
Autonomous Failure-handling mechanism for WF Long Running Transactions

Manar S Ali and Stephan Reiff-Marganiec
Department of Computer Science

University of Leicester
Leicester, UK

e-mail: {mssa1, srm13}@le.ac.uk

Abstract— Business Processes naturally involve long running
activities and require transactional behaviour across them. The
work presented in this paper is a proposal for a novel
autonomous failure handling mechanism for long running
nested transactions (LRT) and forms part of a general
management and compensation model for long running
transactions in workflows. The mechanism is based on
propagation of failures through a recursive hierarchical
structure of transaction components (nodes and execution
paths). The management system of transactions (COMPMOD)
is implemented as a reactive system controller, where system
components change their states based on rules in response to
triggering of events such as activation, failure, force-fail,
completion, or compensation events. A notable new feature of
the model is the distinction of vital and non-vital components,
allowing the process designer to express the cruciality of
activities in the workflow with respect to the business logic.

Keywords-LRT, compensation and failure handling, rule
based reactive approach.

I. INTRODUCTION
Business processes naturally involve long running

activities and require transactional behaviour across these.
Such business processes are typically represented by
workflows and these in turns are composed out of workflow
patterns [11].

One of the important management aspects in managing
long running transactions (LRTs) is preserving consistency
of the systems being involved in the LRT. This is done by
guaranteeing that an LRT will always ensure that the data
integrity is preserved and systems are maintained
consistently. This guarantees that the execution of the LRT
terminates in an accepted state from the business and the
transaction modelling points of view. In the absence of
failure this should occur, but even if the LRT has not
completed its normal path of execution due to a failure
causing termination of the LRT or an abnormal path being
chosen the same guarantee needs to be given. This is usually
achieved by adopting effective compensation and fault-
handling techniques. Transactional patterns [3] have been
proposed as a reliable paradigm for orchestrating transaction
component behaviours in alignment with workflow patterns.

We can distinguish two execution modes of an LRT,
namely the normal execution mode and the compensation
execution mode. During the normal execution mode, failures
of component services could occur. Failure handling and
recovery mechanisms should be implemented to process

failures of component services and try to save the transaction
from failing completely.

In web service based LRT, reliability of transactions
behaviour is a more critical issue due to autonomy and
heterogeneity of web services. Transactions should be
reliable in case of failure occurrence. However, even in such
loosely coupled applications, failure handling and
compensation mechanisms must be implemented to ensure
predictable behaviour of transactions in case of hardware or
software failures.

The management of LRTs must proceed in two parallel
directions: (a) the management of the LRT during its normal
execution path, which must embrace a reliable and efficient
fault-handling mechanism and (b) the management of the
LRT during the execution of its compensation path, in case
the LRT has failed to complete.

To handle LRTs a modelling and management system
would ideally support the following aspects. 1-3 are
motivated by the structure of transactions and the fact that it
is at the business level where a full understanding of the
implications exists; 4 allows to separate the actual process
and any handling of exceptions in a clear and user-friendly
way; and 5-6 are requirements ensuring the practicality of
the approach.

1. Multi-level nesting of transactions with reliable
behavioural dependencies between transaction
components and across hierarchy levels.

2. Definition of designer-order compensation patterns
that reflects the business logic of the LRT.

3. Incorporating compensation logic into business
logic of long running transactions through
transactional dependencies.

4. Rule-based actions for managing execution and
compensation control flow.

5. Automated method for propagating failure events
through the hierarchy structure as a failure handling
mechanism.

6. Automated method for performing compensation
actions while the LRT execution is in progress,
through backward and forward order
compensations.

The work in this paper focuses on handling failures that
occur during the normal execution of the LRT, focusing on
the control flow perspective. The failure-handling
mechanism is incorporated into the business logic of the
transaction through strict logical definitions of behavioural
dependencies between transactional components.
Compensation management is not covered in this paper and

therefore points 2, 3 and 6 are not discussed. However,
similar mechanisms to those proposed can be adopted for the
handling of compensations.

The mechanism is supported by a general management
system (COMPMOD) which is modelled as a reactive
system controller [1] that changes its components’ execution
states and its actions in response to stimuli/events. An event
is fired as a result of a behavioural dependency satisfaction.
A stimulus is triggered as a result of a transition in the
execution state of a transaction component or result from the
application of a rule leading to event propagation in the
hierarchy. In other words, COMPMOD is an Event/Control
driven WF management system that reacts continuously to
stimuli/events until the LRT execution finally terminates in a
state that is meaningful from both a system as well as a
business perspective.

In this paper we present the work as follows: first, we
describe the adopted transaction modelling paradigm,
discussing WF and transactional patterns. We then present
the novel contributions of (1) COMPMOD’s LRT attributes,
dependencies, and management rules and (2) the recursive
failure handling propagation mechanism. All stages are
supported by running an example.

II. WORKFLOW AND TRANSACTIONAL PATTERNS
Workflow patterns have been developed as part of an

initiative commenced in 2000 by [2]. They classify the core
architectural constructs inherent in workflows in a language
and technology independent way, thus allowing definition of
fundamental requirements of business process modelling.
Workflow patterns consider workflow specifications from a
control-flow perspective and characterize a range of control
flow patterns that might be encountered when modelling a
business workflow. Following the initial work [2], 43 control
patterns were proposed in [4]. The patterns are classified as
(a) basic control-flow patterns, (b) advanced branching and
synchronization patterns, (c) structural patterns, (d) state-
based patterns, and (e) cancellation patterns. Our approach,
COMPMOD, so far implements the basic control-flow
patterns: sequence, AND-split, AND-join, OR-split, OR-
join, XOR-split, and XOR-join.

The concept of transactional patterns was introduced in
[3]. Transactional patterns are aimed at specifying flexible
and reliable composite web services. They are a convergence
concept between workflow patterns and advanced
transactional models [5], and thus they combine the
flexibility of work flow control patterns with the reliability
of transactional models to ensures transactional consistency
of service compositions. Transactional patterns define
orchestrations between services in composite web service by
using dependencies to define how services are combined and
how the behaviour of some given services influences the
behaviour of some others. Dependencies are used to express
the relationships that exist between services such as
sequence, alternative, compensation, activation, or
cancellation. They also associate preconditions with service
operations. The general definition of a dependency is:

Def.1 [3]: A dependency from service s1 to service s2
exists if a transition of s1 can fire an external
transition of s2.

It is assumed that a transition can be an internal or
external transition with internal transitions being fired by the
service itself (e.g. complete(), fail(), or retry()) and external
transitions being fired by external entities (e.g. abort(),
cancel(), or compensate()).

We extend the notion of transactional patterns to model
multi-nested transactions by the introduction of the following
concepts:

• Atomic nodes, scopes, and nested scopes and their
transactional dependencies and attributes.

• Execution paths and their transactional attributes.
• A hierarchical structure that mirrors the workflow

structure of the LRT.
• Vitality of nodes, scopes, and execution paths.
• Encapsulation of dependencies on the scope and

execution path level to facilitate automated
propagation of events.

In the following sections, we provide a description of the
above concepts and show how they are implemented to
automate the recursive failure-handling mechanism of
COMPMOD.

III. LRT’S TRANSACTIONAL ATTRIBUTES AND
DEPENDENCIES

An LRT is executed as a flat transaction, i.e. a sequence
of nodes that are executed sequentially. A node can be an
atomic node representing an atomic task (a single web
service), or, a scope node starting with a split pattern and
ending with a join pattern of the same type. Each scope
creates two or more execution paths that start from the split
point and end at the join point (or synchronizer) of the scope.
Each execution path is a sequence of one or more nodes
executed in sequential order where nodes along the path
again can be atomic or scopes. Through the rest of the
discussion we will use the term component to refer to both
nodes (atomic/scope) and execution paths.

A. Transactional operators and scopes
A scope starts with a split operator (OR, AND, or XOR)

that is explicitly assigned while constructing the LRT. The
model implicitly specifies a join operator of the same type to
mark the end point of a scope. The join point is represented
by a synchroniser in the WF schema. The type of operator
used to define a scope influences the definition of
transactional attributes and dependencies of its encapsulated
components. Semantics of operators are adopted from the
definitions of WF-patterns in [4]. An AND operator creates a
scope with parallel execution paths, and the scope is
successfully completed if all its execution paths are
successfully completed. An OR operators creates a scope
with parallel paths where only a subset of these paths are
executed during runtime, the executed paths are those whose
enabling condition are satisfied. An OR scope successfully
completes if all its enabled activated paths are successfully
completed. An XOR scope creates exclusive paths, the first

path has the highest priority and therefore execution starts
with the path with the highest priority. If an exclusive path
failed to complete, it is compensated in forward order until
the split point of the scope is reached, and then next path (if
one exists) is executed. Therefore, execution paths are
assigned with the following transactional attributes: an
execution path hasAnalternative, if it was an exclusive path
that has a path with lower priority in the same scope. In an
OR scope, a path is enabled if and only if its branching
condition is satisfied at runtime and hence, only enabled
paths are activated. Each execution path has an ordered list
of one or more nodes denoted by nodeList. A scope is
formally defined as:

Def.2: A scope node is defined as follows:
∀𝒊=𝟏..𝒎 𝒑𝒊.𝒏𝒐𝒅𝒆𝑳𝒊𝒔𝒕 = 𝒔𝒑𝒍𝒊𝒕𝑵𝒐𝒅𝒆𝒊 𝒂𝒏𝒅
∀𝒊=𝟏..𝒎 𝒏𝒐𝒅𝒆𝑳𝒊𝒔𝒕𝒊. 𝒕𝒚𝒑𝒆 = {𝑨𝑻𝑶𝑴𝑰𝑪,𝑺𝑪𝑶𝑷𝑬}:
𝒔𝒄𝒐𝒑𝒆 = (𝒐𝒑𝒆𝒓𝒂𝒕𝒐𝒓, [𝒔𝒑𝒍𝒊𝒕𝑵𝒐𝒅𝒆𝟏. . 𝒔𝒑𝒍𝒊𝒕𝑵𝒐𝒅𝒆𝒎])
→ 𝒔𝒄𝒐𝒑𝒆.𝒑𝒂𝒕𝒉𝑳𝒊𝒔𝒕 = [𝒑𝟏. .𝒑𝒎]

where operatorÎ{AND,OR.XOR}

When a scope is initially defined, a split operator and a
list of split nodes are specified. The number of split nodes
corresponds to the number of execution paths encapsulated
within the scope. A split node can be an atomic node, or a
scope node which facilitates the construction of nested
scopes. When a node is appended to an existing execution
path 𝑝𝑖 , the node is appended to 𝑝𝑖 .𝑛𝑜𝑑𝑒𝐿𝑖𝑠𝑡.

B. Vitality of components
Each LRT component has a vitality attribute, allowing to

specify whether a component is vital or non-vital. A vitality
value {TRUE/FALSE} is assigned to each component either
by specification or by evaluation. Vitality of atomic and
scope nodes is assigned by specification, that is, according to
the business logic of the LRT. Essentially vitality allows the
workflow designer to express whether a failure of the
specific service can be tolerated and the workflow can
proceed (and example of a non-vital task might be one
sending a progress message to the invoking user – nothing in
the process will be broken if the message is not sent).
Vitality of execution paths is assigned by evaluation
according to the following rules. A path is

• vital if it encapsulates at least one vital node.
• non-vital if all the nodes it encapsulates are non-

vital.
The transactional implication of the vitality measure of a

component expresses the impact of unsuccessful completion
of a component on its immediate superior1. For example, the
failure of a vital node will fail its enclosing execution path.
Vitality of components is utilised in the failure handling
propagation mechanism proposed in this paper.

Note that the decision of assigning the vitality value to
nodes (atomic and scope) is based on the business logic of
the LRT. It is important to note that our management/
compensation model does not investigate or analyse the

1The immediate superior of node is its enclosing path and the immediate
superior of a path is its enclosing scope (section 5).

business logic of the LRT. It is always assumed by the model
that the logic provided for the LRT at design time is what it
is required from the transaction by the business level.
Therefore, for a designer it is possible to define a scope node
as a non-vital node, while it could encapsulate vital paths,
without leading to an incorrect model.

However, the following logical restrictions are assumed
by the approach with respect to design of scopes:

• Assumption 1: In an exclusive scope, all exclusive
paths should have the same vitality measure, that is
they must all be vital or all be non-vital.

• Assumption 2. If all paths in a scope are non-vital,
their encapsulating scope should be non-vital by
specification.

C. Execution states
During the execution life cycle of the transaction, the

LRT and its components go through different execution
states and they are marked with their current execution state.
We list below the set of execution states for the LRT and
each component and Figure 1, shows the state transition
diagram of atomic nodes. State transitions are triggered by
events. E.g. in Figure 1, when a completion of an atomic
node is triggered, the execution state of the node changes
from ACTIVATED to COMPLETED.

LRT.state = {not-activated, activated, completed, failed,

compensating, compensated, terminated}
AtomicNode.state = {not-activated, activated, completed,

failed, compensating, compensated, skipped, aborted,
terminated}

ScopeNode.state = {not-activated, activated, completed,
failed, compensating, compensated}

ExecutionPath.state = {not-Activated, activated, completed,
failed, compensating, compensated}

Figure 1. State transition diagram for atomic nodes

IV. REPRESENTATIONS OF NESTED LRTS
We use two main representations of the workflows in our

work: a workflow representation, that allows to abstract
away from sub workflows and a tree representation that is
used by the propagation algorithm.

In our model we have two basic components: nodes and
execution paths. A node can be an atomic node (a single web
service) or a scope node – a set of semantically connected
nodes (atomic and/or scope). An execution path represents a
trail of nodes that are executed in sequential order. An
execution path reading of a scope node that it encapsulates is
the same as an atomic node. In other words, scope nodes on
an execution path are like black boxes that encapsulate
execution paths and other nodes. Transactional dependencies
are employed to model the transaction behaviour between
transaction components. Transactional dependencies are
defined between a component and its neighbours.

A. Workflow Model
The modeling method allows for multi-level nested

transactions to address demands occurring in real
cooperative business processes. In the representation model
itself we see alternating levels of paths and nodes.

Figure 2.(a), demonstrates a two level-nested LRT that
consists of atomic nodes and nested scopes. Considering
execution 𝑝1 in 𝑠𝑐𝑜𝑝𝑒2, the path consists of an atomic node
𝑛6 followed in sequence by a scope node 𝑠𝑐𝑜𝑝𝑒2.1 that in
turn encapsulates three execution paths. As mentioned

earlier, an execution path is a trail of nodes (atomic and/or
scope) that are executed in sequential order and we provide a
nodeList attribute on path objects to express this: for
example 𝑝1.𝑛𝑜𝑑𝑒𝐿𝑖𝑠𝑡 = [𝑛6, 𝑠𝑐𝑜𝑝𝑒2.1]. Figure 2.(a) shows
the LRT with all nesting levels expanded and Figure 2.b
demonstrates the LRT with level 2 of the WF collapsed.

The main execution path of a transaction is regarded as
level 0 in the workflow and denoted as 𝑝0. If we collapse
level 1 of the WF, the main execution path becomes a flat
WF that executes the nodes in
𝑝0.𝑛𝑜𝑑𝑒𝐿𝑖𝑠𝑡 = [𝑛1,𝑛2, 𝑠𝑐𝑜𝑝𝑒1, 𝑠𝑐𝑜𝑝𝑒2, 𝑠𝑐𝑜𝑝𝑒3] in
sequential order.

B. Hierarchical Structure Model
Transaction components –nodes and execution paths--

are linked together in a hierarchical structure (see e.g. Figure
3). Each component has a single superior and an ordered set
of one or more inferiors. Specifically:
Node component: A superior of any node is the execution

path that encapsulates the node. An atomic node is a leaf
node that has no inferiors. A scope node has two or more
inferiors which represents the number of split execution
paths it encapsulates.

Execution path component: The superior of any execution
path is the scope node that encloses it. The main
execution path of a LRT has a NULL superior. Each
execution path has one or more inferiors. Inferiors of a
path represent an ordered set of one or more nodes that

Figure 2. A sample workflow

the path encloses. The root of the recursive hierarchy is
the main execution path of the LRT 𝑝0.

C. Hierarchical Transactional Dependencies
As stated, transaction behaviour between components is

expressed through dependencies. Transactional dependencies
are defined: (a) between an execution path and its immediate
outer scope, (b) between a node and its immediate outer
execution path and, (c) between any two successive nodes on
a sequence of the same execution path. This imposes the
hierarchical relationship between components and facilitates
hierarchical propagation of events. We expect dependencies
to be defined in the WF representation and then mapped into
the hierarchical structure to enforce the propagation
mechanism through and across hierarchy levels. In terms of
the hierarchy structure, transactional dependencies are
defined between a component and its immediate superior and
between a node and its immediate siblings (if any exist).

Dependencies (activation, completion, failure, force-fail,
compensation (forward/backward /designer-tailored) and
compensation-completion) are defined in first order logic
and in terms of sets of pre-conditions that, when satisfied at
run time lead to an event being fired. In the scope of this
paper we focus on failure and force-fail dependencies.

The general definition for a behavioural dependency is:
Def 3. A behavioural dependency exists from componentj to
componenti iff a state transition in componenti can fire a
transactional event for componentj:

𝑫𝒆𝒑�𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕𝒋�: = 𝒑𝒓𝒆𝑪𝒐𝒏𝒅(𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕𝒊. 𝒔𝒕𝒂𝒕𝒆)
As an example, for two successive nodes the activation

dependency of the successor node stating that an activation
event is fired for a successor node if its predecessor node has
been completed or, if its predecessor node was not a vital
node but failed to complete is defined as:
ActDep(succNode):= (PredNode.State = COMPLETED) Ú

 (PredNode.Vital=FALSE Ù PredNode.State=FAILED)
Behavioural dependencies can also be defined between a

set of sibling components and their immediate superior
component, essentially extending Def. 3 to allow for any of a
number of sibling nodes to fire a transactional event for the
superior component:

𝑫𝒆𝒑(𝒔𝒖𝒑𝒆𝒓𝒊𝒐𝒓) ≔
𝑷𝒓𝒆𝑪𝒐𝒏𝒅([𝒔𝒊𝒃𝒍𝒊𝒏𝒈𝟏. 𝒔𝒕𝒂𝒕𝒆. . 𝒔𝒊𝒃𝒍𝒊𝒏𝒈𝒏. 𝒔𝒕𝒂𝒕𝒆])

D. Failure and Force-Fail dependencies:
Failure dependencies are defined for non-vital scope

nodes and non-vital execution paths. Vital scopes and
execution paths do not lead to events fired by dependencies,
instead such failure is assessed by the management rules
discussed in section 5. Table 1 shows a complete list of
failure and force fail dependencies. Failure of all vital nodes
in a path will fail the path (𝒑𝒂𝒕𝒉.𝒏𝒐𝒅𝒆𝑳𝒊𝒔𝒕 ←𝒇𝒂𝒊𝒍 𝒑𝒂𝒕𝒉 ;
FD1); failure of paths in a scope will lead to failure of the
scope (𝒔𝒄𝒐𝒑𝒆.𝒑𝒂𝒕𝒉𝑳𝒊𝒔𝒕 ←𝒇𝒂𝒊𝒍 𝒔𝒄𝒐𝒑𝒆), dependent on the
semantics of the scope operator. For example, FD3 states
that an OR scope fails if all its enabled paths failed.

Force-fail is a counterpart for cancelation. When a vital
concurrent path fails, its immediate outer scope fails. Force-
fail dependencies force all active paths within a failed
concurrent scope to cancel their executions, and
subsequently all active nodes on paths are forced to fail.
Force-fail dependencies are defined between components
and their immediate superiors. A force-fail dependency
𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕. 𝒔𝒖𝒑𝒆𝒓𝒊𝒐𝒓 ←𝒇𝒐𝒓𝒄𝒆𝒇𝒂𝒊𝒍 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕 means that
failure of an activated component’s superior will force the
component to fail. For example FF1 states that an activated
path will fail if its enclosing scope has failed. Consequently,
all concurrently activated paths within a scope will force-fail
if their immediate superior scope fails.

TABLE I. FAIL AND FORCE-FAIL DEPENDENCIES

Dep Dependency Formula
Failure Dependencies

FD1 𝐹𝑎𝑖𝑙𝐷𝑒𝑝(𝑝𝑎𝑡ℎ) ≔

� � 𝑛𝑜𝑑𝑒𝐿𝑖𝑠𝑡𝑖 . 𝑆𝑡𝑎𝑡𝑒 = 𝐹𝐴𝐼𝐿𝐸𝐷
1≤𝑖≤𝑚

�

𝑤ℎ𝑒𝑟𝑒 𝑚 = |𝑝𝑎𝑡ℎ.𝑛𝑜𝑑𝑒𝐿𝑖𝑠𝑡|
FD2 𝐹𝑎𝑖𝑙𝐷𝑒𝑝(𝐴𝑁𝐷𝑠𝑐𝑜𝑝𝑒) ≔

⋀ (𝑝𝑎𝑡ℎ𝑖 .𝑆𝑡𝑎𝑡𝑒 = 𝐹𝐴𝐼𝐿𝐸𝐷1≤𝑖≤𝑚)
𝑤ℎ𝑒𝑟𝑒 𝑚 = |𝐴𝑁𝐷𝑠𝑐𝑜𝑝𝑒. 𝑝𝑎𝑡ℎ𝐿𝑖𝑠𝑡|

FD3 𝐹𝑎𝑖𝑙𝐷𝑒𝑝(𝑂𝑅𝑠𝑐𝑜𝑝𝑒): =

 � �𝑝𝑎𝑡ℎ𝑖 .𝐸𝑛𝑎𝑏𝑙𝑒𝑑 = 𝑇𝑅𝑈𝐸 ∧
𝑝𝑎𝑡ℎ𝑖 .𝑆𝑡𝑎𝑡𝑒 = 𝐹𝐴𝐼𝐿𝐸𝐷 �

1≤𝑖≤𝑚

𝑤ℎ𝑒𝑟𝑒 𝑚 = |𝑂𝑅𝑠𝑐𝑜𝑝𝑒. 𝑝𝑎𝑡ℎ𝐿𝑖𝑠𝑡|
FD4 𝐹𝑎𝑖𝑙𝐷𝑒𝑝(𝑋𝑂𝑅𝑠𝑐𝑜𝑝𝑒) ≔

� (𝑝𝑎𝑡ℎ𝑖 .𝑆𝑡𝑎𝑡𝑒 = 𝐹𝐴𝐼𝐿𝐸𝐷
1≤𝑖≤𝑚

)

𝑤ℎ𝑒𝑟𝑒 𝑚 = |𝑋𝑂𝑅𝑠𝑐𝑜𝑝𝑒. 𝑝𝑎𝑡ℎ𝑙𝑖𝑠𝑡|
Force-Fail Dependencies

FF1 𝐹𝑜𝑟𝑐𝑒𝐹𝑎𝑖𝑙𝐷𝑒𝑝(𝑝𝑎𝑡ℎ) ≔
𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑆𝑢𝑝𝑒𝑟𝑖𝑜𝑟.𝑆𝑡𝑎𝑡𝑒 = 𝐹𝐴𝐼𝐿𝐸𝐷

FF2 𝐹𝑜𝑟𝑐𝑒𝐹𝑎𝑖𝑙𝐷𝑒𝑝(𝑛𝑜𝑑𝑒) ≔
𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑆𝑢𝑝𝑒𝑟𝑖𝑜𝑟.𝑆𝑡𝑎𝑡𝑒 = 𝐹𝐴𝐼𝐿𝐸𝐷

V. FAILURE MANAGEMENT

A. Management Rules
Management rules (or policies) incorporate autonomy

into systems. The most common form is that of ECA (event
condition action) rules which present an event driven

Figure 3. Hierarchical Representation of LRT in Figure 1

approach. One of the first attempts in applying ECA rules
approach in management of transactions in WF systems was
in [6] by using triggers for organising long running
activities. ECA rules have been used to adapt workflows and
provide more fine-grained specification for service selection
for tasks and in database management systems, e.g. [7].
ECA rules in COMPMOD are implemented to model the
expected execution behaviour of the LRT. When an event is
fired, it triggers an ECA rule, and if the condition holds, an
appropriate action takes place. ECA rules have the following
pseudo generic form:

ON event IF condition DO action
The event part of the rule can be (a) an internal system

generated event such as completion, failure, or cancelation of
an atomic node or, (b) an external event fired as a result of a
dependency condition satisfied for a component or, (c) a
result of execution a state transition event of a component.
The condition part is one or more connected Boolean
expressions that need to hold for the rule to be applied. The
action is a sequence of one or more actions to be performed
in case the rule is applied, and can in turn introduce new
events needing to be handled.

COMPMOD Rules are classified into: activation,
completion, compensation, failure, and propagation rules. As
this paper focuses on failure handling, we only list failure
and failure propagation ECA rules in Table 2. Note that fail
and abort are actions that lead to raising an event (fail or
abort) but also have a side effect on the state of the
respective component as follows:

if component.state=ACTIVATED
then component.state:=FAILED

ECA rules of COMPMOD reflect the following:
1. The business logic of the LRT (e.g. FR4 states that if

a node is vital and failed, its superior path fails).
2. The semantics of a COMPMOD model (e.g. FFR2

states that if a force-fail event is fired for an
activated atomic node, the node is aborted).

3. The semantics of WF patterns (e.g. FR5 states that
failure of a vital path that has no alternative, i.e. a
concurrent or last exclusive path, fails its enclosing
scope).

TABLE II. FAILURE AND PROPAGATION RULES

Rule Pseudo ECA-Rule statement
Failure Rules

FR1

ON “internal failure/cancellation event fired for atomic node”
DO fail(node)

FR2

ON FailDep(node)=TRUE
IF node.type=SCOPE
DO fail(node)

FR3

ON FailDep(path)=TRUE
DO fail(path)

FR4

ON fail(node)
IF node. vital = TRUE
DO fail(node.superior)

FR5

ON fail(path)
IF path. hasAlternative = FALSE and path. vital = TRUE
DO fail(path.superior)

FR6 ON fail(po)
DO fail(LRT)

Failure Propagation Rules
FFR1 ON ForceFailDep(node)

IF node.type=SCOPE and node.state=activated
DO fail(node)

FFR2 ON ForceFailDep(node)=TRUE
IF node.type=ATOMIC and node.state=activated
DO abort(node)

FFR3 ON ForcefailDep(path)=TRUE
IF path.state=activated
DO fail(path)*

B. Failure propagation mechanism
This work presents a recursive method for propagating

vital failure events through the recursive hierarchy structure
of LRT components. Propagation is in parallel with rule-
based actions in order to reach a consensus about the
execution state of LRT components and the LRT itself.

Within the context of the proposed hierarchy structure,
the recursive failure propagation mechanism entails a
combination of three types of propagation methods:

1. Bottom-up propagation originates from failure of a
vital atomic node and propagates up the hierarchy to
its immediate superior path. If the failed atomic node
exists on the main execution path 𝑝0, the LRT fails.

2. Upwards recursive propagation originates from
failure of a scope node by repeating a bottom-up
propagation to its immediate superior execution path
in recursive fashion until a non-vital component is
reached in the hierarchy or until the failure reaches
the root of the hierarchy structure (𝑝0).

3. Downwards recursive propagation originates from a
failure of a scope node (vital or non-vital) by
repeating a top-down propagation to its immediate
activated paths until the propagation reaches all
active atomic nodes within the failed scope’s sub-
hierarchy. This represents a mean of forcing failure/
cancellation of concurrently running nodes in a
failed scope. Force fail only applies to concurrent
scopes and in our model only applies to AND and
OR scopes since a failed XOR is a result of a failure
of all its exclusive paths.

Failure propagation is always initiated by the failure of a
vital atomic node and propagates recursively through vital
component ancestors in the hierarchy structure to stop when
a non-vital ancestor component is reached or when the root
of the hierarchy is reached. As for Top-down propagation of
failures, both vital and non-vital active components are
force-failed.

If a vital failure propagates through the hierarchy
structure of the LRT and reaches the root of the hierarchy 𝑝0,
the LRT fails. Figures 4 and 5 illustrate the failure
propagation mechanism linked to dependencies and ECA
rules (Tables 1 and 2). Figures 4 and 5 include
compensation mechanisms that are out of scope of this
paper.

The failure mechanism also handles failures of non-vital
components. Failure of a non-vital atomic node could fail its
enclosing path if the enclosing path was a non-vital path
under the following two conditions (1) the enclosing path is
an atomic path, i.e. encapsulates one node only, or (2) the

node is the last node in the path and all other nodes in the
path have failed. Failure of a non-vital path (Figure 5) will
only fail its enclosing scope under two conditions: (1) it is an
exclusive path (2) it has no alternative, i.e. it is the last
exclusive path in the scope. From assumptions 1and 2 in
section 3.1, failure of a last non-vital exclusive path will fail
a non-vital exclusive scope. Recursively, failure of a non-
vital scope is treated as a failure of non-vital node.

To further illustrate the propagation mechanism, we will
consider the LRT presented in Figure 3. Assume an
execution instance with the following states of its
components:𝑛1, 𝑛2, 𝑠𝑐𝑜𝑝𝑒1and 𝑠𝑐𝑜𝑝𝑒2 have completed, and
𝑠𝑐𝑜𝑝𝑒3 is activated. 𝑛17 is a vital node and has failed to
complete. Table 3 shows 𝑠𝑐𝑜𝑝𝑒3 ’s sub hierarchy tree
attribute values and execution states when node 𝑛17 failure

event has been fired and we show how the failure
propagation algorithm is employed.

TABLE III. EXECUTION INSTANCES OF 𝑠𝑐𝑜𝑝𝑒3

Componen
t

Type vital Immediate
superior

Has
Alternati

ve

Executio
n state

𝑠𝑐𝑜𝑝𝑒3 AND
scope

✓ 𝑝0 - activated

𝑠𝑐𝑜𝑝𝑒3. 𝑝1 path ✓ 𝑠𝑐𝑜𝑝𝑒3  activated
𝑠𝑐𝑜𝑝𝑒3. 𝑝2 path  𝑠𝑐𝑜𝑝𝑒3  activated
𝑠𝑐𝑜𝑝𝑒3. 𝑝3 path ✓ 𝑠𝑐𝑜𝑝𝑒3  activated
𝑛16 node  𝑠𝑐𝑜𝑝𝑒3. 𝑝2 - activated
𝑛17 node ✓ 𝑠𝑐𝑜𝑝𝑒3. 𝑝3 - failed
𝑠𝑐𝑜𝑝𝑒3.1 AND

scope
✓ 𝑠𝑐𝑜𝑝𝑒3. 𝑝1 - activated

𝑠𝑐𝑜𝑝𝑒3.1. 𝑝1 path ✓ 𝑠𝑐𝑜𝑝𝑒3.1  activated
𝑠𝑐𝑜𝑝𝑒3.1. 𝑝2 path ✓ 𝑠𝑐𝑜𝑝𝑒3.1  activated
𝑠𝑐𝑜𝑝𝑒3.1. 𝑝3 path ✓ 𝑠𝑐𝑜𝑝𝑒3.1  activated
𝑛13 node ✓ 𝑠𝑐𝑜𝑝𝑒3.1. 𝑝1 - activated
𝑛14 node ✓ 𝑠𝑐𝑜𝑝𝑒3.1. 𝑝2 - activated
𝑛15 node ✓ 𝑠𝑐𝑜𝑝𝑒3.1. 𝑝3 - activated

Following the propagation mechanism of Figure 4,

failure of 𝑛17 will fail its superior path 𝑠𝑐𝑜𝑝𝑒3. 𝑝3 . This is
not the main execution path and does not have an alternative
but it is a concurrent path since its superior is an AND scope.
𝑠𝑐𝑜𝑝𝑒3. 𝑝3 is vital by evaluation since it encapsulates vital
node 𝑛17 . Therefore, the immediate scope of 𝑠𝑐𝑜𝑝𝑒3. 𝑝3
which is 𝑠𝑐𝑜𝑝𝑒3 fails . 𝑠𝑐𝑜𝑝𝑒3 . is vital by specification,
hence two actions take place: (a) the failure is propagated
recursively one level up in the hierarchy to path 𝑝0. (b) Force
fail is recursively propagated in top-down order to cancel all

Figure 5. Failure handling mechanism for non-vital paths

Figure 4. Propagation of vital atomic node failure

activated components encapsulated by 𝑠𝑐𝑜𝑝𝑒3. Failure of 𝑝0
will fail the LRT (FR6). Failure of 𝑠𝑐𝑜𝑝𝑒3 will force fail all
its activated paths. At this point of execution, 𝑠𝑐𝑜𝑝𝑒3. 𝑝3 has
already failed while 𝑠𝑐𝑜𝑝𝑒3. 𝑝1 and 𝑠𝑐𝑜𝑝𝑒3. 𝑝2 are still
activated and therefore both are forced to fail. Force failing a
path, fails the activated node in that path. Therefore,
activated nodes 𝑛16 and 𝑠𝑐𝑜𝑝𝑒3.1 are forced to fail. 𝑠𝑐𝑜𝑝𝑒3.1
is a scope node and hence the force fail mechanism is
recursively repeated one level down in the hierarchy to force
fail 𝑠𝑐𝑜𝑝𝑒3.1 ’s activated components in same manner as
scope3’s activated components were forced to fail.

In the above example, failure of a vital node 𝑠𝑐𝑜𝑝𝑒3 on
𝑝0 caused the LRT to fail. Our management/compensation
model applies a reliable mechanism that controls failure of
the LRT in designer-specific order that reflects the business
logic of the transaction. In case of force failing a scope that
has un-activated paths, these paths can never activate since
their enclosing scope state is failed ensuring correctness of
the model and avoiding activation of paths in failed scopes.

VI. RELATED WORK
[1], [1] and [3] introduced transactional patterns. Control

and transactional dependencies are defined for component
web services and are mapped onto workflow patterns.
Dependencies expressed in first order logic are employed to
validate transactional behaviour of web service
compositions. [6] proposes an event-driven approach where
dependencies are defined in event calculus. These works
discuss simple patterns such as AND-split or XOR-split,
where a single service exists on each split branch. In
addition, the way the dependencies are defined does not
allow for nesting in the composite service. The failure
handling and recovery mechanism is implemented through
dependencies. We have drawn inspiration from that work,
but provide solutions for multiple nested transactions.

In [7], REO is used to model the behaviour of LRTs. The
approach uses a set of basic REO channels to implement
connectors such as sequence and parallel routing. Control
flow is monitored through signalling and flow of message
tokens through the circuits. Exception handling is
implemented by coordinating sequential and parallel
activities with compensation activities where each activity is
paired with a compensation activity. E.g. an activity
cancelled in a sequential flow leads to all previous activities
being compensated by passing a cancel token.

Control Flow Intervention (CFI) [8] presents a flexible
and automatic failure handling mechanism for composite
web services. If a failure of a service occurs at runtime, the
failed service is dynamically replaced by a semantically
equivalent service(s), thus achieving forward recovery.
OWL-S profiles describing service semantics provide a
formal framework to reason about semantically equivalent or
similar services. The approach supports sequential
executions only and parallelism is not addressed. In our
approach, a failure of a component service does not
necessarily fail the LRT. By applying a combination of
forward recovery (implemented by exclusive routing) and a

failure propagation mechanism, it is possible to tolerate
failures and prevent the LRT from early failure.

VII. CONCLUSION AND FUTURE WORK
In this paper we have presented an approach for

modelling and enacting failure recovery on nested long
running transactions. The approach provides a novel model
that makes explicit the propagation of failure events through
the transactions. It also distinguishes two types of nodes —
vital and non-vital— that allow a process designer to include
activities in the design that are useful but were failure does
not matter. The designed propagation rules are enforced
through a novel rule based management system, allowing for
monitoring and controlling LRTs. A nested workflow is used
as example throughout.

Ongoing work considers formalizing extensions to the
approach to include compensation mechanisms. In this area
we are specifically looking at customized-order
compensations and incorporating compensation logic into
business logic when designing a process with LRTs, as the
designer will have the best understanding on what
compensation will be required in the business process.

ACKNOWLEDGMENT
Manar Ali is supported by a PhD scholarship scheme of King

Abdul Aziz University (Saudi Arabia).

REFERENCES
[1] Bhiri, S., C. Godart, and O. Perrin. Transactional patterns for reliable

web services compositions. Proceedings of ICWE06. p 137-144.
ACM, 2006.

[2] Bhiri, S., O. Perrin, and C. Godart. Ensuring required failure
atomicity of composite Web services. Proceedings of WWW05. p
138-147. ACM, 2005.

[3] Bhiri, S., Perrin, O., Godart, C.; Extending workflow patterns with
transactional dependencies to define reliable composite Web services;
Proceedings of AICT-ICIW '06; p. 145, IEEE, 2006

[4] Dayal, U., M. Hsu, and R. Ladin; Organizing long-running activities
with triggers and transactions. Proceedings of SIGMOD '90. p. 204-
214, ACM, 1990.

[5] Elmagarid, A.K.; Transaction models for advanced database
applications; Morgan Kaufmann, 1992.

[6] Gaaloul, W., Bhiri, S. and Rouached, M.; Event-based design and
runtime verification of composite service transactional behavior.
Transactions on Services Computing, 3(1); p. 32-45, IEEE, 2010.

[7] Kokash, N. and F. Arbab, Formal Design and Verification of Long-
Running Transactions with Eclipse Coordination Tools. Transactions
on Services Computing, 2011(99); p. 1-1, IEEE, 2011.

[8] Moller, T. and H. Schuldt. OSIRIS Next: Flexible Semantic Failure
Handling for Composite Web Service Execution. Proceedings of
ICSC10. p 212-217. IEEE, 2010.

[9] Russell, N., ter Hofstede, A.H.M. and Mulyar, N.; Workflow
controlflow patterns: A revised view; Technical Report BPM-06- 22;
BPM Centre, 2006.

[10] Tan, C. and A. Goh, Implementing ECA rules in an active database.
Knowledge-Based Systems, 12(4); p. 137-144, Elsevier, 1999.

[11] Van der Aalst, W.M.P., Barros, A.P., ter Hofstede, A.H.M. and
Kiepuszewski, B.; Advanced workflow patterns. Proceedings of
CoopIS 2000; p. 18-29, Springer, 2000.

[12] Wieringa, R.; Design methods for reactive systems: Yourdon,
statemate, and the UML; Morgan Kaufmann, 2003.

	I. Introduction
	II. Workflow and Transactional patterns
	III. LRT’s Transactional Attributes and Dependencies
	A. Transactional operators and scopes
	B. Vitality of components
	C. Execution states

	IV. Representations of nested LRTs
	A. Workflow Model
	B. Hierarchical Structure Model
	C. Hierarchical Transactional Dependencies
	D. Failure and Force-Fail dependencies:

	V. Failure Management
	A. Management Rules
	B. Failure propagation mechanism

	VI. Related work
	VII. Conclusion and future work
	Acknowledgment
	References

