such a 
policy might be important to guarantee a particular quality of 
service requirement. 

Figure 6. Results for the homogeneous platform and mod_jk busy policy 
vs. Jerrymouse policy based on memory and processor usage executing 

the financial transaction authorization service. 

Fig. 8 shows the results for the heterogeneous platform, 
but now using the mod_jk busy policy and a Jerrymouse 
policy based on memory and processor usage. In this 
experiment, Jerrymouse demonstrated a performance 
statistically equivalent to mod_jk. This result is similar to the 
result obtained for the homogeneous platform shown in Fig. 
6. 

Figure 7. Results for the heterogeneous platform and policies round-
robin executing the financial transaction authorization service. 

Fig. 9 shows the results for the heterogeneous platform 
and weighted round-robin policies for Jerrymouse and 
mod_jk. In this experiment Jerrymouse also produced a 
higher performance when compared to mod_jk. 

The results obtained for the pattern recognition service 
show that Jerrymouse produces similar performance gains to 
those reported above for the financial transaction 
authorization service. 

Figure 8. Results for the heterogeneous platform and mod_jk busy 
policy vs. Jerrymouse policy based on memory and processor usage, 

executing the financial transaction authorization service. 

The experiments conducted with the GreenPolicy were 
performed on a homogeneous platform with two servers, 
with one of them receiving all requests and the other one 
normally turned off. The second server was activated when 
the load index of the first server reached a defined threshold. 
The scenario used was the financial transaction authorization 
service with 1, 3, 7, 15 and 31 concurrent threads.

Figure 9. Results for the heterogeneous platform and policies weighted 
round-robin for Jerrymouse and mod_jk, when executing the financial 

transaction authorization service. 

Fig. 10 shows the client response time increasing as the 
load increases. The loads are identified with labels in the 
graph, which shows a response time peak close to 5700 
requests. This represents the moment that the second server 
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was activated and started to serve requests. This peak occurs 
owing to the loading of the second provider and decreases 
shortly as soon this server starts to respond. In this 
experiment was saved 36.31% of energy. 

Fig. 11 compares the same service execution, but now 
showing the behaviour with one server and two servers being 
activated on demand. It is possible to observe the difference 
in response time when using one or two nodes for the 
increased load. The transparency and flexibility of the 
architecture proposed in this paper simplify the use of 
features such as WOL. 

Figure 10. Results from GreenPolicy using two servers and executing the 
financial transaction authorization service. 

V. CONCLUSIONS

This paper proposes a novel software architecture for the 
distribution of requests inside web service clusters. This 
architecture is flexible, dynamic and transparent both to the 
end-user and also web service developers. The architecture 
has been implemented in a prototype called Jerrymouse and 
has had its performance evaluated by experimental tests. The 
performance of Jerrymouse was evaluated by comparison 
with the distribution of requests made by the Apache HTTP 
Server mod_jk module for Apache Tomcat providers in 
remote nodes. 

The results obtained with round-robin and weighted 
round-robin policies on both homogeneous and 
heterogeneous platforms have demonstrated that Jerrymouse 
delivers a lower overhead for distributing requests when 
compared to the existing mechanisms built into Apache 
HTTP Server. 

The results for Jerrymouse policies gathering load indices 
from servers introduce an overhead because of the 
performance monitoring, but nevertheless provide a similar 
overall performance to that obtained directly from the 
Apache HTTP Server. Another relevant point is the 
requirement to determine the service demand, in order to 
design the best policies to support that service. In fact, the 
studies carried out in this initial work did not have the 
specific objective of analyzing the performance of possible 
distribution policies, but rather to compare the behaviour of 

both architecture and Jerrymouse when using default 
policies, already well-known and currently available in 
Apache HTTP Server. 

The GreenPolicy developed for energy-saving also 
demonstrates that it is possible to offer the user a 
straightforward system which will reduce energy costs and 
optimize computing resources usage. 

Figure 11. Results from Policy for Energy Saving using one and two 
servers when executing the financial transaction authorization service. 

The Jerrymouse prototype uses existing software 
solutions, such as monitoring and component libraries. Its 
design provides scalability, performance and the flexibility to 
change components without suspending execution. 

Our preliminary results show that the Jerrymouse has 
stable behaviour and is able to support future research works 
in this area. 

Current research is being directed to investigate the 
relationship between load indices and overall web service 
performance. In addition, new distributing policies will be 
devised for Jerrymouse using load indices especially 
designed to reduce the demand imposed by clients on 
servers. 
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