
Policy-aware Service Composition in Sensor
Networks

Raheleh Dilmaghani∗, Sahin Geyik†, Keith Grueneberg∗, Jorge Lobo∗, S. Yousaf Shah†, Boleslaw K. Szymanski†, Petros Zerfos∗

∗IBM T.J. Watson Research Center, Hawthorne, NY, USA
†Rensselaer Polytechnic Institute, Department of Computer Science, Troy, NY, USA

Abstract—Sensor applications are typically composed of a
number of functional components that run distributedly on the
nodes of a sensor network, communicating and interacting with
one another. Service composition is emerging as a viable approach
towards the automatic synthesis of such sensor applications.
However, for service composition to be practical, it has to comply
with policies that define security and management constraints on
the use of these service components and the interconnections
amongst them. Prior research efforts have primarily focused
on efficient evaluation of security policies during the compo-
sition process, which is not sufficient when generic network
management constraints need to be expressed and evaluated. In
this work, we propose a policy model and evaluation approach
that enables us to define and check attribute-based policies, for
controlling the sensor service composition process. Attribute-
based policies are generic and allows us to express a wider
spectrum of constraints than currently possible. Using this model
and based on a previously-proposed sensor service composition
algorithm, we introduce a policy evaluation method that allows
for efficient checking of policy constraints. We further present
a novel implementation of the proposed approach in the IBM
Sensor Fabric, a middleware framework that simplifies the
development of distributed, sensor network services. We also
present preliminary performance evaluation results using our
prototype.

Keywords- sensor network services; service composition;
attribute-based policies;

I. INTRODUCTION

The structure of distributed sensor network applications and
services [20] typically consists of a sequence of transformation
and aggregation processing steps that execute on measure-
ment data collected by the various sensing modalities of the
sensor nodes. As such, it naturally lends itself to a service
composition paradigm that is based on dataflow processing
graphs [9], which can be further used to automate the synthesis
of complex sensor services. However, such synthesis of a
composite service through a combination of more primitive
ones is usually subject to various constraints that are set by
sensor network management and security systems, which are
tasked with dynamically allocating network resources and reg-
ulating the sharing of the common sensor infrastructure among
multiple applications that might run on it. Controlled sharing
in particular becomes an important requirement in deploy-
ments where a common sensor infrastructure is contributed by
multiple organizations with disparate administrative domains,
each of which has its own policies with respect to how the

sensor nodes and platforms will be used by the other partner
organizations.

Service composition that is subject to given constraints
has been extensively studied in the domain of web services.
However, prior approaches are developed around the request-
response interaction model of the web services environment
and attempt to enforce either constraints imposed on individual
component services (e.g. [2] [7]) or focus solely on security
constraints and access control (e.g. [3] [10]). Recent work [14]
looks at the evaluation of policies defined over information
flows in a service composition, which seems to be more appli-
cable to the dataflow model of sensor services, but the policy
model assumed is limited and able to express only access
control constraints based on multi-level security classes of in-
formation flows. While a step in the right direction, multi-level
access control policies by themselves are not rich enough to
express the management requirements of an operational sensor
network infrastructure. For example, it is not possible to state
conditions regarding the use of component services in a service
composition graph based on metrics of resource utilization of
the sensor nodes, a typically mandatory requirement in sensor
network deployments that involve shared hardware, software
and network components. The goal of the work described
herein is to propose a policy model and service composition
approach that overcome the aforementioned limitations.

In particular, our work is focused on addressing the follow-
ing two challenges in sensor service composition: first, we are
interested in expressing and evaluating generic policies that
are able to capture the characteristics of the complete service
graph, as opposed to the more narrow scope of information
flows or individual service nodes/instances. Such policies
might refer to aggregate characteristics of the composite ser-
vice (e.g. “do not include in the service composition more than
3 instances of service A that are provided by organization B”),
or span arbitrary service processing pipelines (also referred to
as “service chains” in [14]), which might not necessarily be
connected through an information flow (e.g. “do not include
service instance C in the composition if service instances A
and B are included”, wherein services “A”, “B” and “C” are
not necessarily part of an information flow).

The second challenge that this work tackles is that of
efficiency in policy evaluation: as a potentially large number
of candidate composite service graphs might be generated as

Bolek
Typewritten Text
Proc. 9th International Conference on Service Computing, SCC 2012, Honolulu, HI, June 24-29 2012

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

a result of a composition request, the overhead of evaluating
all the policy constraints for each service component selected,
as well as on the overall graph, might be prohibitively high
for the service composer. It is imperative that evaluation of
policies be fast for practical service composition in a sensor
network environment, in which dynamic re-composition of
sensor services might take place often due to continuously
varying node resources and connectivity.

To address these challenges, we propose a novel policy
model and evaluation method that is centered around the
concept of service composition graphs. We develop a resource
model that exposes the characteristics of such composition
graphs to a policy language [12], so as to enable authoring and
evaluation of attribute-based policies. Attribute-based policies
are able to express more general constraints than those based
on multi-level security classes. The policy model is extensible
and allows for incremental support of progressively more
complicated constraints expressed over such graphs.

To make the evaluation of service composition policies
efficient, we further propose a method for checking policy
constraints during the service composition process, at runtime,
as the service graph is being constructed. While the approach
in [14] checks for compliance after all candidate composition
graphs have been generated, our proposed method allows for
early elimination of service instances that might violate policy
constraints, which decreases the time needed for composition
and policy checking and reduces the number of candidate
service graphs that need to be checked. Both the policy model
and the evaluation method, along with the sensor service
composition algorithm, are implemented and evaluated in
Sensor Fabric [19], a middleware framework for developing
distributed sensor network applications and services. In sum-
mary, our work makes the following contributions:

• A policy model that is able to express attribute-based
policies for sensor service composition based on dataflow
graphs.

• A new policy evaluation algorithm that checks at runtime
the service composition graph that is being constructed,
leading to a faster service composition and policy check
process.

• A novel implementation of our proposed police-aware
service composition approach in Sensor Fabric, a soft-
ware framework for sensor network application and ser-
vices. Preliminary performance evaluation results are also
presented.

The rest of this paper is structured as follows: Section II
presents background information on the sensor service model
that is assumed. Section III describes our proposed policy
model within the context of the sensor service composition
process. In Section IV, an novel method for evaluation of
policies expressed in the proposed framework is outlined.
Section V presents the design and implementation of the
policy model and evaluation framework in a prototype system
for developing sensor network applications. Using our proto-
type, we present preliminary performance evaluation results in

Section VI. Related work is outlined in Section VIII, while
Section IX concludes the paper.

II. BACKGROUND

The work in [9] introduced a model for describing sen-
sor applications that intuitively captures the aforementioned
salient characteristics and interdependencies among the indi-
vidual sensor services that comprise complete applications,
and we adopt this model for the remainder of this work.

According to [9], a sensor service si is defined by the input
data that it accepts denoted as an ordered list of typed fields,
the transformation function that it applies to its input, the
output data that it produces as an ordered list of typed fields,
as well as metadata, which provides additional information
that characterizes the service and its outputs:

si = {inputi = (inputi,1, ..., inputi,m),

outputi = (outputi,1, ..., outputi,k),

fi(inputi)→ (outputi),metadatai(t)}.

Although the inputs and outputs of a sensor service change
with time, to abbreviate the notation, we omit the t subscript,
which instead is implied.

In the above service definition, metadata carries informa-
tion about the data and the services that process it, following
the approach in [11]. Matadata may contain properties of the
data such as levels of reliability, as well as cost information
and certain characteristics of the service itself, such as energy
consumption per output data produced, processing delays,
number of other services that make use of its outputs, etc.

A composite sensor service, i.e. a service that is provided
through a suitable combination of a plurality of other, simpler
services, is represented by a service graph GS . The vertices of
a service graph represent services and directional edges denote
the potential data flows between them. The edge directed from
the vertex of service A to the vertex of service B is created
if and only if the output of A and input of B intersect in
some fields (i.e. the type of input field is same as the type of
the output field). That is, informally, A can provide some of
the data that it produces (output) for use by B through this
directional edge. Additionally, we require that each input of B
is connected to at least one output of some service. A formal
definition of the service graph is given below:

GS = {V,E} and V = {si} (one vertex per service) and

E ⊆ V xV, where ei,j =

{
1 if outputi ∩ inputj 6= ∅
0 otherwise

III. POLICY MODEL

In this section, we present a model to define specifica-
tions of policy rules. This model is used in the context of
service composition and handles constraints among directly
and indirectly interacting services in the given service graph.
In our proposed model we use the tuple representation of
a service si with its input set, metadata and output set as

in Section II. As an example, metadata can include service
node affiliation and type. Furthermore, policy rules define
service selection criteria. Thus, we extend the previously
proposed service composition model to check for policies at
the time of composition as required by service descriptions
[9]. We augment the composite sensor service model with the
following definitions that will be used for policy evaluation:

Definition III.1. Service Arguments and Variables- A service
argument refers to a service input, output, or metadata field
and is represented by the . notation after the service name.
A variable argument is a service argument where the service
name is replaced by a term of the form V[i], where i is a
positive integer. We call V[i] a service variable.

Example III.1. V [1] is a service variable that refers to any
service. V [1].ID is a variable argument that refers to any
service with the field ID.

Definition III.2. Valid argument- A service argument is valid
if that argument is defined for that service as a field.

Definition III.3. Compatible Services- Two services are com-
patible if at least one of the output fields of one service
intersects with at least one of the input fields of the other.

As a working example for the illustration of the policy
model and evaluation method that is following, consider the
composite service graph of Figure 1, which illustrates a hypo-
thetical sensor application used for “object identification and
tracking”, as originally presented in [9]. Audio measurements
from three acoustic Sensor Services, SS are collected by
an Event Detector Service, EDS, and are used to localize
the source of sound through a Triangulation Service, TS.
The results of triangulation are then transmitted to a camera
Recognition Service, RS, to identify the type of the object that
was the source of sound. The output of the camera recognition
service is finally fed to the Camera sensor Tracking Service,
CTS, to allow for the camera to tilt towards the direction of
the object.

Fig. 1. Composite service graph of the “object identification and tracking”
sensor service.

Using the above extended service model, we define policy
rules as follows:

Definition III.4. Policy Rule- A policy rule is a triplet com-
prising of [Arguments, Constraint, Service Node] where:

• Arguments are a set of service or variable arguments as
defined in III.1.

• Constraints are equality or inequality conditions involv-
ing arguments that refer to metadata fields or constants.

• Service node is a service or a service variable.

Given a policy rule, an instance of that rule is the policy
rule that results after replacing every service variable with the
name of a service. An instance of a policy rule is valid if all
the arguments in the instance are valid.

Example III.2. Given a policy rule of [V [1], V [1].ID =
US, V [1]], an instance of the policy rule is [SS1, SS1.ID =
US, SS1]. Another instance is [CTS,CTS.ID = US,CTS],
etc. This policy define a rule that only adds services that are
US affiliated.

Example III.3. V [1].D is a valid argument for services
of type SS, EDS, RS, and CTS but it is not a valid
argument for service type TS. Hence, given a policy rule of
[V [1].D, V [1].ID = US, V [1]], there is no valid instance of
the rule for service type TS.

Definition III.5. Composition path- A composition path is
a set of directed edges among compatible services. Given
a set of n services, S1, S2, Si, Si+1, ..., Sn and sequence of
n − 1 composition operation among them, a composition
path is represented as a set of pairs of compatible service
arguments, such as < S1.Oa, S2.Ib >, ..., < Si.Oc, Si+1.Id >
, ..., < Sn−1.Oe, Sn.If >, where a, b, c, d, e, f,m, n are all
integers, a, c, e <= m and b, d, f <= n, and the services
participating in the composition operation all appear on a
path in the service composition graph.

Definition III.6. Applicable Policy Instances- Given a service
composition graph and a policy instance, the instance is
applicable if:
a. the service node appears as a vertex in the service compo-
sition graph and
b. all the services mentioned in the arguments appear as
vertices in the service composition graph and
c. there are composition paths in the service composition
graph between the service node and every service mentioned
in the arguments.

If no applicable policy exists, the node is selected for service
composition as if there were no policy to be evaluated.

Definition III.7. Violation of a policy- A node in a service
composition graph violates a policy if there is an instance of
that policy that is applicable and the constraint is violated.

Table I presents examples of policies written on the
composite service graph of Figure 1 using our proposed policy
model. Policy 1, defines a rule that service node EDS1, the
event detector sensor, can access any arguments of the acoustic
sensor service tuple, SS1, if SS1 belongs to US. Policy 2
indicates access of triangulation service, TS to distance and

TABLE I
POLICY RULES

Number Arguments constraint service node
1 {SS1.ID, SS1.D, SS1.S, SS1.T} SS1.ID = US EDS1
2 {EDS1.D,EDS1.S, EDS1.T} EDS1.T = given TS
3 {RS.L,RS.T,RS.OT} RS.T = given CTS
4 {RS.L,RS.OT} RS.L = given CTS
5 V [1] V [1].type = SS ∧ V [1].ID = US ∧ V [2].type = EDS V [2]
6 {V [1], V [2]} V [1].type = SS ∧ V [2].type = EDS ∧ V [1].D = V [2].D TS
7 {V [1].ID, V [1].S, V [2].L} V [1].type = SS ∧ V [1].ID = US ∧ V [2].type = TS CTS
8 {V [1], V [2]} V [1].type = A, V [2].type = B, V [3].type! = C V [3]

signal fields of EDS1 at a given time. Policy 3 defines access
to sensor RS by camera tracking sensor, CTS, at a given time.
Policy 4 defines access to arguments of RS service from a
given location. Policy 3 and 4 taken together force RS to be
located in given location and can only be used during the
given time. Policy 5 defines a rule for EDS node type to
access arguments of acoustic sensor node type, SS, for US
affiliated acoustic sensors. Policy 6 is a policy defining a rule
for triangulation service to access event detector type sensor
and acoustic sensor when sensors are co-located. This policy
defines a constraint on more than one node. Policy 7 also refers
to global properties of the composite service graph and dictates
that camera tracking service can access acoustic sensor types
and triangulation service types, if data is from US affiliated
acoustic sensor. Lastly, policy 8 defines a rule for a service
node, such that if it depends on services of type A and B,
then it cannot involve a service of type C.

The above policy model allows us to define attribute-based
policies that state conditions about service compatibility that
are more general compared to simple multi-level security
classes, thus controlling potential flow of information in a
more generic manner. It also enables us to express policies
that are global, in the sense that they include constraints over
a collection of the nodes across the composition graph that
might not be necessarily connected. Finally, as seeing in Policy
8 above, using this model, policies that refer to separation of
responsibilities can be expressed.

IV. POLICY EVALUATION

To evaluate a service composition against the given policies,
we make use of the following definition:

Definition IV.1. Feasible composition- A composition is feasi-
ble (policy-compliant) iff there is no violation of policies with
respect to a given service composition graph.

Algorithm 1 performs policy evaluation during the compo-
sition process, for every candidate service S that is being con-
sidered for selection in the service composition graph that is
currently being constructed. It does so by determining whether
adding this candidate to the current service composition will
not violate any policy. The algorithm takes as input a node
(the candidate service instance), the policy table, as well as
the service composition graph that has been constructed up
to that point, assuming that the candidate service instance has

been added to the graph. It checks the applicable policies for
the node, i.e. entries in the policy table where the node is
either a service node or appears in the arguments. In either
case, it returns false if the policy is violated in the service
composition graph or returns true if none of the policies are
violated.

Algorithm 1 PolicyEvaluation(S, PT, G)
for each policy P in PT do

where S is the service node in P do
if P is violated in G then

return False
end if

end for
for each policy P in PT do

where S can be an argument in P do
if P is violated in G then

return False
end if

end for
return True

Algorithm 1 is used in conjuction with a service compo-
sition algorithm, more specifically when service selection is
performed. In the system and performance evaluation experi-
ments that we describe in the following sections, we employ
essentially the centralized version of the service composition
algorithm of [9].

V. SYSTEM DESIGN & IMPLEMENTATION

We develop a novel implementation of the centralized ser-
vice composition algorithm of [9] along with the policy model
and evaluation algorithm described in the previous sections
using the IBM Sensor Fabric [19] environment (Figure 2).
The Sensor Fabric is a middleware architecture designed to
simplify the development and operation of sensor network
applications and services by automating tasks such as sensor
node discovery, connection and management. It follows a Ser-
vice Oriented Architecture (SOA) approach to sensor network
development and provides a two-way messaging bus along
with a set of middleware services for transparent handling of
connectivity and routing among sensor nodes. Service descrip-
tions, the composite service model as described in Section II,
as well as infrastructure information about the Fabric are

stored in the Fabric Registry (Figure 2), a distributed, federated
database [1] whose instances are attached to each Fabric node.

The centralized service composition capability of [9] was
implemented as a “Fablet” service in the Fabric. A Fablet
is a software plug-in running within the Fabric middleware,
implementing a container abstraction through which the Fabric
can be extended with new, user-defined sensor services. Fablets
are event-driven, and apply processing logic as they receive
incoming messages. The service composition fablet obtains the
component service descriptions from the Fabric registry and
runs the policy-enabled composition algorithm once it receives
an appropriate “trigger” message from the sensor node’s
management module. A Policy Enforcement Point (PEP) that
is implemented in the service composition fablet enforces the
results of policies that are evaluated by the Policy Decision
Point (PDP) that runs on the sensor node, as per Algorithm 1.
These policies are obtained by the PDP from the policy
repository (Figure 2), which may be either local, remote or
even distributed [1]. The policy repository allows for dynamic
modifications of the set of policies during the operation of
the system. Once the (local) service composition process is
completed, the composite service graph is committed back to
the Fabric registry, for the sensor network management module
to “re-wire” the service connectivity by enabling the selected
services instances and setting up routing appropriately.

A runtime model for writing policies applicable to the
service composition process (and evaluated by the PDP in
the sensor fabric node as in Figure 2) was developed using
the Policy Management Library (PML) framework [12], a
Java-based framework for analysis, negotiation, distribution
and evaluation of policies using the standards-based CIM-
SPL [8] policy language. The runtime model represents a
dynamic instance of the composite service graph and provides
Java instance classes that describe the entities of service
graphs such as nodes (i.e. service instances) and edges (i.e.
connections among service instances), following the service
model described in Section II. In the runtime model, a number
of standard graph-based functions can be implemented, that
compute certain characteristics of the composite service graph
such as connectivity, path length, diameter, etc. Policies in SPL
can make use of such methods implemented in the runtime
classes that represent the service graph entities. We also make
use of policy-attributes that are supported by PML, to select
the subset of policies to be evaluated that are applicable to a
given composite service subgraph, avoiding evaluation of all
policies that might be stored in our policy repository.

As nodes are composed, the runtime model is updated with
the new service instances (nodes) and connections that are
selected by the service composition algorithm. This allows
the evaluation of global policies that are applicable to the
whole graph, and not just the current service node that is
being composed. It also provides flexibility of executing policy
evaluation in an incremental fashion, during the composition
process, as well as after the service graph is fully composed.
This distinguishes our approach from other recent proposals
for policy-aware service composition such as [14], which

assume availability of the fully composed composite service
graph before evaluating any policies. Furthermore, it allows for
early elimination of service instances that are not compliant
with pre-specified policies. Upon completion of service com-
position, policies that require the full graph to be evaluated
can now be checked. In the following section, we evaluate
through experiments the additional overhead introduced by the
new policy checking.

!"

Sensor
Fabric
Node

Sensor
Fabric
Node

Sensor
Fabric
Node

Sensor Fabric Node #$%&'(""
)*+',-&."

Fablet - 1

Service Composition
Fablet

Policy
Decision

Point (PDP)

PEP*

Fablet - n
////"

0*&1'(*"
23453,'637"

839'('*,"

:"8;8"<"839'(.";7=3&(*4*7-"83'7-"

>7(34'7+" ?@-+3'7+"

0*&1'(*"
A*,(&'5637,"

Message Plugin

Fig. 2. Design of policy-enabled service composition in a sensor network
middleware infrastructure (Sensor Fabric)

VI. EVALUATION

Using the prototype system that we developed for policy-
aware service composition in the Sensor Fabric, we conduct
preliminary experiments to evaluate the performance of our
approach. We seek to gain initial insights into the following
two questions: (a) how much does policy checking contribute
to a slow down in completing the service composition process
compared to the baseline (i.e. without policies)? (b) how much
does the composition cost of services increase as we limit the
available options for service selection via constraints during
the the composition process? Both questions are important in
the context of sensor networks; on one hand, the dynamics
of the sensor environment call for frequent re-compositions,
which could be delayed due to the extra policy checking that
is introduced. On the other hand, as sensor network resources
are limited, we’re interested in keeping the communication and
processing costs of the composite service as low as possible,
a task that depends on the availability of multiple services
instances.

Experimental setup: we develop a utility application that
is able to generate composite service graphs (i.e. descriptions
of service instances and how they can be inter-connected with
one another) of arbitrary size in the Sensor Fabric. The service
graphs are laid out in a grid form that consists of N service
levels with M services per level. The M services of the first
(top) level in the grid represent the sink services, which are
used as the user-requests to be automatically composed and
which produce no outputs. The M service instances of the
bottom level N are considered source services, which produce
only outputs but have no inputs themselves. All other services

of the intermediate levels have a random number of inputs
and outputs, each assigned a random data type. For all service
levels, outputs of services of level i may provide data to the
inputs of services of level (i−1) if their respective data types
match. The composite-service generator utility guarantees that
only inputs and outputs of services of adjacent levels can
be “connected” with one another, namely that they share
data type. Additionally, the generator guarantees that there is
always at least one service instance of level i whose output
can provide data to an input a service of level (i− 1). Thus,
a composite service graph for all user-requests (sinks) of the
first service level always exists, with a “depth” of N .

For our experiments, we generate a 6 × 6 grid of service
instances, with a maximum of 4 inputs and 3 outputs per
service instance (randomly chosen), whose cost represents
both processing and communication cost and is randomly
chosen between 0 and 50. The types of the inputs and outputs
of the services in the grid are randomly chosen from a set of
4 different types, so as to guarantee rich connectivity among
the services of adjacent levels. The policies that we use for
evaluation in our experiments are simple: each policy refers
to an attribute of a single service instance in the grid, and can
evaluate to true or false. Also, a single Sensor Fabric node
stores all the service descriptions and their interconnections
as generated by the composite service generator. This basic
experimental scenario was followed deliberately: we seek
to establish the baseline performance of runtime overhead
that policy evaluation introduces to the service composition
process, as well as to the cost of the composite service graph.
Our on-going work includes more elaborate experiments,
which include policies that refer to properties of the composite
service graph, as well as topologies of multiple Sensor Fabric
instances deployed across multiple machines.

Results: Figure 3 shows results of execution time (y-axis)
required for service composition with policy evaluations, for
different number of policies (x-axis) deployed in the service
grid. Results are shown for different failure rates of the policies
that have been deployed. Failed policies are those that are
violoated and thus do not allow the selection of the node that
they refer to. For each data point, results are averaged over
three runs. As can be seen from the figure, there is an increase
in the time that is needed to perform service composition as
we increase the number of policies that need to be evaluated.
More specifically, one can observe a linear trend, which is
attributed to the fact that each policy that is evaluated refers
to an attribute of a single service instance. In future work, we
will evaluate the increase in execution time when we include
policies that the evaluation depends on graph properties of the
composite service (for example, the path-length among two
service instances).

Figure 4 plots the total cost (y-axis) of the final composite
service that has been generated by the service composition
algorithm, as a function of the number of policies (x-axis)
that the composition algorithm has to check. Results are again
shown for various failure rates of policies, with each data point
representing the average of three runs. As it is shown in the

0.00	

1.00	

2.00	

3.00	

4.00	

5.00	

6.00	

7.00	

8.00	

0	 5	 10	 15	 20	 25	 30	 35	 40	 45	 50	

Se
rv
ic
e	
Co

m
po

si
-o

n	
Ex
ec
u-

on
	 T
im

e	
(s
ec
s)
	

#	 of	 policies	 evaluated	

Service	 composi-on	 execu-on	 -me	 vs.	 number	 of	 policies	 evaluated	 for	 different	
failure	 rates	 of	 policies	

	 100%	 of	 policies	 fail	
75%	 of	 policies	 fail	
50%	 of	 policies	 fail	
25%	 of	 policies	 fail	
0%	 of	 policies	 fail	

Fig. 3. Time to complete sensor service composition with policy checking
for different number of policies evaluated, for different percentages of policy
violations (failure).

figure, an increase in the number of policies that might fail
leads to an increase in the cost of the composite service that
the algorithm synthesizes. This is due to the fact that, as we
introduce policies that fail (i.e. are violated), the service nodes
that are referenced by them are excluded from being selected
for composition. Consequently, the composition algorithm is
forced to choose an alternative service instance that might not
be as economical as one that could have been chosen if a
policy that referred to it had not failed. This is also the reason
for which, when there is a large number of policies that fail,
composition of a given request might not even be feasible
at all. This is also observed in Figure 4 as certain data points
(particularly for high failure rates) are completely missing; the
service composition run completely failed in that case and did
not manage to generate a valid composite service graph.

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

0	 5	 10	 15	 20	 25	 30	 35	 40	 45	 50	

Co
m
po

si
te
	 S
er
vi
ce
	 C
os
t	

#	 of	 policies	 evaluated	

Composite	 service	 cost	 vs.	 number	 of	 policies	 evaluated	 for	 different	 	
failure	 rates	 of	 policies	 	

	 100%	 of	 policies	 fail	

75%	 of	 policies	 fail	

50%	 of	 policies	 fail	

25%	 of	 policies	 fail	

0%	 of	 policies	 fail	

Fig. 4. Composite service cost produced with policy-aware service compo-
sition with different number of policies evaluated, for various percentages of
policies evaluating to false (failure).

VII. DISCUSSION

The early experience gained from designing and develop-
ing the policy-aware sensor service composition framework
showed that our approach is viable and promising in evaluating
attribute-based policies. However, few issues remain to be
resolved and are the subject of our on-going work: first, while
a more generic set of policies can now be expressed and
evaluated over generic service graphs, there are still certain
constraints that can be checked only after the composition
process is over. For example, a constraint such as “include at
minimum 3 instances of service A in the composite service
graph” cannot be evaluated in an incremental fashion with the
current approach and can only be checked post-composition. In
general, while our current system allows for the evaluation of
constraints that include the use of certain aggregation functions
such as maximum and average, a more thorough analysis that
includes this feature is needed.

Second, the current service composition process considers
service instances to include in the composite service graph
only if they pass the policy checks that are applicable to them
and skips those that fail. However, one can improve the service
selection process by making use of the fact that policies have
failed so as to guide the selection of the next service instance
to be considered in a more targeted manner, as opposed to the
current blind iteration of the candidate service instance set.

Last, while the evaluation of our system so far has tried
to establish the simple, baseline performance with policies
that refer to individual service instances, a more realistic
experiment scenario would include more complicated policies
that are applicable to properties of the complete composite
service graph. This would also allow one to assess the impact
of policy checking in the overall service composition execution
time in the case where graph properties have to be computed
so as to then check constraints. We place this item high on
our priority list for further investigation.

VIII. RELATED WORK

Research community working on distributed computing and
service oriented computing (SOA) has widely studied service
composition which has evolved as work flow representation
and business process. The access control and policy driven
mechanisms for web-services are well-studied and researchers
have proposed promising mechanisms. However, unlike web
services, service composition in WSNs is an emerging area
and especially policy driven dynamic service composition is
yet to be explored. The protocols devised for web service
composition in SOA are computationally sound for processor
and memory rich systems, but are not readily applicable to
resource constrained WSNs environment. Here we present a
short review of the work done on secure and policy based
web-service composition.

A broker based architecture to compose services is proposed
in [3]. To address security requirements (namely security
capabilities) of the services, these capabilities are validated
before final composition. Moreover they assume the existence
of one or more trusted entities which can make sure that the

services are checked against the constraints before final com-
position is performed. In [4], the authors propose a security
wrapper based approach to ensure that the security policies
are respected in service composition. Their approach requires
that the services taking part in composition to use semantically
equivalent construction. The security wrapper around service
is automatically generated from policies and it implements
checks and cryptographic operations needed to ensure the
feasibility of composition.

In [14], the authors propose mechanism for information
flow control in service chains. The authors propose a three-
phase mechanism to improve the efficiency of composition by
filtering out candidate services which are unlikely to satisfy
composition constraints. Like some other approaches, the au-
thors in [14] also propose protocol which uses remote services
for checking and validation of policies. After the appropriate
services are found (i.e., those that adhere to requirements as
well as to the flow control policies of the requester), the service
composer builds up the service chains.

A negotiation based technique for secure service composi-
tion is proposed in [10]. The authors introduce framework for
security-aware service composition which establishes contracts
between various services by negotiating security properties.
In their approach, the authors represent security properties
and their combinations in a tree-like structure that has nodes
divided into groups based on preferences. Iterative bi-lateral
negotiations are performed to come up with agreed contract
for service composition. This contract is then validated against
low-level security requirements to ensure secure service com-
position.

An access control mechanism for web service composition
is proposed in [21]. In the proposed mechanism, any request
for service invocation is first validated against a policy file
maintained for each service. Moreover, this paper proposes
a composite method in which all policy files related to
elementary web services are combined into an integrated file
based on which the access control mechanism is defined for
composition. In [5] and [6], an ontology based approach
for policy based web service composition is proposed. The
authors achieve service composition by forming service flow
for which rules are stored in knowledge database and services
are represented as topic ontology. Policies are implemented
in form of syntactic and semantic rules. In [16], the authors
propose an access mechanism for regulating access to data
in the distributed databases in a way similar to database
privileges mechanism that is used in relational databases. In
their approach, the authors test the access and authorization
of queries that are run on distributed databases. Queries
attempting to access unauthorized data are suppressed by the
system from proceeding.

A policy driven approach to transform business policies to
low-level service policies is proposed in [17]. The service
policies are maintained in a centralized repository from where
they are distributed to related local repositories. The authors
distinguish between group level policies and service level
policies both of which are enforced at run-time. In [15] the

authors propose a Hierarchical Task Network (HTN) based
approach for web service composition in which a task network
hierarchically abstracts the service composition. The authors
use OWL ontologies to describe composition template which
is then converted to HTNs. A rule-based constraint policy
language is suggested in [18] for providing enforcement of
policies on top of the composition graph. The basic idea pre-
sented in the paper is to convert policies and the composition
to an ontology. Such an approach requires that the system
performs the full composition first and then checks it against
policies, which can degrade the system performance. A UML
based approach to syntactically define service composition and
policies is suggested in [13]. It uses activity diagrams and
other transformation techniques to address issue of service
composition.

IX. CONCLUSION

Due to their distributed method of deployment, sensor
network applications naturally fit a composition paradigm that
interconnects multiple, light-weight aggregation and transfor-
mation data processing services that run on individual sensor
nodes with one another, to develop a complete data collection
and analysis application. As with any networked application,
it is subject to resource management and security constraints
that are expressed through policies. In this work, we propose
a policy-aware sensor service composition framework that can
automate the process of combining simple sensor services
into larger ones, while, at the same time, complying with
pre-specified policies. We also present an implementation of
our framework in the Sensor Fabric, a middleware for de-
veloping sensor network applications and present preliminary
performance evaluation results of our prototype. Our system
allows for the evaluation of attribute-based policies on service
composition graphs, signifying a departure from the traditional
focus on access control policies of prior proposals. Our on-
going work is focused on supporting aggregation functions for
the evaluation of policy constraints, as well as conducting a
more thorough performance evaluation of our initial prototype,
on a real sensor testbed.

X. ACKNOWLEDGMENT

This research was sponsored by the U.S. Army Research
Laboratory (ARL) and the U.K. Ministry of Defence and was
accomplished under Agreement Number W911NF−06−3−
0001. The views and conclusions contained in this document
are those of the author(s) and should not be interpreted as
representing the official policies, either expressed or implied,
of the U.S. ARL, the U.S. Government, the U.K. Ministry of
Defence or the U.K. Government. The U.S. and U.K. Govern-
ments are authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation
hereon.

REFERENCES

[1] G. Bent, P. Dantressangle, D. Vyvyan, A. Mowshowitz, and V. Mitsou.
A dynamic distributed federated database. In In Proc. of ACITA, Sep
2008.

[2] E. Bertino, A. Squicciarini, and D. Mevi. A fine-grained access control
model for web services. In In Proc. of Services Computing Conference
(SCC), 2004.

[3] B. Carminati, E. Ferrari, and P. Hung. Security conscious web service
composition. In Web Services, 2006. ICWS’06. International Conference
on, pages 489–496. IEEE, 2006.

[4] Y. Chevalier, M. Mekki, and M. Rusinowitch. Automatic composition of
services with security policies. In Services-Part I, 2008. IEEE Congress
on, pages 529–537. IEEE, 2008.

[5] S. Chun, V. Atluri, and N. Adam. Policy-based web service composition.
In Research Issues on Data Engineering: Web Services for e-Commerce
and e-Government Applications, 2004. Proceedings. 14th International
Workshop on, pages 85–92. IEEE, 2004.

[6] S. Chun, V. Atluri, and N. Adam. Using semantics for policy-based web
service composition. Distributed and Parallel Databases, 18(1):37–64,
2005.

[7] E. Damiani, S. D. C. di Vimercati, S. Paraboschi, and P. Samarai. Fine
grained access control for SOAP e-services. In In Proc. of International
Conference of Web Services (ICWS), 2001.

[8] DMTF. Common Information Model. http://dmtf.org/standards/cim.
[9] S. Geyik, B. Szymanski, P. Zerfos, and D. Verma. Dynamic composition

of services in sensor networks. IEEE International conference on service
computing SCC, pages 242–249, 2010.

[10] J. Han, R. Kowalczyk, and K. Khan. Security-oriented service composi-
tion and evolution. In Software Engineering Conference, 2006. APSEC
2006. 13th Asia Pacific, pages 71–78. IEEE, 2006.

[11] J. Ibbotson, S. Chapman, and B. K. Szymanski. The case for an agile
SOA. First Annual Conference of the International Alliance, 2007.

[12] IBM Research. Policy Management Library. https://www.ibm.
com/developerworks/community/groups/service/html/communityview?
communityUuid=ed556565-1d91-4289-94ae-213df1340350.

[13] J. Rossebø and R. Runde. Specifying service composition using uml 2.
x and composition policies. Model Driven Engineering Languages and
Systems, pages 520–536, 2008.

[14] W. She, I.-L. Yen, B. Thuraisingham, and E. Bertino. Policy-driven
service composition with information flow control. IEEE International
Conference on Web Services, 2010.

[15] S. Sohrabi and S. McIlraith. Optimizing web service composition while
enforcing regulations. The Semantic Web-ISWC 2009, pages 601–617,
2009.

[16] S. Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati.
Controlled information sharing in collaborative distributed query pro-
cessing. In Distributed Computing Systems, 2008. ICDCS’08. The 28th
International Conference on, pages 303–310. IEEE, 2008.

[17] S. Wang and M. Capretz. A policy driven approach for service-oriented
business rule management. In Industrial Informatics, 2007 5th IEEE
International Conference on, volume 2, pages 713–718. IEEE, 2007.

[18] W. Wei and T. Yu. The design and enforcement of a rule-based
constraint policy language for service composition. In Social Computing
(SocialCom), 2010 IEEE Second International Conference on, pages
873–880. IEEE, 2010.

[19] J. Wright, C. Gibson, F. Bergamaschi, K. Marcus, R. Pressley, G. Verma,
and G. Whipps. A dynamic infrastructure for interconnecting disparate
ISR/ISTAR assets (the ITA Sensor Fabric). IEEE/ISIF Fusion Confer-
ence, 2009.

[20] N. Xu. A survey of sensor network applications. IEEE Communications
Magazine, 40, 2002.

[21] J. Zhu, Y. Zhou, and W. Tong. Access control on the composition of
web services. In Next Generation Web Services Practices, 2006. NWeSP
2006. International Conference on, pages 89–93. IEEE, 2006.

