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Abstract— Business Processes naturally involve long running 
activities and require transactional behaviour across them. The 
work presented in this paper is a proposal for a novel 
autonomous failure handling mechanism for long running 
nested transactions (LRT) and forms part of a general 
management and compensation model for long running 
transactions in workflows. The mechanism is based on 
propagation of failures through a recursive hierarchical 
structure of transaction components (nodes and execution 
paths). The management system of transactions (COMPMOD) 
is implemented as a reactive system controller, where system 
components change their states based on rules in response to 
triggering of events such as activation, failure, force-fail, 
completion, or compensation events. A notable new feature of 
the model is the distinction of vital and non-vital components, 
allowing the process designer to express the cruciality of 
activities in the workflow with respect to the business logic. 

Keywords-LRT, compensation and failure handling, rule 
based reactive approach. 

I.  INTRODUCTION 
Business processes naturally involve long running 

activities and require transactional behaviour across these. 
Such business processes are typically represented by 
workflows and these in turns are composed out of workflow 
patterns [11]. 

One of the important management aspects in managing 
long running transactions (LRTs) is preserving consistency 
of the systems being involved in the LRT. This is done by 
guaranteeing that an LRT will always ensure that the data 
integrity is preserved and systems are maintained 
consistently. This guarantees that the execution of the LRT 
terminates in an accepted state from the business and the 
transaction modelling points of view. In the absence of 
failure this should occur, but even if the LRT has not 
completed its normal path of execution due to a failure 
causing termination of the LRT or an abnormal path being 
chosen the same guarantee needs to be given. This is usually 
achieved by adopting effective compensation and fault-
handling techniques. Transactional patterns [3] have been 
proposed as a reliable paradigm for orchestrating transaction 
component behaviours in alignment with workflow patterns.  

We can distinguish two execution modes of an LRT, 
namely the normal execution mode and the compensation 
execution mode. During the normal execution mode, failures 
of component services could occur. Failure handling and 
recovery mechanisms should be implemented to process 

failures of component services and try to save the transaction 
from failing completely. 

In web service based LRT, reliability of transactions 
behaviour is a more critical issue due to autonomy and 
heterogeneity of web services. Transactions should be 
reliable in case of failure occurrence. However, even in such 
loosely coupled applications, failure handling and 
compensation mechanisms must be implemented to ensure 
predictable behaviour of transactions in case of hardware or 
software failures. 

The management of LRTs must proceed in two parallel 
directions: (a) the management of the LRT during its normal 
execution path, which must embrace a reliable and efficient 
fault-handling mechanism and (b) the management of the 
LRT during the execution of its compensation path, in case 
the LRT has failed to complete.  

To handle LRTs a modelling and management system 
would ideally support the following aspects. 1-3 are 
motivated by the structure of transactions and the fact that it 
is at the business level where a full understanding of the 
implications exists; 4 allows to separate the actual process 
and any handling of exceptions in a clear and user-friendly 
way; and 5-6 are requirements ensuring the practicality of 
the approach.  

1. Multi-level nesting of transactions with reliable 
behavioural dependencies between transaction 
components and across hierarchy levels.  

2. Definition of designer-order compensation patterns 
that reflects the business logic of the LRT. 

3. Incorporating compensation logic into business 
logic of long running transactions through 
transactional dependencies.  

4. Rule-based actions for managing execution and 
compensation control flow.  

5. Automated method for propagating failure events 
through the hierarchy structure as a failure handling 
mechanism. 

6. Automated method for performing compensation 
actions while the LRT execution is in progress, 
through backward and forward order 
compensations. 

The work in this paper focuses on handling failures that 
occur during the normal execution of the LRT, focusing on 
the control flow perspective. The failure-handling 
mechanism is incorporated into the business logic of the 
transaction through strict logical definitions of behavioural 
dependencies between transactional components.  
Compensation management is not covered in this paper and 



therefore points 2, 3 and 6 are not discussed. However, 
similar mechanisms to those proposed can be adopted for the 
handling of compensations. 

The mechanism is supported by a general management 
system (COMPMOD) which is modelled as a reactive 
system controller [1] that changes its components’ execution 
states and its actions in response to stimuli/events. An event 
is fired as a result of a behavioural dependency satisfaction. 
A stimulus is triggered as a result of a transition in the 
execution state of a transaction component or result from the 
application of a rule leading to event propagation in the 
hierarchy.  In other words, COMPMOD is an Event/Control 
driven WF management system that reacts continuously to 
stimuli/events until the LRT execution finally terminates in a 
state that is meaningful from both a system as well as a 
business perspective. 

In this paper we present the work as follows: first, we 
describe the adopted transaction modelling paradigm, 
discussing WF and transactional patterns. We then present 
the novel contributions of (1) COMPMOD’s LRT attributes, 
dependencies, and management rules and (2) the recursive 
failure handling propagation mechanism. All stages are 
supported by running an example. 

II. WORKFLOW AND TRANSACTIONAL PATTERNS 
Workflow patterns have been developed as part of an 

initiative commenced in 2000 by [2]. They classify the core 
architectural constructs inherent in workflows in a language 
and technology independent way, thus allowing definition of 
fundamental requirements of business process modelling. 
Workflow patterns consider workflow specifications from a 
control-flow perspective and characterize a range of control 
flow patterns that might be encountered when modelling a 
business workflow. Following the initial work [2], 43 control 
patterns were proposed in [4]. The patterns are classified as 
(a) basic control-flow patterns, (b) advanced branching and 
synchronization patterns, (c) structural patterns, (d) state-
based patterns, and (e) cancellation patterns. Our approach, 
COMPMOD, so far implements the basic control-flow 
patterns: sequence, AND-split, AND-join, OR-split, OR-
join, XOR-split, and XOR-join.  

The concept of transactional patterns was introduced in 
[3]. Transactional patterns are aimed at specifying flexible 
and reliable composite web services. They are a convergence 
concept between workflow patterns and advanced 
transactional models [5], and thus they combine the 
flexibility of work flow control patterns with the reliability 
of transactional models to ensures transactional consistency 
of service compositions. Transactional patterns define 
orchestrations between services in composite web service by 
using dependencies to define how services are combined and 
how the behaviour of some given services influences the 
behaviour of some others. Dependencies are used to express 
the relationships that exist between services such as 
sequence, alternative, compensation, activation, or 
cancellation. They also associate preconditions with service 
operations.  The general definition of a dependency is: 

Def.1 [3]: A dependency from service s1 to service s2 
exists if a transition of s1 can fire an external 
transition of s2. 

It is assumed that a transition can be an internal or 
external transition with internal transitions being fired by the 
service itself (e.g. complete(), fail(), or retry()) and external 
transitions being fired by external entities (e.g. abort(), 
cancel(), or compensate()).  

We extend the notion of transactional patterns to model 
multi-nested transactions by the introduction of the following 
concepts: 

• Atomic nodes, scopes, and nested scopes and their 
transactional dependencies and attributes. 

• Execution paths and their transactional attributes. 
• A hierarchical structure that mirrors the workflow 

structure of the LRT. 
• Vitality of nodes, scopes, and execution paths. 
• Encapsulation of dependencies on the scope and 

execution path level to facilitate automated 
propagation of events.  

In the following sections, we provide a description of the 
above concepts and show how they are implemented to 
automate the recursive failure-handling mechanism of 
COMPMOD.  

III. LRT’S TRANSACTIONAL ATTRIBUTES AND 
DEPENDENCIES  

An LRT is executed as a flat transaction, i.e. a sequence 
of nodes that are executed sequentially.  A node can be an 
atomic node representing an atomic task (a single web 
service), or, a scope node starting with a split pattern and 
ending with a join pattern of the same type. Each scope 
creates two or more execution paths that start from the split 
point and end at the join point (or synchronizer) of the scope. 
Each execution path is a sequence of one or more nodes 
executed in sequential order where nodes along the path 
again can be atomic or scopes.  Through the rest of the 
discussion we will use the term component to refer to both 
nodes (atomic/scope) and execution paths. 

A. Transactional operators and scopes 
A scope starts with a split operator (OR, AND, or XOR) 

that is explicitly assigned while constructing the LRT. The 
model implicitly specifies a join operator of the same type to 
mark the end point of a scope. The join point is represented 
by a synchroniser in the WF schema. The type of operator 
used to define a scope influences the definition of 
transactional attributes and dependencies of its encapsulated 
components. Semantics of operators are adopted from the 
definitions of WF-patterns in [4]. An AND operator creates a 
scope with parallel execution paths, and the scope is 
successfully completed if all its execution paths are 
successfully completed. An OR operators creates a scope 
with parallel paths where only a subset of these paths are 
executed during runtime, the executed paths are those whose 
enabling condition are satisfied. An OR scope successfully 
completes if all its enabled activated paths are successfully 
completed.  An XOR scope creates exclusive paths, the first 



path has the highest priority and therefore execution starts 
with the path with the highest priority. If an exclusive path 
failed to complete, it is compensated in forward order until 
the split point of the scope is reached, and then next path (if 
one exists) is executed. Therefore, execution paths are 
assigned with the following transactional attributes: an 
execution path hasAnalternative, if it was an exclusive path 
that has a path with lower priority in the same scope. In an 
OR scope, a path is enabled  if and only if  its branching 
condition is satisfied at runtime and hence, only enabled 
paths are activated. Each execution path has an ordered list 
of one or more nodes denoted by nodeList. A scope is 
formally defined as: 

 
Def.2: A scope node is defined as follows: 
∀𝒊=𝟏..𝒎 𝒑𝒊.𝒏𝒐𝒅𝒆𝑳𝒊𝒔𝒕 = 𝒔𝒑𝒍𝒊𝒕𝑵𝒐𝒅𝒆𝒊 𝒂𝒏𝒅 
∀𝒊=𝟏..𝒎 𝒏𝒐𝒅𝒆𝑳𝒊𝒔𝒕𝒊. 𝒕𝒚𝒑𝒆 = {𝑨𝑻𝑶𝑴𝑰𝑪,𝑺𝑪𝑶𝑷𝑬}: 
𝒔𝒄𝒐𝒑𝒆 = (𝒐𝒑𝒆𝒓𝒂𝒕𝒐𝒓, [𝒔𝒑𝒍𝒊𝒕𝑵𝒐𝒅𝒆𝟏. . 𝒔𝒑𝒍𝒊𝒕𝑵𝒐𝒅𝒆𝒎]) 
→  𝒔𝒄𝒐𝒑𝒆.𝒑𝒂𝒕𝒉𝑳𝒊𝒔𝒕 = [𝒑𝟏. .𝒑𝒎]  

where operatorÎ{AND,OR.XOR} 
 

When a scope is initially defined, a split operator and a 
list of split nodes are specified. The number of split nodes 
corresponds to the number of execution paths encapsulated 
within the scope. A split node can be an atomic node, or a 
scope node which facilitates the construction of nested 
scopes. When a node is appended to an existing execution 
path 𝑝𝑖 , the node is appended to 𝑝𝑖 .𝑛𝑜𝑑𝑒𝐿𝑖𝑠𝑡. 

B. Vitality of components 
Each LRT component has a vitality attribute, allowing to 

specify whether a component is vital or non-vital. A vitality 
value {TRUE/FALSE} is assigned to each component either 
by specification or by evaluation. Vitality of atomic and 
scope nodes is assigned by specification, that is, according to 
the business logic of the LRT. Essentially vitality allows the 
workflow designer to express whether a failure of the 
specific service can be tolerated and the workflow can 
proceed (and example of a non-vital task might be one 
sending a progress message to the invoking user – nothing in 
the process will be broken if the message is not sent). 
Vitality of execution paths is assigned by evaluation 
according to the following rules. A path is  

• vital if it encapsulates at least one vital node. 
• non-vital if all the nodes it encapsulates are non-

vital. 
The transactional implication of the vitality measure of a 

component expresses the impact of unsuccessful completion 
of a component on its immediate superior1. For example, the 
failure of a vital node will fail its enclosing execution path. 
Vitality of components is utilised in the failure handling 
propagation mechanism proposed in this paper. 

Note that the decision of assigning the vitality value to 
nodes (atomic and scope) is based on the business logic of 
the LRT. It is important to note that our management/ 
compensation model does not investigate or analyse the 

                                                           
1The immediate superior of node is its enclosing path and the immediate 
superior of a path is its enclosing scope (section 5). 

business logic of the LRT. It is always assumed by the model 
that the logic provided for the LRT at design time is what it 
is required from the transaction by the business level. 
Therefore, for a designer it is possible to define a scope node 
as a non-vital node, while it could encapsulate vital paths, 
without leading to an incorrect model.   

However, the following logical restrictions are assumed 
by the approach with respect to design of scopes: 

• Assumption 1: In an exclusive scope, all exclusive 
paths should have the same vitality measure, that is 
they must all be vital or all be non-vital. 

• Assumption 2. If all paths in a scope are non-vital, 
their encapsulating scope should be non-vital by 
specification. 

C. Execution states 
During the execution life cycle of the transaction, the 

LRT and its components go through different execution 
states and they are marked with their current execution state. 
We list below the set of execution states for the LRT and 
each component and Figure 1, shows the state transition 
diagram of atomic nodes. State transitions are triggered by 
events. E.g. in Figure 1, when a completion of an atomic 
node is triggered, the execution state of the node changes 
from ACTIVATED to COMPLETED.  

 
LRT.state = {not-activated, activated, completed, failed, 

compensating, compensated, terminated} 
AtomicNode.state = {not-activated, activated, completed, 

failed, compensating, compensated, skipped, aborted, 
terminated} 

ScopeNode.state = {not-activated, activated, completed, 
failed, compensating, compensated} 

ExecutionPath.state = {not-Activated, activated, completed, 
failed, compensating, compensated} 

 
 

Figure 1. State transition diagram for atomic nodes 



IV. REPRESENTATIONS OF NESTED LRTS 
We use two main representations of the workflows in our 

work: a workflow representation, that allows to abstract 
away from sub workflows and a tree representation that is 
used by the propagation algorithm.  

In our model we have two basic components: nodes and 
execution paths. A node can be an atomic node (a single web 
service) or a scope node – a set of semantically connected 
nodes (atomic and/or scope). An execution path represents a 
trail of nodes that are executed in sequential order. An 
execution path reading of a scope node that it encapsulates is 
the same as an atomic node. In other words, scope nodes on 
an execution path are like black boxes that encapsulate 
execution paths and other nodes. Transactional dependencies 
are employed to model the transaction behaviour between 
transaction components. Transactional dependencies are 
defined between a component and its neighbours.  

A. Workflow Model 
The modeling method allows for multi-level nested 

transactions to address demands occurring in real 
cooperative business processes. In the representation model 
itself we see alternating levels of paths and nodes.  

Figure 2.(a), demonstrates a two level-nested LRT that 
consists of atomic nodes and nested scopes.  Considering 
execution 𝑝1 in 𝑠𝑐𝑜𝑝𝑒2, the path consists of an atomic node 
𝑛6  followed in sequence by a scope node 𝑠𝑐𝑜𝑝𝑒2.1  that in 
turn encapsulates three execution paths. As mentioned 

earlier, an execution path is a trail of nodes (atomic and/or 
scope) that are executed in sequential order and we provide a 
nodeList attribute on path objects to express this: for 
example 𝑝1.𝑛𝑜𝑑𝑒𝐿𝑖𝑠𝑡 = [𝑛6, 𝑠𝑐𝑜𝑝𝑒2.1]. Figure 2.(a) shows 
the LRT with all nesting levels expanded and Figure 2.b 
demonstrates the LRT with level 2 of the WF collapsed.  

The main execution path of a transaction is regarded as 
level 0 in the workflow and denoted as 𝑝0. If we collapse 
level 1 of the WF, the main execution path becomes a flat 
WF that executes the nodes in 
𝑝0.𝑛𝑜𝑑𝑒𝐿𝑖𝑠𝑡 = [𝑛1,𝑛2, 𝑠𝑐𝑜𝑝𝑒1, 𝑠𝑐𝑜𝑝𝑒2, 𝑠𝑐𝑜𝑝𝑒3] in 
sequential order. 

B. Hierarchical Structure Model 
Transaction components –nodes and execution paths-- 

are linked together in a hierarchical structure (see e.g. Figure 
3).  Each component has a single superior and an ordered set 
of one or more inferiors. Specifically: 
Node component: A superior of any node is the execution 

path that encapsulates the node. An atomic node is a leaf 
node that has no inferiors. A scope node has two or more 
inferiors which represents the number of split execution 
paths it encapsulates. 

Execution path component: The superior of any execution 
path is the scope node that encloses it. The main 
execution path of a LRT has a NULL superior. Each 
execution path has one or more inferiors. Inferiors of a 
path represent an ordered set of one or more nodes that 

 
 
Figure 2. A sample workflow 
 



the path encloses. The root of the recursive hierarchy is 
the main execution path of the LRT 𝑝0. 

C. Hierarchical Transactional Dependencies  
As stated, transaction behaviour between components is 

expressed through dependencies. Transactional dependencies 
are defined: (a) between an execution path and its immediate 
outer scope, (b) between a node and its immediate outer 
execution path and, (c) between any two successive nodes on 
a sequence of the same execution path. This imposes the 
hierarchical relationship between components and facilitates 
hierarchical propagation of events.  We expect dependencies 
to be defined in the WF representation and then mapped into 
the hierarchical structure to enforce the propagation 
mechanism through and across hierarchy levels. In terms of 
the hierarchy structure, transactional dependencies are 
defined between a component and its immediate superior and 
between a node and its immediate siblings (if any exist). 

Dependencies (activation, completion, failure, force-fail, 
compensation (forward/backward /designer-tailored) and 
compensation-completion) are defined in first order logic 
and in terms of sets of pre-conditions that, when satisfied at 
run time lead to an event being fired. In the scope of this 
paper we focus on failure and force-fail dependencies.  

The general definition for a behavioural dependency is:  
Def 3. A behavioural dependency exists from componentj to 
componenti iff a state transition in componenti can fire a 
transactional event for componentj: 

𝑫𝒆𝒑�𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕𝒋�: = 𝒑𝒓𝒆𝑪𝒐𝒏𝒅(𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕𝒊. 𝒔𝒕𝒂𝒕𝒆) 
As an example, for two successive nodes the activation 

dependency of the successor node stating that an activation 
event is fired for a successor node if its predecessor node has 
been completed or, if its predecessor node was not a vital 
node but failed to complete is defined as: 
ActDep(succNode ):= (PredNode.State = COMPLETED) Ú 

 (PredNode.Vital=FALSE Ù PredNode.State=FAILED) 
Behavioural dependencies can also be defined between a 

set of sibling components and their immediate superior 
component, essentially extending Def. 3 to allow for any of a 
number of sibling nodes to fire a transactional event for the 
superior component:  

𝑫𝒆𝒑(𝒔𝒖𝒑𝒆𝒓𝒊𝒐𝒓)  ≔
𝑷𝒓𝒆𝑪𝒐𝒏𝒅([𝒔𝒊𝒃𝒍𝒊𝒏𝒈𝟏. 𝒔𝒕𝒂𝒕𝒆. . 𝒔𝒊𝒃𝒍𝒊𝒏𝒈𝒏. 𝒔𝒕𝒂𝒕𝒆]) 

D. Failure and Force-Fail dependencies:  
Failure dependencies are defined for non-vital scope 

nodes and non-vital execution paths. Vital scopes and 
execution paths do not lead to events fired by dependencies, 
instead such failure is assessed by the management rules 
discussed in section 5. Table 1 shows a complete list of 
failure and force fail dependencies. Failure of all vital nodes 
in a path will fail the path (𝒑𝒂𝒕𝒉.𝒏𝒐𝒅𝒆𝑳𝒊𝒔𝒕 ←𝒇𝒂𝒊𝒍  𝒑𝒂𝒕𝒉 ; 
FD1); failure of paths in a scope will lead to failure of the 
scope ( 𝒔𝒄𝒐𝒑𝒆.𝒑𝒂𝒕𝒉𝑳𝒊𝒔𝒕 ←𝒇𝒂𝒊𝒍 𝒔𝒄𝒐𝒑𝒆 ), dependent on the 
semantics of the scope operator. For example, FD3 states 
that an OR scope fails if all its enabled paths failed.  

Force-fail is a counterpart for cancelation. When a vital 
concurrent path fails, its immediate outer scope fails. Force-
fail dependencies force all active paths within a failed 
concurrent scope to cancel their executions, and 
subsequently all active nodes on paths are forced to fail. 
Force-fail dependencies are defined between components 
and their immediate superiors. A force-fail dependency 
𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕. 𝒔𝒖𝒑𝒆𝒓𝒊𝒐𝒓  ←𝒇𝒐𝒓𝒄𝒆𝒇𝒂𝒊𝒍 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕 means that 
failure of an activated component’s superior will force the 
component to fail. For example FF1 states that an activated 
path will fail if its enclosing scope has failed. Consequently, 
all concurrently activated paths within a scope will force-fail 
if their immediate superior scope fails.  

TABLE I.  FAIL AND FORCE-FAIL DEPENDENCIES 

Dep Dependency  Formula 
Failure Dependencies 

FD1 𝐹𝑎𝑖𝑙𝐷𝑒𝑝(𝑝𝑎𝑡ℎ) ≔ 

� � 𝑛𝑜𝑑𝑒𝐿𝑖𝑠𝑡𝑖 . 𝑆𝑡𝑎𝑡𝑒 =  𝐹𝐴𝐼𝐿𝐸𝐷
1≤𝑖≤𝑚 

�  

𝑤ℎ𝑒𝑟𝑒 𝑚 = |𝑝𝑎𝑡ℎ.𝑛𝑜𝑑𝑒𝐿𝑖𝑠𝑡| 
FD2 𝐹𝑎𝑖𝑙𝐷𝑒𝑝(𝐴𝑁𝐷𝑠𝑐𝑜𝑝𝑒) ≔  

⋀ (𝑝𝑎𝑡ℎ𝑖 .𝑆𝑡𝑎𝑡𝑒 =  𝐹𝐴𝐼𝐿𝐸𝐷1≤𝑖≤𝑚 )  
𝑤ℎ𝑒𝑟𝑒 𝑚 = |𝐴𝑁𝐷𝑠𝑐𝑜𝑝𝑒. 𝑝𝑎𝑡ℎ𝐿𝑖𝑠𝑡| 

FD3 𝐹𝑎𝑖𝑙𝐷𝑒𝑝(𝑂𝑅𝑠𝑐𝑜𝑝𝑒): = 

 � �𝑝𝑎𝑡ℎ𝑖  .𝐸𝑛𝑎𝑏𝑙𝑒𝑑 = 𝑇𝑅𝑈𝐸 ∧ 
𝑝𝑎𝑡ℎ𝑖 .𝑆𝑡𝑎𝑡𝑒 =  𝐹𝐴𝐼𝐿𝐸𝐷 �

1≤𝑖≤𝑚

 

𝑤ℎ𝑒𝑟𝑒 𝑚 = |𝑂𝑅𝑠𝑐𝑜𝑝𝑒. 𝑝𝑎𝑡ℎ𝐿𝑖𝑠𝑡| 
FD4 𝐹𝑎𝑖𝑙𝐷𝑒𝑝(𝑋𝑂𝑅𝑠𝑐𝑜𝑝𝑒) ≔  

� (𝑝𝑎𝑡ℎ𝑖 .𝑆𝑡𝑎𝑡𝑒 =  𝐹𝐴𝐼𝐿𝐸𝐷
1≤𝑖≤𝑚

)  

𝑤ℎ𝑒𝑟𝑒 𝑚 = |𝑋𝑂𝑅𝑠𝑐𝑜𝑝𝑒. 𝑝𝑎𝑡ℎ𝑙𝑖𝑠𝑡| 
Force-Fail Dependencies 

FF1 𝐹𝑜𝑟𝑐𝑒𝐹𝑎𝑖𝑙𝐷𝑒𝑝(𝑝𝑎𝑡ℎ) ≔ 
𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑆𝑢𝑝𝑒𝑟𝑖𝑜𝑟.𝑆𝑡𝑎𝑡𝑒 =  𝐹𝐴𝐼𝐿𝐸𝐷 

FF2 𝐹𝑜𝑟𝑐𝑒𝐹𝑎𝑖𝑙𝐷𝑒𝑝(𝑛𝑜𝑑𝑒) ≔ 
𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑆𝑢𝑝𝑒𝑟𝑖𝑜𝑟.𝑆𝑡𝑎𝑡𝑒 =  𝐹𝐴𝐼𝐿𝐸𝐷 

 

V. FAILURE MANAGEMENT 

A. Management Rules  
Management rules (or policies) incorporate autonomy 

into systems. The most common form is that of ECA (event 
condition action) rules which present an event driven 

 
 
Figure 3. Hierarchical Representation of LRT in Figure 1 
 



approach. One of the first attempts in applying ECA rules 
approach in management of transactions in WF systems was 
in [6] by using triggers for  organising long running 
activities. ECA rules have been used to adapt workflows and 
provide more fine-grained specification for service selection 
for tasks and in database management systems, e.g. [7].  
ECA rules in COMPMOD are implemented to model the 
expected execution behaviour of the LRT. When an event is 
fired, it triggers an ECA rule, and if the condition holds, an 
appropriate action takes place.  ECA rules have the following 
pseudo generic form: 

ON event IF condition DO action 
The event part of the rule can be (a) an internal system 

generated event such as completion, failure, or cancelation of 
an atomic node or, (b) an external event fired as a result of a 
dependency condition satisfied for a component or, (c) a 
result of execution a state transition event of a component.  
The condition part is one or more connected Boolean 
expressions that need to hold for the rule to be applied. The 
action is a sequence of one or more actions to be performed 
in case the rule is applied, and can in turn introduce new 
events needing to be handled.  

COMPMOD Rules are classified into: activation, 
completion, compensation, failure, and propagation rules. As 
this paper focuses on failure handling, we only list failure 
and failure propagation ECA rules in Table 2. Note that fail 
and abort are actions that lead to raising an event (fail or 
abort) but also have a side effect on the state of the 
respective component as follows:   

if component.state=ACTIVATED 
then component.state:=FAILED 

ECA rules of COMPMOD reflect the following: 
1. The business logic of the LRT (e.g. FR4 states that if 

a node is vital and failed, its superior path fails). 
2. The semantics of a COMPMOD model (e.g. FFR2 

states that if a force-fail event is fired for an 
activated atomic node, the node is aborted).   

3. The semantics of WF patterns (e.g. FR5 states that 
failure of a vital path that has no alternative, i.e. a 
concurrent or last exclusive path, fails its enclosing 
scope). 

TABLE II.  FAILURE  AND PROPAGATION RULES 

Rule Pseudo ECA-Rule statement  
Failure Rules 

 
FR1 

ON “internal failure/cancellation event fired for  atomic node”  
DO  fail(node) 

 
FR2 

ON FailDep(node)=TRUE 
IF    node.type=SCOPE 
DO fail(node) 

 
FR3 

ON FailDep(path)=TRUE 
DO fail(path) 

 
FR4 

ON fail(node) 
IF   node. vital = TRUE 
DO fail(node.superior) 

 
 

FR5 

ON fail(path) 
IF    path. hasAlternative = FALSE and path. vital = TRUE 
DO  fail(path.superior) 

FR6 ON fail(po) 
DO fail(LRT) 

Failure Propagation Rules 
FFR1 ON ForceFailDep(node) 

IF    node.type=SCOPE and node.state=activated 
DO fail(node) 

FFR2 ON ForceFailDep(node)=TRUE 
IF    node.type=ATOMIC and node.state=activated 
DO abort(node) 

FFR3 ON ForcefailDep(path)=TRUE 
IF   path.state=activated 
DO fail(path)* 

B. Failure propagation mechanism 
This work presents a recursive method for propagating 

vital failure events through the recursive hierarchy structure 
of LRT components. Propagation is in parallel with rule-
based actions in order to reach a consensus about the 
execution state of LRT components and the LRT itself. 

Within the context of the proposed hierarchy structure, 
the recursive failure propagation mechanism entails a 
combination of three types of propagation methods:  

1. Bottom-up propagation originates from failure of a 
vital atomic node and propagates up the hierarchy to 
its immediate superior path. If the failed atomic node 
exists on the main execution path 𝑝0, the LRT fails.  

2. Upwards recursive propagation originates from 
failure of a scope node by repeating a bottom-up 
propagation to its immediate superior execution path 
in recursive fashion until a non-vital component is 
reached in the hierarchy or until the failure reaches 
the root of the hierarchy structure (𝑝0). 

3. Downwards recursive propagation originates from a 
failure of a scope node (vital or non-vital) by 
repeating a top-down propagation to its immediate 
activated paths until the propagation reaches all 
active atomic nodes within the failed scope’s sub-
hierarchy. This represents a mean of forcing failure/ 
cancellation of concurrently running nodes in a 
failed scope. Force fail only applies to concurrent 
scopes and in our model only applies to AND and 
OR scopes since a failed XOR is a result of a failure 
of all its exclusive paths. 

Failure propagation is always initiated by the failure of a 
vital atomic node and propagates recursively through vital 
component ancestors in the hierarchy structure to stop when 
a non-vital ancestor component is reached or when the root 
of the hierarchy is reached. As for Top-down propagation of 
failures, both vital and non-vital active components are 
force-failed. 

If a vital failure propagates through the hierarchy 
structure of the LRT and reaches the root of the hierarchy 𝑝0, 
the LRT fails. Figures 4 and 5 illustrate the failure 
propagation mechanism linked to dependencies and ECA 
rules (Tables 1 and 2).  Figures 4 and 5 include 
compensation mechanisms that are out of scope of this 
paper. 



The failure mechanism also handles failures of non-vital 
components. Failure of a non-vital atomic node could fail its 
enclosing path if the enclosing path was a non-vital path 
under the following two conditions (1) the enclosing path is 
an atomic path, i.e. encapsulates one node only, or (2) the 

node is the last node in the path and all other nodes in the 
path have failed. Failure of a non-vital path (Figure 5) will 
only fail its enclosing scope under two conditions: (1) it is an 
exclusive path (2) it has no alternative, i.e. it is the last 
exclusive path in the scope. From assumptions 1and 2 in 
section 3.1, failure of a last non-vital exclusive path will fail 
a non-vital exclusive scope. Recursively, failure of a non-
vital scope is treated as a failure of non-vital node.  

To further illustrate the propagation mechanism, we will 
consider the LRT presented in Figure 3. Assume an 
execution instance with the following states of its 
components:𝑛1, 𝑛2, 𝑠𝑐𝑜𝑝𝑒1and  𝑠𝑐𝑜𝑝𝑒2 have completed, and 
𝑠𝑐𝑜𝑝𝑒3  is activated. 𝑛17  is a vital node and has failed to 
complete. Table 3 shows 𝑠𝑐𝑜𝑝𝑒3 ’s sub hierarchy tree 
attribute values and execution states when node 𝑛17 failure 

event has been fired and we show how the failure 
propagation algorithm is employed. 

TABLE III.  EXECUTION INSTANCES OF 𝑠𝑐𝑜𝑝𝑒3 

Componen
t  

Type vital Immediate 
superior 

Has 
Alternati

ve 

Executio
n state 

𝑠𝑐𝑜𝑝𝑒3 AND 
scope 

✓ 𝑝0 - activated 

𝑠𝑐𝑜𝑝𝑒3. 𝑝1 path ✓ 𝑠𝑐𝑜𝑝𝑒3  activated 
𝑠𝑐𝑜𝑝𝑒3. 𝑝2 path  𝑠𝑐𝑜𝑝𝑒3  activated 
𝑠𝑐𝑜𝑝𝑒3. 𝑝3 path ✓ 𝑠𝑐𝑜𝑝𝑒3  activated 
𝑛16 node  𝑠𝑐𝑜𝑝𝑒3. 𝑝2 - activated 
𝑛17 node ✓ 𝑠𝑐𝑜𝑝𝑒3. 𝑝3 - failed 
𝑠𝑐𝑜𝑝𝑒3.1 AND 

scope 
✓ 𝑠𝑐𝑜𝑝𝑒3. 𝑝1 - activated 

𝑠𝑐𝑜𝑝𝑒3.1. 𝑝1 path ✓ 𝑠𝑐𝑜𝑝𝑒3.1  activated 
𝑠𝑐𝑜𝑝𝑒3.1. 𝑝2 path ✓ 𝑠𝑐𝑜𝑝𝑒3.1  activated 
𝑠𝑐𝑜𝑝𝑒3.1. 𝑝3 path ✓ 𝑠𝑐𝑜𝑝𝑒3.1  activated 
𝑛13 node ✓ 𝑠𝑐𝑜𝑝𝑒3.1. 𝑝1 - activated 
𝑛14 node ✓ 𝑠𝑐𝑜𝑝𝑒3.1. 𝑝2 - activated 
𝑛15 node ✓ 𝑠𝑐𝑜𝑝𝑒3.1. 𝑝3 - activated 

 
Following the propagation mechanism of Figure 4, 

failure of 𝑛17 will fail its superior path 𝑠𝑐𝑜𝑝𝑒3. 𝑝3 . This is 
not the main execution path and does not have an alternative 
but it is a concurrent path since its superior is an AND scope. 
𝑠𝑐𝑜𝑝𝑒3. 𝑝3 is vital by evaluation since it encapsulates vital 
node  𝑛17 . Therefore, the immediate scope of  𝑠𝑐𝑜𝑝𝑒3. 𝑝3 
which is 𝑠𝑐𝑜𝑝𝑒3  fails .  𝑠𝑐𝑜𝑝𝑒3 . is vital by specification, 
hence two actions take place: (a) the failure is propagated 
recursively one level up in the hierarchy to path 𝑝0. (b) Force 
fail is recursively propagated in top-down order to cancel all 

 
Figure 5. Failure handling mechanism for non-vital paths 

 

 
Figure 4. Propagation of vital atomic node failure 



activated components encapsulated by 𝑠𝑐𝑜𝑝𝑒3. Failure of 𝑝0 
will fail the LRT (FR6). Failure of 𝑠𝑐𝑜𝑝𝑒3 will force fail all 
its activated paths. At this point of execution, 𝑠𝑐𝑜𝑝𝑒3. 𝑝3 has 
already failed while 𝑠𝑐𝑜𝑝𝑒3. 𝑝1  and 𝑠𝑐𝑜𝑝𝑒3. 𝑝2  are still 
activated and therefore both are forced to fail. Force failing a 
path, fails the activated node in that path. Therefore, 
activated nodes 𝑛16 and 𝑠𝑐𝑜𝑝𝑒3.1 are forced to fail.  𝑠𝑐𝑜𝑝𝑒3.1 
is a scope node and hence the force fail mechanism is 
recursively repeated one level down in the hierarchy to force 
fail 𝑠𝑐𝑜𝑝𝑒3.1 ’s activated components in same manner as 
scope3’s activated components were forced to fail. 

In the above example, failure of a vital node 𝑠𝑐𝑜𝑝𝑒3 on 
𝑝0  caused the LRT to fail. Our management/compensation 
model applies a reliable mechanism that controls failure of 
the LRT in designer-specific order that reflects the business 
logic of the transaction. In case of force failing a scope that 
has un-activated paths, these paths can never activate since 
their enclosing scope state is failed ensuring correctness of 
the model and avoiding activation of paths in failed scopes. 

VI. RELATED WORK 
[1], [1] and [3] introduced transactional patterns. Control 

and transactional dependencies are defined for component 
web services and are mapped onto workflow patterns. 
Dependencies expressed in first order logic are employed to 
validate transactional behaviour of web service 
compositions. [6] proposes an event-driven approach where 
dependencies are defined in event calculus. These works 
discuss simple patterns such as AND-split or XOR-split, 
where a single service exists on each split branch. In 
addition, the way the dependencies are defined does not 
allow for nesting in the composite service. The failure 
handling and recovery mechanism is implemented through 
dependencies. We have drawn inspiration from that work, 
but provide solutions for multiple nested transactions. 

In [7], REO is used to model the behaviour of LRTs. The 
approach uses a set of basic REO channels to implement 
connectors such as sequence and parallel routing. Control 
flow is monitored through signalling and flow of message 
tokens through the circuits. Exception handling is 
implemented by coordinating sequential and parallel 
activities with compensation activities where each activity is 
paired with a compensation activity. E.g. an activity 
cancelled in a sequential flow leads to all previous activities 
being compensated by passing a cancel token.   

Control Flow Intervention (CFI) [8] presents a flexible 
and automatic failure handling mechanism for composite 
web services.  If a failure of a service occurs at runtime, the 
failed service is dynamically replaced by a semantically 
equivalent service(s), thus achieving forward recovery. 
OWL-S profiles describing service semantics provide a 
formal framework to reason about semantically equivalent or 
similar services. The approach supports sequential 
executions only and parallelism is not addressed. In our 
approach, a failure of a component service does not 
necessarily fail the LRT. By applying a combination of 
forward recovery (implemented by exclusive routing) and a 

failure propagation mechanism, it is possible to tolerate 
failures and prevent the LRT from early failure. 

VII. CONCLUSION AND FUTURE WORK 
In this paper we have presented an approach for 

modelling and enacting failure recovery on nested long 
running transactions. The approach provides a novel model 
that makes explicit the propagation of failure events through 
the transactions. It also distinguishes two types of nodes —
vital and non-vital— that allow a process designer to include 
activities in the design that are useful but were failure does 
not matter. The designed propagation rules are enforced 
through a novel rule based management system, allowing for 
monitoring and controlling LRTs. A nested workflow is used 
as example throughout. 

Ongoing work considers formalizing extensions to the 
approach to include compensation mechanisms. In this area 
we are specifically looking at customized-order 
compensations and incorporating compensation logic into 
business logic when designing a process with LRTs, as the 
designer will have the best understanding on what 
compensation will be required in the business process. 
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