

City, University of London Institutional Repository

Citation: Foster, H., Spanoudakis, G. & Mahbub, K. (2012). Formal certification and

compliance for run-time service environments. Paper presented at the 2012 IEEE Ninth
International Conference on Services Computing (SCC), 24 - 29 June 2012, Honolulu, USA.
doi: 10.1109/SCC.2012.23

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/1960/

Link to published version: https://doi.org/10.1109/SCC.2012.23

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Formal Certification and Compliance
for Run-Time Service Environments

Howard Foster, George Spanoudakis and Khaled Mahbub
School of Informatics, City University London

Northampton Square, London
England, United Kingdom

Email: {howard.foster.1,g.e.spanoudakis,k.mahbub}@city.ac.uk

Abstract—With the increased awareness of security and safety
of services in on-demand distributed service provisioning (such
as the recent adoption of Cloud infrastructures), certification
and compliance checking of services is becoming a key element
for service engineering. Existing certification techniques tend to
support mainly design-time checking of service properties and
tend not to support the run-time monitoring and progressive
certification in the service execution environment. In this paper
we discuss an approach which provides both design-time and run-
time behavioural compliance checking for a services architecture,
through enabling a progressive event-driven model-checking
technique. Providing an integrated approach to certification and
compliance is a challenge however using analysis and monitoring
techniques we present such an approach for on-going compliance
checking.

I. INTRODUCTION

The ability to assess the trustworthiness of service-based
software systems (SBSS) is increasingly gaining attention
[1]. Currently mechanical trust reasoning mechanisms are
supported by some basic certification and compliance schemes,
with certificates typically measured and awarded against tra-
ditional, monolithic software systems. However these mecha-
nisms easily become invalid when a system intends to perform
a dynamic run-time adaptation of components. Thus, cur-
rent certification and compliance mechanisms are insufficient
to support the dynamic nature of service-oriented systems.
Furthermore, the transition to a cloud-blased deployment of
SBSSs requires some higher-level of control for infrastructure
and software services, promoting the ability to perform some
advanced compliance checking processes for service quality
levels and other run-time properties (such as conditional
adaptation or discovery).

To aid in this endeavour, our interests focus on providing
rigorous yet practical methods for certification and compli-
ance checking based upon the run-time events exhibited by
such systems. Services may also be composed statically or
dynamically (i.e. at design-time or run-time) and can ex-
hibit behaviour which had not been expected, desired and
may lead to violations in service compliance policies. Our
approach provides two main areas of compliance checking.
First, a design-time compliance that checks aspects of service
behaviour design against, for example, agreed orchestration
or choreography models. Second, run-time model-checking
providing a mechanism to uphold service properties during

execution. Our focus is on checking properties in two generic
scenarios; (1) in the course of dynamic service discovery with
advertised service behaviour and (2) in progressive service
behaviour and potential service violations.

Our contribution aims to assist both service engineers
and auditors to analyse the compliance levels of services
in their run-time environments. For engineers it can provide
a mechanism to support adaptation of services based upon
these levels, whilst for compliance it enables a measure
for certification. We achieve this analysis through a series
of algorithms which are implemented to provide a formal
rigorous set of software components which may be included in
run-time environments or result in visual reports in an analysis
workbench. To assist adaptation of design and run-time models
we highlight potential violations as a result of comparing run-
time event traces and service design specification models. One
illustrated example application of this is to enhance the service
monitoring with levels indicating when properties should be
analysed as bounded measurements.

The paper is structured as follows. In section 2, we discuss
a background to services compliance checking and in section
3 we provide scenarios for compliance checking. In section
4, we outline our approach to gather service behaviour details
for both statically and dynamically checking service behaviour
models built upon a service-monitoring architecture. In section
5, we detail the analysis for our focus on service compliance
checking. In section 6, we describe a prototype implementation
of the algorithms discussed previously and discuss an initial
evaluation. Section 7 discusses related work and finally in
section 8 concludes the paper with a summary of present work
and future direction.

II. BACKGROUND

With the increased awareness of security and safety of
services in on-demand distributed service provisioning (such
as the rapid adoption of Cloud-based resource infrastructures),
certification and compliance checking of services is becom-
ing a very important topic of service engineering. Existing
techniques tend to support mainly design-time approaches
to checking service properties, whilst existing policy-driven
run-time monitoring approaches use a policy specification to
uphold some compliance rules. This has been realised for
example in a Service-Level Agreement (SLA)), however a

formal model-based approach is typically not involved at run-
time (e.g. as in PONDER2). Such rigour is needed at various
stages in the service engineering lifecycle and execution.
This compliance checking may be realised in a Service-
Oriented Architecture (SOA) with checkpoints such as the
ones described by the CBDI [2] illustrated in Figure 1.

Fig. 1. CBDI Example SOA Policy Compliance Checkpoints

In particular, Figure 1 highlights checkpoints at Service
Design, Consumption, Certification and Run-time Compliance
(highlighted by little circles in Figure 1). Integrating rigorous
static testing and dynamic checking tools constitutes a great
challenge in providing greater assurance of services in these
areas of service engineering.

A. Service Design and Consumption

A number of verification approaches are aimed towards
service design. Our previous work [3] focused on integrating
service composition analysis in this area and provided a
general approach to design vs. implementation verification.
As an overview, the approach offered analysis from several
verification property perspectives including design specifica-
tion against implementation, interaction (co-ordination), obli-
gations (orchestration vs. choreography) and in deployment
(resource constraints and process safety). Common to all types
of analysis were a series of steps to abstract a combined model
of specification and implementation in preparation for analysis.
Note that Service Validation in this context specifically aims
to address that the right service had been built with Service
Verification assuring that the service is built correctly.

B. Service Certification

Software certification has largely focused on certifying
security mechanisms (e.g. ISO/IEC 15408) or product qual-
ity metrics (e.g. ISO/IEC 9126*). Our work in certification
extends these with assertions for other properties of ser-
vices and is being carried out as part of the EU funded
project ASSERT4SOA [4]. ASSERT4SOA aims to provide
a more general service certification framework, notation and
architecture for supporting certificates in service discovery

and execution. Certification evidence is split into three cer-
tification areas: Evidence-based, Model-based and Ontology-
based resulting in ASSERT-E, ASSERT-M and ASSERT-O
certificates respectively. The three types of certification are
used as part of a wider framework to specify and utilise
certifications in a service-oriented architecture. In this paper
however, we focus on the use of model-based certification
for upholding certain service properties, since we consider
analysis on formal models. The model that is the basis for
verifying that a particular service provides a particular security
property (verification model for the rest of this document) will
usually be on a lower abstraction level. This implies that there
can be several different services with different verification
models that have the same ASSERT-M model, as described
in [4] and depicted in Figure 2.

Fig. 2. ASSERT4-M, Verification and Service Models Hierarchy

Depending on the security properties to be specified, the
service interface model (e.g. in WSDL notation) may be
identical to the behavioural (ASSERT-M) model or may be
an abstraction. The implementation of a Web Service can in
theory be specified in a formal model as well, however this will
usually not be the basis for formal verification. Nevertheless
we add it in the figure to demonstrate the complete range
of abstraction levels. Note that only the WSDL interface and
ASSERT-M models, respectively, can be considered public
(being part of a certification reference set).

C. Service Run-time Compliance

Checks for run-time service compliance focus on actual ser-
vice behaviour and in upholding certain properties throughout
the execution environment where the certificate confirms the
compliance. One specific example of using this mechanism
for monitoring compliance at run-time is based upon the
substitution of a service on the basis of some predefined event
or property violation. The candidate service exposes its service
behaviour at run-time. This can then trigger two forms of
analysis. The first type of analysis evaluates the advertised
behaviour and compliance against a design specification of
the service related properties. The second form of analysis
considers the actual service behaviour (event-driven) and it’s

progressive behaviour against the initial service designs. Both
types of analysis rely on monitoring properties of services
based upon some specification supplied for compliance mea-
sures.

III. SCENARIOS

The main scenario for our work focuses on comparing
run-time service events with agreed design-time specifica-
tions of service behaviour and properties with the aim to
support the auditing and engineering of appropriate services
for service systems. A viewpoint of the auditor maybe to
provide assurance that the services implemented do indeed
fulfil the properties required in the service environment, whilst
an engineer maybe interested in whether the services correctly
follow protocol in establishing a service composition.

A. Example

For our scenario we have an example of a booking service
described by the state machine in Figure 3. In this example,
the state machine specifies that a request for a booking may
be declined or accepted based upon successfully processing a
payment. If the booking is declined (prior to payment) then
the booking is cancelled. Both accepted or declined bookings
are eventually replied to confirming the status of the booking
request. A series of constraints (cased for example, in an SLA)
may state that a request for a booking must always be replied
to. Also, by design, there maybe a constraint that only a single
payment can be made for each booking. Such properties can
become the subject for certification and compliance.

Fig. 3. State Machine highlighting a Property Violation on a Service Trace

This example leads us to ask how model-based compliance
and service monitoring could be used in both design-time and
run-time execution models to detect and uphold compliance
through the execution of services in a services environment.

B. Design-time Compliance

As discussed in section II, there has been considerable
research focusing on providing design-time verification tech-
niques for service models. In particular, common properties
for verification maybe related to service orchestration, service
interactions and overall communication models. If we consider
the compliance aspects suggested in Figure 1 then for example,
we can validate the service design at this point for behavioural
aspects statically against agreed service choreography models.

Fig. 4. Architecture for Combining Static and Dynamic Service Analysis

This assists service engineers in validating service designs as
part of a collaborative development. Models produced from
these steps may also then be certified (in the form of an
ASSERT-M certificate) and supplied as evidence in service
consumption, that certain quality properties are satisfied.

C. Service Run-time Compliance

Further to design-time analysis, there is additional value
to combining static service analysis with service monitoring.
Such a partnership can aid mechanically checking and detect-
ing levels of service compliance and, through those forms of
analysis, to ensure certifications are upheld through the soft-
ware engineering process and at runtime. Furthermore, run-
time compliance checking of service composition activities is
crucial to synchronizing appropriate behaviour between pro-
cesses and upholding properties of service choreography (such
as those defined in an SLA policy). The clients of compositions
however, may expect different behaviour depending on their
individual requests. Therefore the composition must be tested
against various scenarios to reflect these different sequences
of activities.

IV. APPROACH AND MODELS

Our approach for undertaking the compliance checking is
illustrated in Figure 4 and is described as follows. A policy is
supplied consisting of required service properties (behaviour,
quality etc) to establish a certain goal. In addition, the policy
is supplied along with a set of service monitoring capabilities.
The monitoring capabilities are descriptions of service compo-
nents along with their events and analysis capabilities that may
be pulled together to assemble a monitoring infrastructure [5].
Service process descriptions are then supplied (or discovered
in service repositories) representing the design-time service
composition behaviour (e.g. in WS-BPEL notation). At this
stage the policy and service process descriptions are passed to
a Service Manager. The Service Manager ensures the initial
choreography is supported by the service process descriptions
by invoking the Service Analyser (and by supplying policy,
service process models and properties to the analyser). By

default, a property checked is on process deadlock freedom.
Once satisfied, the Service Manager triggers the generation of
a service configuration by invoking the Monitoring Manager.
The Monitoring Manager generates a suitable monitoring
infrastructure configuration and supplies it to the Monitor-
ing Engine. Events generated from monitoring the services
are supplied back to the Service Manager which monitors
the events against the rules derived from the service policy
and any violations - re-triggering a monitoring configuration
if necessary. The reconfiguration of monitoring may enable
certain properties which were not critical to the initial service
compliance (e.g. unbounded service availability).

A. Models

To prepare for analysis we use some common modelling
notations to define the service specifications, design and run-
time behaviour.

1) Labelled Transition Systems: We define the behavioural
and structural semantics of each service composition artifact
in terms of a Labelled Transition System (LTS) [6]. Labels can
represent different things depending on the context the system
is used in. Typical uses of labels include representing input
expected, conditions that must be true to trigger the transition,
or actions performed during the transition. We use LTSs
to describe the formal behaviour of service specifications,
both in design and implementation models. LTSs can be
modelled using the Finite State Process (FSP) notation [7]
which can be compiled into LTSs using the Labelled Transition
System Analyser (LTSA) tool [8]. FSP is designed to be
easily machine readable, and thus provides a preferred lan-
guage to specify abstract processes. FSP is a textual notation
(technically a process calculus) for concisely describing and
reasoning about concurrent programs. FSP supports a range of
operators to define a process model representation.

2) Behavioural Specifications: As we reported in [3] we
use the WS-BPEL specification as an example implementation
of service orchestrations and leverage the WS-CDL for a
specification of service behavioural policy (as a choreogra-
phy). WS-BPEL defines a series of constructs to describe
a service composition process, where a local partner in the
composition executes a series of service interactions. Our
behavioural mapping of WS-BPEL to FSP groups activities
by their related areas in its specification. We use the WS-
CDL specification as an example language to describe service
choreography and map the constructs of this language to the
semantics of LTSs using FSP models. A WS-CDL package
consists of choreographies that specify one or more scenarios
of interaction activities between different partners. At the
choreography package level, general aspects common to all
choreographies are defined, for example participant roles,
types, channels for communication and information (data) sets.
Within each choreography scenario are activities which specify
interactions, properties, workunits and finalization steps. Given
one or more WS-BPEL processes and a WS-CDL choreog-
raphy specification, we can model sufficient detail to support
the design-time service behaviour analysis. Additionally, a dy-

namic check of service design can be provided given a similar
analysis technique however, the abstract process specifications
(in WS-BPEL) can be released on service discovery. However,
to perform dynamic run-time analysis we require to capture
additional service behaviour detail in the form of service (and
other service environment) events.

3) Service Interaction Events: To notify interested clients
of service interaction events, our architecture supports a ser-
vice event structure which is adopted by each service (or
distributed event bus mechanism) to report on such events. The
event is reported with a number of attributes which are used
to model such events and transform them to representations in
the behavioural specifications discussed previously. The event
structure is illustrated in Figure 5.

Fig. 5. Structure of a Service Event as XML Elements

As shown in the Figure 5, each event instance contains
a unique ID, context, payload and metadata information of
the event. Context information comprises a time stamp of the
event, a collection time of the event and the source of the
event. A payload of the event signifies whether the event is
an interaction event or a monitoring result event. In the case
of interaction event, the payload specifies the name of the
operation that is signified by this event along with the list of
arguments of the operation. In the case of monitoring result
event, the payload contains the monitoring result for an SLA
guarantee term and the reference to the SLA that the guarantee
term belongs to. Finally, a list of meta-data, represented as key
value pairs, describes additional detail of the event (e.g. the
ID of the process instance that produced the event).

4) Monitoring Events and Violations: We use the EVER-
EST Monitoring Engine [9] to monitor events and violations
from rules specified in a service SLA. The properties that can
be monitored by EVEREST are expressed in the operational
monitoring specification language of EVEREST, called EC-

Assertion [10], which is an XML language based on Event
Calculus (a first-order temporal logic language). The basic
modelling constructs of Event Calculus (and EC-Assertion)
are events and fluents. An event in Event Calculus (EC
henceforth) is something that occurs at a specific instance
of time, is of instantaneous duration, and may cause some
changes in the state of the reality that is being modelled. This
state is represented by fluents. To represent the occurrence
of an event, EC uses the predicate Happens(e, t, <(t1,t2)).
This predicate represents the occurrence of an event e that
occurs at some time point t within the time range <(t1, t2)
and is of instantaneous duration. The boundaries of <(t1, t2)
can be specified by using either time constants or arithmetic
expressions over the time variables of other predicates in an
EC formula. The EC predicate Initiates(e, f, t) signifies that a
fluent f starts to hold after the event e occurs at time t. The EC
predicate Terminates(e, f, t) signifies that a fluent f ceases to
hold after the event e occurs at time t. An EC formula may also
use the predicates Initially(f) and HoldsAt(f, t) to signify that a
fluent f holds at the start of the operation of a system and that
f holds at time t, respectively. EC-Assertion adopts the basic
representation principles of EC and its axiomatic foundation
and introduces special terms to represent the types of events
and conditions that are needed for runtime monitoring. The
EVEREST receives the SLA to be monitored and produces
operational monitoring specifications in EC-Assertion by ap-
plying the translation mechanisms described in [11].

5) Monitoring Service Properties: In addition to be-
havioural properties without time restrictions (for example
a response always follows a request) unbounded properties
(such as availability) cannot be typically monitored at runtime.
Since we are interested in monitoring properties that are
proposed at design time but must be monitored at runtime
we need to add constraints to the property. Unbounded prop-
erties, therefore, need to be amended with a time bound-
ary condition. For example the unbounded property always
(send(o1,o2,requestValue) implies (eventually send(o2, o1,
sendValue)) which specifies that a request for an operation
requestValue is always (eventually) followed by a reply send-
Value. Amending as a bounded property the same proposi-
tion becomes always (Happens(send(o1,o2,requestValue),
t1 r(t1,t1)) ==> Happens (send(o2, o1, sendValue), t2,
R(t1, t1+D))) where t1 and t2 are time variables indicating
the timestamp of the relevant request and response, and D
determines the time period within which the property must be
satisfied.

V. ANALYSIS

Analysis can be broadly described into two areas; static
and dynamic. Static analysis is aimed at the engineer to assist
with checking the design time compliance of a service against
an agreed policy. Dynamic analysis considers the execution
or discovery of services in the execution environment. To
address compliance in dynamic analysis we consider adver-
tised behaviour, progressive behaviour and potential violation
detection in this area.

Requirement: Check that partner service implementations fulfil chore-
ography policies.

Input: One or more service implementations (WS-BPEL) and
one choreography specification (WS-CDL). Property as
either name of partner role or empty (for all partner
roles).

Output: A set of actions to trace violation or an empty set.
Algorithm: 1. transform choreography specification to chorspec

model
2. for each service implementation do

(a) transform service implementations to impmodels
(b) map service interactions to chorspec activities
(c) build exceptionlist of implementation exceptions
(d) map exceptionlist to chorspec exceptions

3. if role is not empty then
(a) hide activities not equal to role action in chorspec
(b) set property to role orchestration name

4. generate analysis model (impmodels+spec)
5. perform compositional reachability analysis on anal-
ysis model

Fig. 6. Algorithm for Static Analysis of Obligations

A. Static Compliance Analysis

Static Compliance can be satisfied by taking a service design
model and by checking that a set of properties over this model
(as set out in a compliance policy) are always satisfied. One
such set of properties is an obligations analysis to assure that
required actions are fulfilled in a service design model. The
algorithm for static behavioural compliance is listed in Figure
6. The algorithm takes as input a WS-CDL choreography
policy specification and one or more service orchestration im-
plementation in WS-BPEL. The analysis model is constructed
by transforming and mapping each implementation (i.e. each
partner implementation process within the choreography) and
mapping those actions to the choreography model actions.
Finally, verification performs a deadlock freedom analysis
on the generated analysis model. The output indicates any
violations exposed in the service design against a service
policy (in the case of that specified in the choreography).

B. Dynamic Compliance Analysis

We cover two types of analysis based upon either the
advertised behaviour offered by a service and/or the actual
service behaviour based upon a progressive accumulation of
service interactions over an enactment of a set of choreography
obligations.

1) Advertised Behaviour: This is behaviour advertised by
a service on discovery. The advertised behaviour can be spec-
ified as part of an abstract process (such as the abstract WS-
BPEL specification). The abstract process provides sufficient
detail to examine the potential role and fit of the service
within a wider service choreography. We provide choreog-
raphy analysis to compare multi-partner service policies and
specifically their obligations with that of individual partner
service implementations. The obligations analysis considers a
partner’s role in the choreography and checks their obliged
interactions set out in the choreography policy. Using the
same approach, each partner role in the choreography can be
checked. In fact, one of the reported aims of WS-CDL is to

be used as a specification which can be distributed between
partners to aid their implementation of service obligations.
Hence the analysis can be used to determine whether a
service’s advertised behaviour is ”fit-for-purpose” in the wider
choreography being undertaken. An algorithm for advertised
behaviour analysis is listed in Figure 7. The output of using the
algorithm is as an indicator to whether the service is suitable
for inclusion in a service composition.

Requirement: Check that a substitute service implementation fulfils a
choreography policy.

Input: A behavioural specification (abstract process) of service
substitute, a service choreography specification and a
property as either name of partner role or empty (for
all partner roles).

Output: A set of actions to trace violation or an empty set.
Algorithm: 1. set chorspec to choreography model

2. receive service substitution event
3. build absmodel from abstract process
4. set analysis model as (absmodel+chorspec)
5. perform compositional reachability analysis on anal-
ysis model

Fig. 7. Algorithm for Advertised Service Behaviour Analysis

2) Analysis of Progressive Behaviour: This is the actual
behaviour of a service, gathered and accumulated through
service interaction events (i.e. service operations requests and
responses). A dynamic analysis algorithm based upon service
events is illustrated in Figure 8. The dynamic event-based
service analysis accumulates a list of service interaction events
for each process or service identified by the event. The analysis
model consists of a state machine built from the observed run-
time state events (rt-model) and the properties to checked. The
verification of the progressing behaviour of service orchestra-
tion is verified against the service choreography for the service
behaviour (as included and registered in a service-level policy).

Requirement: Indicate properties that may be affected by a violation.
Input: Progressive model of behaviour (interaction events) and

a set of rules for properties (rules)
Output: A list of properties with impact rating (Green, Amber,

Red).
Algorithm: 1) init rtmodel to start

2) for each service in choreography do
(a) listen for service events model
(b) receive service interaction event
(c) build service interaction sequence
(d) append interaction sequence to rt-model

3) for each property in rules
(a) build analysis model (rtmodel+property)
(b) perform compositional reachability on analysis

model

Fig. 8. Algorithm for Progressive Service Analysis

3) Potential Violations: This provides an impact analysis of
the current state of execution. The analysis is enacted when a
property is violated and can be used to determine the effect
on other properties that have been verified against the initial
model. A running example for potential violations takes as
input a service design model (or abstract representation of its

implementation) and a set of properties derived from a SLA
or other type of policy. For example, an SLA may ask that
a service request always implies that a state of the system is
reached within a certain time period. First, the service design
is checked for correctness given a default safety property of
deadlock freedom. If no violations are detected then each
property is checked against the design model to assure it is
upheld. For each path checked in the design model, a list of
property held paths is maintained.

Requirement: Indicate properties that may be affected by a violation.
Input: Progressive model of behaviour (interaction events) and

a set of rules for properties (rules)
Output: A list of properties with impact rating (Green, Amber,

Red).
Algorithm: 1) init rtmodel to start

2) for each service in choreography do
(a) listen for service events model
(b) receive service interaction event
(c) build service interaction sequence
(d) append interaction sequence to rt-model

3) for each property in rules
(a) build analysis model (rtmodel+property)
(b) perform compositional reachability on analysis

model
(c) if property is violated

(1) initialise properties to green
(2) set violation property to red
(3) analyse paths to violation
(4) adapt design model to resolve violation
(5) analyse paths affected by violation
(6) identify properties on violation path

(a) set property status to amber

Fig. 9. Algorithm for Assessing Potential Property Violations

The SLA properties and service information are used to
construct a monitoring configuration, which is used as input
to a service monitor (listening to and observing the events from
the configured services). When the monitoring is configured,
the service is released and used in one or more composi-
tion processes. Events from these services (or processes) are
captured and for each process a trace model is constructed
and accumulated. Each time there is a service event (that
is related to the compliance services of interest) a run-time
compliance check is carried out on the properties and any
violations detected.

For any violations, the trace to the violation is sent back to
the Service Analyser and compared to the paths that uphold
the property. If a violation trace is in the acceptable paths then
this suggests that the service or composition has not been built
correctly, or infact, that the design model is underspecified.
However, if the trace is not in the acceptable paths it may
be the case that this should be acceptable in the design or
in fact, requires an impact analysis. Furthermore, given the
knowledge of an accumulated run-time violation trace, it could
be the case that further properties are violated given the initial
trace that violate properties in the design proof. For example
in Figure 10 through an adaptation, a number of payments
are now acceptable. However, this then leads to a potential
violation in the unbounded property for booked.

Fig. 10. State Machine Highlighting a Potential Violation after Adaptation

To support monitoring unbounded potential violations (such
as booked) we create bounded monitoring rules given an ex-
ample time period to simulate a constraint and therefore have
concrete monitoring rules. Infact, highlighting the properties
in a violation, from the run-time trace, leads to the need
for resolution. To assist the services engineer we leverage
a business process adaptation routine [12] which modifies
the design model to support the property violated and then
proceeds to highlight other properties of the model which
may be affected by this modification. The resolution of these
issues is based upon the business problem to be solved by the
service solution (i.e. a decision held with the engineer) and is
therefore not covered in this paper. However, the mechanism
to support such decision making is facilitated by the results
of the analysis described previously.

VI. TOOL SUPPORT AND PRELIMINARY EVALUATION

We have developed prototype implementations of the ser-
vice manager, monitoring manager and service model analyser.
The components are implemented as illustrated in Figure 11.
The prototype accepts two input forms, being one or more
events (in the format described in section IV-A and one or
more SLA or Policies. The Policies are analysed for rules
which are then used to define run-time properties for analysis
(for example, a choreography is defined in the SLA in the
form of a WS-CDL specification and is defined as the process
that must be followed to fulfil a particular role of a specific
service). These properties are compiled as state machines (in
the form of LTSs) and stored for future reference. Meanwhile,
events generated in the run-time environment and placed on a
service event bus are analysed for service behaviour. Service
behaviour is transformed to the Finite State Process notation
and appended to action sequences listed for each service
process (identified by a process correlation id in the meta-
data of an event). As each sequence changes, it is compiled
as an LTS and placed in a state machine list (along with the
property state machines). When analysis is due (which depends
on the context of the property) a complete verification model
is built from a composition of process action sequence state
machines and the property state machine. Finally, a safety
analysis is performed against the verification model to detect
any violations of the property specified.

Fig. 11. Implementation of the Event Run-Time Verification Approach

VII. RELATED WORK

Some significant work has been published on modelling
and monitoring service events at run-time. In [13] an ap-
proach focuses on conformance checking both the fitness
and appropriateness of business process execution. For fitness
the approach compares a model of the process (design or
implementation) and the events of processes recorded in a
system log. For appropriateness, metrics are applied to the
coverage of activities for one or more processes given a series
of events recorded in a log. Thus the conformance measure is
an aggregation of measures obtained from fitness and appro-
priateness analysis. In [14] the authors describe an approach
to process mining workflows built from process events. Their
aim is to provide a validation mechanism by uncovering
and measuring the discrepancies between process design and
process executions. Their technique is based upon petri-nets
and measuring the distance between nodes in the design and
execution models, and also providing an analogue algorithm
to reconstruct (split and join) the nodes for corrective path
actions.

For monitoring and adapting service compositions, [15]
provided an approach to monitoring WS-BPEL processes
which, in a similar way to our monitoring infrastructure
configurations, defines process monitoring directives for an
embedded monitoring manager. Our approach uses known
monitoring capabilities of services which exhibit events for
service monitoring. We also seek to assist in process adaptation
based upon these events. In [16] the authors describe an
approach to intercept WS-BPEL service interactions and uses
these for monitoring, transforming messages and dynamic

service discovery. The monitoring approach appears to focus
only on service interactions, rather than those formed from
a broader agreement or policy, measuring invocation specific
attributes (e.g. response time, availability). Adaptation is also
limited to service discovery and selection (a form of late bind-
ing) based upon levels measured in the monitoring steps. For
adaptation of processes, whilst upholding consistency rules,
[17] describes an approach using graph rewriting techniques
to generate suitable change operations. The approach known
as ADEPTFlex relies on policies to make suitable changes to
workflows in order to achieve consistency in execution. Other
work on runtime monitoring focuses on the extension of infras-
tructure capabilities for capturing and generating the necessary
monitoring events (e.g., [18]). Our approach leverages these
graph rewriting techniques and operations, however, at this
stage in our work we still assume that design governance aids
the engineer in order to certify appropriately offered services,
which may not necessarily be an mechanical task.

One of the earlier proposals for formal analysis of compo-
sition implementations was given in [19]. In this the author
suggests that due to the nature of the software assets (the
compositions in this case) being deployed to the Internet, that
the risk of a bug in such a composition impacts are much
greater than that of conventional system deployments. The
author of this work has also provided analysis of compositions
in terms of those implemented in the Web Service Flow Lan-
guage (WSFL) [20], which is one of a group of specifications
that have been used to create WS-BPEL, and implements a
mapping between WSFL and Promela (the language of the
SPIN tool) [21]. The work provides a useful reference point
on mapping XML schemas (as Web service specifications are
typically defined in XML).

VIII. CONCLUSION

The work described in this paper has focused on a run-
time certification and compliance mechanism. To enable this
mechanism we provide a framework for analysing service
behaviour and policies with properties to uphold, and can be
checked for a satisfactory implementation both at design-time
and run-time. The novel approach we use is to combine both
static and dynamic model-checking techniques with advanced
event-monitoring and violation detection. The combination of
using LTSA (as a core model-checker) and the EVEREST
monitoring engine has so far proved valuable since both
are open source and can easily be integrated in an open
environment. For future work we plan to formally describe
and evaluate process adaptation and optimisation methods to
support corrective actions on service property violations. We
also wish to explore combining multiple process instances
to discover how different implementations of the same ser-
vice design are affected in the operational environment and
to measure the scalability of the approach with regards to
performance and distribution.

ACKNOWLEDGEMENTS

Our work reported in this paper has been supported by the
EU project ASSERT4SOA - Trustworthy ICT (ICT-2009.1.4).

REFERENCES

[1] C. Hang, Y. Wang, and S. M.P., “Operators for propagating trust and their
evaluation in social networks,” in 8th International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS). Budapest,
Hungary: ACM, 2009.

[2] L. Wilkes, “Policy driven practices for soa,” in presented at the CBDI
SOA Seminar, 2006.

[3] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “An integrated workbench
for model-based engineering of service compositions,” IEEE Transac-
tions on Services Computing, vol. 3, pp. 131–144, 2010.

[4] ASSERT4SOA, “Advanced security service certificate for soa,” in EU
Project ICT-2009.1.4., Available from: http://assert4soa.eu/, 2009.

[5] H. Foster and G. Spanoudakis, “Advanced service monitoring
configurations with sla decomposition and selection,” in Proceedings
of the 2011 ACM Symposium on Applied Computing, ser. SAC ’11.
New York, NY, USA: ACM, 2011, pp. 1582–1589. [Online]. Available:
http://doi.acm.org/10.1145/1982185.1982519

[6] R. Milner, Communication and Concurrency. NJ, USA.: Prentice-Hall
Inc, 1989.

[7] J. Magee, J. Kramer, and D. Giannakopoulou, “Analysing the behaviour
of distributed software architectures: a case study,” in 5th IEEE Work-
shop on Future Trends of Distributed Computing Systems, Tunisia, 1997.

[8] J. Magee and J. Kramer, Concurrency - State Models and Java Programs
- 2nd Edition. John Wiley, 2006.

[9] G. Spanoudakis and K. Mahbub, “Non intrusive monitoring of service
based systems,” International Journal of Cooperative Information Sys-
tems, vol. 15, pp. 325–358, 2006.

[10] G. Spanoudakis, C. Kloukinas, and K. Mahbub, “The serenity runtime
monitoring framework,” Security and Dependability for Ambient Intel-
ligence, Advances in Information Security Series, vol. 15, 2009.

[11] K. Mahbub, G. Spanoudakis, and T. Tsigkritis, “Translation of slas
into monitoring specifications,” in Service Level Agreements for Cloud
Computing, R. Yahyapour, P. Weider (eds). Springer-Verlag, 2011.

[12] Ruopeng Lu, Shazia Sadiq, Guido Governatori, and Xiaoping Yang,
“Defining adaptation constraints for business process variants,” in 12th
International Conference on Business Information Systems, Poznan,
Poland, 2009.

[13] A. Rozinat and W. M. P. van der Aalst, “Conformance
checking of processes based on monitoring real behavior,” Inf.
Syst., vol. 33, pp. 64–95, March 2008. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1316082.1316257

[14] A.J.M.M. Weijters and W.M.P van der Aalst, “Process mining discov-
ering workflow models from event-based data,” in Proceedings of the
ECAI Workshop on Knowledge Discovery and Spatial Data, 2001, pp.
283–290.

[15] L. Baresi and S. Guinea, “Towards dynamic monitoring of ws-bpel
processes,” in ICSOC, ser. Lecture Notes in Computer Science, B. Be-
natallah, F. Casati, and P. Traverso, Eds., vol. 3826. Springer, 2005,
pp. 269–282.

[16] O. Moser, F. Rosenberg, and S. Dustdar, “Non-intrusive monitoring
and service adaptation for ws-bpel,” in Proceedings of the 17th
international conference on World Wide Web, ser. WWW ’08. New
York, NY, USA: ACM, 2008, pp. 815–824. [Online]. Available:
http://doi.acm.org/10.1145/1367497.1367607

[17] M. Reichert and P. Dadam, “Adaptflex: Supporting dynamic changes of
workflow without loosing control,” Journal of Intelligent Information
Systems, vol. 10, pp. 93–129, 1998.

[18] W. Ma, V. Tosic, B. Esfandiari, and B. Pagurek, “Extending apache axis
for monitoring of web service offerings,” in Proceedings of the IEEE
EEE05 international workshop on Business services networks, 2005.

[19] S. Nakajima, “Model-checking verification for reliable web service,”
in Workshop on Object-Oriented Web Services at OOPSLA, Seattle,
Washington, 2002.

[20] F. Leymann, “Web services flow language specification (wsfl 1.0),” IBM,
Tech. Rep., 2001.

[21] S. Nakajima, “On verifying web service flows,” in The 2002 Interna-
tional Symposium on Applications and the Internet (SAINT02), Nara
city, Nara, Japan, 2002.

