N
N

N

HAL

open science

Alignment and Change Propagation between Business
Processes and Service-Oriented Architectures

Karim Dahman, Francois Charoy, Claude Godart

» To cite this version:

Karim Dahman, Francois Charoy, Claude Godart. Alignment and Change Propagation between Busi-
ness Processes and Service-Oriented Architectures. 10th International Conference on Services Com-
puting, Andrzej M Goscinski, Ephraim Feig, Jun 2013, Santa Clara, United States.

10.1109/SCC.2013.101 . hal-00870721

HAL Id: hal-00870721
https://inria.hal.science/hal-00870721
Submitted on 7 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

pp-168-175,

https://inria.hal.science/hal-00870721
https://hal.archives-ouvertes.fr

Alignment and Change Propagation
between Business Processes
and Service-Oriented Architectures

Karim Dahman, Francois Charoy, Claude Godart
Université de Lorraine - LORIA

BP 239, 54506 Vandoeuvre-les-Nancy Cedex, France
{dahman| charagy, godar@Iloria.fr

Abstract—Increasing the productivity of the Service-Oriented To achieve that goal, we propose an incremental model syn-
Software Engineering through a model-driven methodology eeds chronization framework. Following the generative apploac
to go beyond business services modeling and the automatiori o of our previous work[[5], we enforce a conceptual mapping

transforming models that adhere to the SOA style. Commonly, bet busi del and . t
the business analysts focus on modeling business procesSé®en, etween a business process model and a service-componen

IT developers implement software architectures that are atomat- ~ configuration model. We automate the change forward propa-
ically generated from the process models. In this paper we ik gation to translate consistently an update on the procedgimo

forward to maintaining the alignment between business seiiees into the service model when a transformation was previously
and their supporting IT assets when business settings evalv oyacyted. We base our work on the formal foundations of

We introduce an approach for an incremental synchronizatio . .
between business process models and component configuratio graph rewritings[[6],[[7] to preserve the model consistekidy

models that follow SOA architectural principles. We automae the have developed a proof-of-concepts prototype to validate o
change forward propagation by enforcing in-place translatons of method of the consistency management between the models.
the updates on the models in order to preserve their consistey. The paper is organized as follows. In Sectibh I, we
Rather than executing the entire development process again g stain the usage of two domain-specific languages for our
software architects can assess the necessity of propagatidesign . o
decisions to the implementation level by adapting the depied MDE approach to_brldge the gap between cross-organizationa
IT assets according to the business evolutions. processes modeling and SOA development. Se¢fidn IlI for-
Index Terms—Business Process, SOC, MDE, SOA Alignment mally describes our framework and Sectlod IV presents our
incremental model synchronization principles. In Secfidn
l. INTRODUCTION we demonstrate a proof-of-concept implementation of those
Maintaining the alignment between evolving business solprinciples with a discussion on their theoretical and exper
tions and their supporting IT capabilities is essentialéoter- imental evaluations. Finally, we situate our work with the
prise information systems][1]. Service-Oriented Commyfff] related research in SectibnlVI, and we present future plassib
has emerged as an approach for modeling, building and martensions in Sectidn MII.
aging software applications on the basis of Service-Oeignt
Architecture [2] (SOA). Software architectures that agher Il. BRIDGING THE GAP BETWEENPROCESSES ANDSOA
to this style are implemented as loosely-coupled softwareln this section, we present an example (inspired friom [8]) of
components that are composed in configurations and linkedd$upply Networkvhich illustrates some situations that occur
connectors. Those service-component realize businegsegr when software architects have to propagate business groces
at the implementation level by enacting process tasks. Theyolutions to the supporting service-component logic.
expose their functionalities as business services, ansutoe To model the business logi¢1[3] of each partner in the
other services in an uniform way][3]. network we use the Business Process Model and Notation
Business-Driven Development experience shows that (i8} (BPMN) standard. It refers to a service orchestratioh [2
ing Model-Driven Engineering [4] (MDE) enables to alignas a set ofparticipants with processesn a collaboration
software architectures with the business processes. @urBPMN combines graphical and textual annotations to describ
the initial development activities, IT developers can dipi business process models with cross-domain capabilityrghar
instantiate software architectures from business presasih that are decoupled from their supporting software architec
an automated model transformation. However, Bhisiness-IT tures. The BPMN diagrars in Figure[1 shows business ser-
alignmentcan disappear when business requirements evoliee interactions between the collaborating partn&tgoplier
incrementally. Here, we want to enable the behaviour@ustomer Shipperand Invoicer). It specifies the behavioural
and architectural evolutions of business processes thallyim(flows betweentaskg and architectural donversation links
structural adaptations. We support the adaptation of ervibetweenparticipanty views of the business partners. The
component implementations when the business processesigfi@mation exchanges are modeled esnversationsthat
modified to maintain their alignment. capture service contracts and interactions. The dottedrbex

mailto:dahman@loria.fr
mailto:charoy@loria.fr
mailto:godart@loria.fr

describes the design decisions made by the business analysThe SCA wire is conceptually similar to the BPMN con-
for the Ordering service (betweerSupplierand Customey versation construct. It represents activation logicbetween

with a send-receive interaction pattein [9]. It is captubgca two components and means an explicit message exchange.
single BPMN conversation. We consider that the core BPMNowever, there is no mean of control flow between SCA
constructs subset, drawn in the legend of Fiduire 1, is seffici services and references: each of them represents theiafirect
to capture the most important service-oriented designcaspeof the first message exchanged between two components.
Therefore, conversations between participantsﬂirap wires.

% T— C— A BPMN task maps into SCA service or reference, depending

(= d) (& o)
’ Order Invoice i
i]
i 1T T :

£ Request Schedule when it sends the first or the last message of the collabosatio

2]

Customer

°

T

<] . . . e

Eg 1 SO FC% brdering " snipping For this purpose, we add an expliditdex for each task_

= = J) (= ! T Reques O (@ in each process by extending the BPMN standard notation

[G q Sh

a 4 3 ! e ipping . . .)

S y o tnvoice g Shipping Schedule with the two icons:init and fin. The iconinit (resp. fin

® || 5 1 Schedule

]lE) ' | indicates annitial (resp., afinal) task that sends or receives

z ¢ S Complete Bpmcgssj the firsF (resp. Ia_st) message in a service _in_t(_araction_ noatte

e Calculation Calculation Invoce [9]. By introspecting process structures, an initial reedask

] A i) is mapped to a service. Accordingly, a first send task maps

= - i T —) : i

3| suppiy &~ [Prequest ‘j_(’zsmp_pmg [‘ Final °}O to a reference. After the first receive task (resp., firstiserv
Weeris RS Calouaton Frice Price @ task), a process can contain a range of other send tasks, (resp

< > P rrm——— receive tasks) that interact with the same participant.sThu

8 S35 Ordering i . . .

SE 3 | final send task (resp., receive task) maps to a callback shat i

£4= ,feh;gv%'gki i n associated with the first mapped reference (resp., service)

[i i . n N .
— The SCA composites can be deployed in a runtime engine
egen

2 Collboraton (2 JSendTask | ppy COSPA MEBAING (= Gomponte that provide binding mechanisms and maintain the neugralit

2 [IProcesParticipant (&) Receive Task| Collaboration composite| @ Comporent > hetween component composition logic and their implementa-

g O Comversation O Start Participant Component| [Implementation & . . N

8 & cuown O e Process mplementation| 1 Reeence 3 tiON code. Each component contains an implementatioh [10]

§ y : n Send Task Reference or Callback|) ~Service F . h . A i

g = ConversaionLink O nital ReceiveTask SemvicsorCalback| o caback & Of Service orchestration process with a suited programming

— Sequence Flow @ final Conversation Wire | e Wire

language. BPMN processes map into SCA implementations.
Fig. 1. BPMN-to-SCA model transformation example. In this sense, BPMN processes can be transfdfringd other
process execution languages, or even directly enactedawith
In [5], we provided a development scenario to transforBPMN-compliant workflow engine.
a source BPMN collaboration model into a target service- o])
component configuration model described using the Servide- Maintaining alignment between Business Process and SOA
Component Architecture standafd [10] (SCA). SCA provides Now, we consider that business analysts need to change
a model for composing applications that embraces SOA pritive Supply Networkby separating the services concerns of
ciples. We refer to the program executions that impleme@idering and Invoicing as a best way to deal with their
the BPMN-to-SCA conceptual mapping (functional relatiobusiness requirements. They make a design decision to split
among BPMN and SCA constructs [11]) as model transfoihe Ordering service (modeled in thas-is source modek
mations. For examples generates the modebf Figure[1. A of Figure[1). As depicted in (théo-be source modely of
simplified conceptual mapping is shown in the figure’s legenBigure[2, they updats with two separate conversations for
In order to automate model transformations, we concepisend-after-receive and receive-after-send pattéins [9].
ally map BPMN collaborations to SCA composites. Likewise, Then, software architects have to propagate this source
the BPMN participants map into SCA components. Tho®PMN model change (so-called delta) to the previously gen-
composites modularize and compose service-enabled lsssingated target SCA model of Figure[d. According to the
functionalities in a manner that is decoupled from theirleap BPMN-to-SCA conceptual mappind_[11], they must adapt
mentation code. For exampledescribes a composit&gpply the (@s-ig target modelt to a fo-be target modelt as
NetworR of four components Supplier Customey Shipper depicted in Figurd]2. The software architects have to add
Invoicer). It specifies the behaviouraflgws betweentask9, a wire (nvoicing between a service and a reference, and
their service dependencies and other related artifactehwhielete two callback. Here, change forward propagation is
specify how they are consumed and offered. Each componehéllenging since similar BPMN constructs are transformed
exposes ports, also called services. It requires otheicesridy into different SCA constructs: taskvoicemaps to a callback
means ofreferences It's configured to interact with the otherin t and to a service int’ (because of the multivalud
components througtvires When a component is implied in
bidirectional interaction patternsallbacksare defined for the *We mainly focus on the mapping of sequence and message flods, a
services and/or references (s8astomerand Supplierin the Et‘:téthuereg?giﬂ;mggggraﬁgd%aéitfg"\;ﬁisb(;\g'ggg 'Snctgplea_ngum'c data
dashed box ot). The callback of the consumer component 2ye assume well-formed and well-behaved business proci@isd&2].
(Customey is used by the providerSupplie). 3There maybe multiple SCA models for the same BPMN maddel [11].

B"‘,;;“"""'""""““"'j ,,,,,,,,,,,,,,,,,,,,,,,,,,,,, foreshadow a consistent maintenance ofBlisiness Process-
P %*(Ondep]‘[Dvice]"; g 1.[Order].[Invoice } SOAalignment and change propagation automation, we intro-
3o 3|] duce a framework which guarantees #teictural consistency
= '°"””"ﬂ#§§;§3 ‘“\Ordermgo mvalclng(_'_) ~| between our assorted domain-specific languages. We conside
§ 5 _{8 orcer <j (x' oo cj_'; 1 = > (= o] that thisincremental BPMN-to-SCA model synchronizatien
R 7 " ; § l{ Order] [Invoice }‘ a major use case for preserving tBasiness-IT alignment
7777777 ...hwhhhh___7777777 @ ‘»r—r————ﬁ—r—r————ﬂ—r#wf— 3

IIl. M ODEL SYNCHRONIZATION FRAMEWORK

Invoicing

1 This section formalizes our incremental model synchroniza

Orderng {| tion framework. We also introduce the requirements thaehav
1 to be satisfied by a tool support (so-callgghchronizerg]).

Our following explanations are based on Figlite 3. It shows

Fig. 2. BPMN and SCA model evolution use case. the relations between the models of Figlle 2.

SCA Models

mapping relations). Manual adaptations of the SCA mod g
are potentially error-prone [9]. Especially, they can ld¢ad
misalignments if they do not follow a strict roadmap and
thorough delta analysis betweas-is andto-be models [13].
Thus, enabling uncontrolled updates is problematic.
Executing a full transformation o to get another model
t.” and automatically adaptingto t.’ is possible. We can Fig. 3. Formalization of the incremental model synchrofiiza
operate an automated model difference (so-caliéy, so that
the difference and overlapping between the two model vessio The key difference between tldff-based and the incremen-
tandt,’ can be extracted. Then, we can computey adapting tal synchronization is in remembering previous transfdroma
t with the diff. However, a full transformation of (when it results. The former discards previous transformation ligsu
evolves) is not suitable since any additional informatiort i and recomputes new ones, while the latter updates them. It
is lost when applying thdiff. The elements im which are not synchronizes two models by a change propagation. It preserv
covered by the overlapping cannot be derived automaticatlye information which is not covered by the transformatiod a
in t and are thus lost. Hence, a practical approach shoudnimizes the computational effort. Formally, consideatth
not replacet by t.’, but it has to reusein order to preserve a BPMN-to-SCA model transformation is a partial function
extensions and refinements (crucial prerequisites torféisee denoted by trans : S — T that takes a source BPMN col-
MDE paradigm). Reusing previous SCA implementations fdaboration model from a set of BPMN modefsand produces
a new component composition logic and tracking the changetarget model in a set of SCA modéls Executingtrans
impact at the architectural level becomes very difficult. establishes &onsistency relatiorbetween two models which
Moreover, when enforcing diff-based model synchroniza-is denoted by C C S x T' . This relation is derived from the
tion [14], the change roadmap computation effort (to obtagpnceptual mapping between BPMN and SCA. For example,
to-bemodels fromas-isones) is proportional to the size of theconsider a BPMN modeb in .S and a SCA model in
models and not to the size of the updates. Recomputing a flllbeing transformed suctrans(s) = t. Those models are
transformation even though only a small fraction of the seurconsistentwith respect to the binary relation dst) € C.
model has been modified becomes very costly, especially wHesrthermore, given a source updaté s that alterss to
a frequent synchronization is considered. In practice,wthe s such it produces inconsistent models witdt) ¢ C,
business logic evolves with incremental and localized tgsiathe unidirectional incremental source-to-target synchraniz
that do not radically modify the BPMN model, we have tdion frameworkconsists in computing a target upddie
operate complex computations to obtain SCA models. For thiiom Uas such that the application of the both updates results
reasons we want timcrementallyadapt them. in consistent models(s’,t’) € C. It producest’ by adapting
Existing general synchronization frameworks|[15] andgrant such asUa7(t) = t'" and Uas(s) = s and establishing
formation languages [14] cannot work well for a functionahe relationC. We denote théncremental synchronization
and multivalued mapping [11], since they are intended féunction by sync:C x As — T'. The updates on the tar-
generic model transformations. First, they require users get model are obtained by directly interpreting the source
explicitly write a synchronization code to deal with each upnodel updates. We denote thigterpretation by a function
date, and on each domain-specific language. Second, mapj interp : As — P(A7) that interprets source changesiy
complexity of each change is compounded with the decisioimso a partition of target changesr.
regarding information loss or gain related to differentelev ~ To automate the incremental BPMN-to-SCA synchroniza-
of heterogeneous synchronizatiohs|[14]. Thus, what sosadstion and to be compliant with our formalization, our syn-
straightforward in theory while using a model-driven agmio, chronizer must implement@ecidablealgorithm. We consider
turns out to a very challenging endeavor in practice. That its execution (when synchronizing two models) has to

Legend

. model

— transformation
—»» synchronization
-- P interpretaion
——ae adaptation

satisfy the following criteriauniformity, validity, conformity, Given a BPMN models = (Vs, &5, Bs, Vs, Zs, Z5), and
stability, autonomy and idempotence The uniformity and a SCA modelt = (V;, &, By, Vi, Zi, Z1), We express our
validity criteria require that it must produce consistent modelswultivalued BPMN-to-SCA conceptual mapping with a partial
The conformity means that the resulting target models mustinction map : (Vs x Z,) — Y, where), denotes source
conform to the SCA metamodelThe stability means a non- types,); denotes target types afg denotes model constructs
destructive behavior on the SCA model when the BPMMdexes. We define our BPMN-to-SCA mapping relation as
model is not modified. Theautonomyand theidempotence ., ,)
mean that it must returns the same proposed modifications on €C = {(¥:4:y') € Vs x Iy x Ve | y' € map(y, i)}.
the target model when merging source models or their changesr example,(Participant;,Component)e CC means that
In practice, the synchronizer detects BPMN modeBPMN participants map into SCA components with their
changes. It translates them into SCA updates. When propa@sting constraints. Also, mapping BPMN initial send tasks
gating those updates, it creates elements in the targethf stio SCA references is given l{endTask,init,Reference)CC.
elements do not exist. It modifies elements if such elememally, we denote theonsistency relatioras a binary relation
exist but have changed, and it deletes elements otherwisetween source and target objects

Th incipl lained below.
ese principles are explained below. C = {(0,0) € (Vs x V) U (Es x &) | i €T, :

A. Abstracting Models to Graphs for Change Detection (type(0), i, type(o)) < CC}.

In order to detect BPMN model evolutions and to adaptV. AUTOMATING THE INCREMENTAL SYNCHRONIZATION

the SCA model, we relate models tabelled nested typed |n order to sustain automated synchronizations, we have
rootedﬂgraphs [7]. Those graphs provide an intuitive angyiit a synchronizer which is based on three principlesngea

general formalism to represent BPMN and SCA models. Wgetection, change impact analysis and change propagsttin.

objects and links with some structural constraints defingd _ o .
the BPMN and SCA metamodels. A node can represent afly Change Detection as Primitive Operations on Graphs
kind of model object. Edges are used to represent all kindssince we relate a model to a graph, an update on a

of associations between objects. Nesting in graphs impligipdel describes a modification on a graph structure. Model
a number of constraints for model instantiations that mus{olutions can be expressed by graph rewritings [16] and-mod
be enforced when models evolve. For this purpose, we usigd by graph productiolﬂsA production is defined through
graphs with distinguished containment edge type and s§iatagpplication rules which consist of in-place graph updales t
constraints to make model conform to metamodels. are performed with a description of positive and/or negativ
We assimilate each modelto a tu| (V,&,B8,),Z, Z) that patterns. Those conditional graph productidns [17] aremiv

includes the function:labetY U& — B, typeVUE — Y, through structural graph properties, while graph rewgsiare

source, targe — V', and index) — 7. The functions usually defined through push-out constructidns [16].
hCompared to our previous work [13], here, we investigate

express the labeling, the nesting and the typing in a gra . o

The tuple contains disjoint sets of node identifi V', edge %eterogeneous mcremental_r_nodel synchromzanqns. Agtua

identifiers € node and edae labe B . nodes and edae typesV€ have shown that conditional graph productions can be
' g ’ ge yp expressed by graph update operations in order to guarantee

Y ,indexes 7 , and a structural correctness relation to express . o
. . . e correctness of the model evolution. Now, we examine in

the nesting and associations constraints denoted by : .
more details how to express compound model updates with

Z ={(v,e,v",i) €V x E xV x T |index(v') =i A primitive operations on atomic constructs. This approdfdre
source(e) = v A target(e) = v'A finer model consistency management.
type(e) = congtype(v), type(v'))}. TABLE |
) » PRIMITIVE UPDATE OPERATIONS AND THEIR APPLICATION RULES

The function Con$y2 —)Y captures the. Ianguage-specn‘lc; Operation Precondition _ Invariant __ Postcondition
syntax as a relation between model object types according create(¢) —b —(p, %, %) +¢

to the metamodel. We use the relatighto avoid the def- ZZZ’Z’;%?L - (;z ” ‘(d’;r;v*) +(¢“ﬁ ”
inition of an additional relation to capture the conformity 404, 4, 1) (b, o, /) +é ¢, V)

relation between a model and its metamodel. For example,

we write the equalitycons(Collaboration, Participant) = Taplel] shows a complete and minimal set of four primitive

Contain to mean that BPMN collaborations contain paryngate operations and their corresponding applicatioesrul
ticipants.We writecons(Wire, Reference) = Source and Thig set is complete because we can indicate all the stalctur
cons(Wire, Service) = Target to express that SCA wires yqification in a model assimilated to a graph. It is also
can be connected to references or services.

))) 6They are based on the concept of gluing graphs and graph isorph
4Which offers the vocabulary for formulating reasonings op 6f models. [16]. They describe how to modify a right-hand graph to peela related
5Graph transformations are proven in[16] for all categongrphs. left-hand graph with forward transformatioris [7].

minimal because we can not replace operations with each otheln order to reduce the checking complexity and to comply
to express the same update. For example, assigning the twyith the BPMN and SCA modeling tools, we define atomic
Taskand the labeDrderto an existing object with an identifier combined graph update operations as well-formed sequences
0 is given byupdate (0, type, Task), update(6, label, Order). — of primitive operations. Tablds]Il gives a non-exhaustise
To create an edge with identifier and assign a target nodeof combinations. Combining operations provides enhanced
6 to this edge, we usereate(w), update(w,target,d). We semantics to express much meaningful updates [17], [13]. We
also define the opposite operations for deleting an objeat fr state that two primitive operations in a sequence are distin
a graph and undoing a property of an object. The operatidrthey affect independent model objects [15],[20]. It mgan
updatecan be considered as redo operation foruhea that they can commute in the sequence without changing the
Our application rules include finite negative or positiveesult. The syntactic correctness of a sequence can beatheck
application conditions that must be satisfied by each grafflthe assertions imposed by an operation in the sequence do
rewriting. Before applying an operation, it is necessary toot contradict assertions of the earlier operations asngine
verify invariants and verify that thepreconditionis fulfilled Table[dl. An update sequend®; }1<;<., is well-formefl
in the model that should be updated. Thereafter, the existen
of positive or negative patterns has to be checked. If they ar
verified, invariants have to be checked and then updates can
be applied andpostconditionsverified. For example, before This definition ensures that the syntactic correctness is
applying the operationdd(¢), we must avoid that an objectalso maintained for a compound update. For example, the
with the same identifiep already exists. The effect of thissequencgupdate(d, label, Order), destroy(0)} is ill-formed
operation is that) is added to the graph. Those rules allow thecause assertion(é x, «) in the invariants ofdestroy(6)
avoid structural conflicts by detecting contradictionsasn contradicts the assertion(é; label, Order) in the postcondi-
assertions. Tablelll presents the assertions used in Mable Ition of update(8, label, Order). Actually, we have to remove

if Vo, € (dk.preUdg.inv) |2 <k <nAVay, €
(0;.inv U dp.pos) | I < k @ «y; does not contradicty;,,.

TABLE Il all object properties before to destroy it.

LIST OF ASSERTIONS AND THEIR CONTRADICTIONS Assuming that a modeling session starts with a structurally
Assertion Notation Contradicts correct model which conforms to his metamodel, the regultin
Object ¢ exists b
Object s hasy as a value fop: b)) graph of an update should be a structurally correct model
Object ¢ has no properties (@, %,%) +(d, v that conforms to the same metamodel. In order to check the

conformity of the resulting model after applying a compound

The assertions are well established in the software coHRdate, we verify operation sequences towards the stalctur

munity as a formal way to specify the applications rulecorrectness relation (i.eZ in the previous section). For

for conditional graph productions [18]. In order to deserib®*@mPple, consider that adding a receive task node to the
contradicting primitive operations, they are attachedrpy Model's in Figure[1 is expressed witaddNode(7, Invoice,
productions operation rather than to graphs — we considafCceveTask, 3, finThis addition preserves the BPMN model
that models are related by morphisms that are totally lab§ffuctural correctness since by construction the operatio
preserving, type-preserving [17] and root-preservifig jie 2ddNode(v,b,y,v',ljin Table[l verifies that(v.e,v',)e Zi,
distinguish between positive and negative assertionsicess WNeree is the edge inserted for nestingn v.

the presence or the absence of a structurgl property. T@eChange Impact Analysis as Propagating Updates
negative assertions are denoted by a minus sign and mean the
opposite of the positive assertions. We use wild-card ieger ~ In the previous section, we have defined the necessary
to express transitive constraints. For example, «, x) means Properties to guarantee correct update applications om efac
that in order to assign propertiesdove must apply ampdate the BPMN and SCA models. In this section, we introduce
operation. Also, to apply anndoon a property: with a value the foundations for our consistency management approach.

v, +(¢, 11, v) imposes that this property is already assigned t4amely, we propose a method for a change impact analysis
. Thus, we can not replaagodatewith unda which ensures that compound operations are propagated form

BPMN to SCA models in a consistent manner.
B. Change Detection as Compound Operation Sequences An update operatio € Uas on the source model is

The business analysts can edit a BPMN model in ma pagated, if it forces a synchronization on the targetehod
places during a modeling session. The structural correstnél4]. It has to establish the consistency relation between
checking of model updates is complex since it relates t8e source model and the target model such that it pre-
the combinatorial explosion of the graph patterns [19]. Weerves(Uas(s),Uaz (1)) € C. Therefore, our synchronizer
decompose the model updates into primitive operations BfPduces update operatioié& 7 on the target model such
atomic constructs. We can record their changes on a mol#@t Uar = interp(5). Otherwise,j is non-propagating A
s as a finite sequence of primitive operations that result ins§mplified algorithm that provides the interpretation ftioo
models = Uas(s) such as the update interp is listed in Algorithm[1.

Uas : {0; : S — S|4, is a graph production}1<;<,, € As. “pre, postandinv represent the assertion sets shown in TERle III.

TABLE Il
COMBINATIONS OF PRIMITIVE UPDATE OPERATIONS

Compound Operation
addNode(v,b,y,v',i)

Description
Adding a nodev of typey nested in node’ with a

label b and an index
Inserting an edge with a labelb and a typey

between nodes andVv’
Deleting an existing node from nodeVv’

Updating the index of the nodefrom i to i’
Updating the source of the edggrom v to v’

insertEdge(e,b,y,v,v’)

dropNode(v,b,y,v,i)

setindex(v,i,i")
setSource(e,v,V")

Primitive Operations
add(v), update(v,label,b), update(v,type,y), updatelex,i), add(e),
update(e,t)g)e,Contain), update(e,source,V’), upddte(et,v)

add(e), update(e,label,b), update(e,type,y), updaejece,v), up-
date(e,target,v’)
undo(e,type,Contain), undo(e,source,V’), undo(e, tave

undo(v,index,i), undo(v,type,y), undo(v,label,b), gge), destroy(v)
undo(v,index,i), update(v,index,i’)
undo(e,source,v), update(e,source,Vv’)

The algorithm is written with inference rules of the formby the source update. With the correspondence identifidtein t
if premised then conclusions The premisesrefer to op- mapping relatiorCC, it computes in-place operations on the
erations and conditions on the source BPMN model, amarget with values from the source. Due to our partial magpin
conclusiongefers to the propagating operations on the targegbme updates on the source model — which involve BPMN
model. As stated in Sectidnllll, our incremental synchreniztypes without corresponding SCA types — are not propagated
takes as parameters an update on the source ribdek As to the target model. For example, the BPMN constructs such
(Uas(s) = §) and two consistent models su¢h t) € C. as gateways have no counterparts in the SCA space because
Rather than executing the entire novel transformationnit ethey are not relevant for the SCA configuration topology.§,hu
forces an in-place synchronization by interpretiiigs into a when an operation is non-propagating, the working mengory
target updatd/ar € A7 (' = Ua7(t)) to gett’ consistent is updated with a tupl€*,) to mean that the BPMN objects
with s’ such(s, t') € C holds. It interpretd/as into Ua7 and have no counterparts in SCA.
then propagates them to

Operation sequence for s' [
setindex (7, fin, init) (7,5)

Operation sequence for t'

dropNode (5, Invoice, Service, 4, fin)
addNode(5, Invoice, Service, 2, init)
dropNode (9, Invoice, Reference, 8, fin)
addNode (9, Invoice, Reference, 6, init)
addNode (25, Invoicing, Conversation, 1, 4) (25,13) addNode (13, Invoicing, Wire, 1, 4)
setSource (23, 20, 25) (23,14) insertEdge (14, C3, WireSource, 13, 9)
setSource (24, 20, 25) (24,15) insertEdge (15, C4, WireTarget, 13, 5)

Algorithm 1: Algorithm of the interpretation function.
in: Uas out : Ua~t
foreachd e Uns do /* Initially Uar=0 */
if 9=addNode(, b, y,v’,i) A (v',0") € CA(y,i,y’) € CC
then (v,v"”") € C A addNode(”,b,y/,v" i) € Uar
elseC —CU(v,0)/* § i s non-propagating */
if o=insertEdgeé, b, y,v,v’) A(v,v”), (v',0"") € C A
2 (y,x,y') €CC
then (e,e’) € C A insertEdge¢’, b, y’, v, v"") € Unr
elseC —CU(e,0)/* § is non-propagating */
if 0=setindexg,,i’) A (v,v"), (v,0") € CA
s Wiy, (y,7,y") € CC
then dropNode(, b, y,v’,7), addNode(’,b,y”,v",i) €
Uat
if d=setSourcef, v,v’) A (e, (), (v',0"), (", 0"") € C A
4 (y,x,y") €CC
then (e, e’) € C A insertEdge¢’, b, vy, v",v""") € Uar

setIndex (16, fin, init) (16,9)

Fig. 4. Update operations and consistency relations of Fig 2

D. Change Propagation as Interpreting Updates

Finally, as depicted in Figurel 3, our incremental synchro-
nizer computes the traget modek sync(s,t,Uas) such
as the update&/ns and Ua7r produce consistent models. It
establishes the consistency relati@ms(s),t’) € C by propa-
gating theUa 7 to the target model It adapt the SCA model
t by computingt'= Ua7(t) rather than executing the full
transformation of the BPMN model. We see that the benefits of
such a MDE approach include generating a roadmap, namely
the deltaUa7, to adapt the component configurations when
business settings evolve. In practice, the SOA development

In order to illustrate our interpretation algorithm, cafesi stakeholders can rapidly assess the necessity to propagate
that the BPMN modek is altered tos’ (i.e., the case study adaptation of the SCA models into the application code by
of Figure[2) with the well-formed update sequence r making different updates on the BPMN models. To help them
in the Figurel#. Thesetindex (7, fin, init, 3)s interpreted o make rational decisions, we propose a tool to simulate
to dropNode(5, 4), addNode(5,Invoice,Service,2,it)t’ by and to evaluate this change impact of the different business
the rule in line4. It supposes that a propagating operatiogyo|utions that can be modeled in the business process model

addNode(7, Invoice, ReceiveTask, 3, far) s was already This tool support is presented in the following section.
translated toaddNode(5, Invoice, ReferenceCallback, 4, fin)

ont suchC contains(7,5). The rule in the line5 translates V- TOOL SUPPORT IMPLEMENTATION AND EVALUATION
setSource (23, 20, 2%)to a propagating insertion of the edge In this section, we describe a proof-of-concept implemen-
with a labelC3in t'" and update€ with (23,14) tation of our principles (change detection, change impact
Note that the consistency relatigh serves as a working analysis and change propagation) for a tool that sustains
memory for tracking the interpretation of the update openst automated synchronizations. We also provide a theoretiual
and transformation history-awareness. It keeps track jgfotd experimental evaluation of our synchronizer.
and links of the source model and their counterparts in theWe have implemented our synchronizer as an extension to
target model. The synchronizer locates the corresponding ca BPMN Editor [21] to demonstrate that it can be integrated
structs in the transformation working memory that are affédc business process modeling suites. The editor is used tolrmode

source BPMN and model. We have developed a filter that logpdate sequences representing the BPMN changesl(ie.,
the primitive BPMN editing operation sequences. After apn Figure[3). This results in the update sequences repiiagent
plying our interpretation algorithm, we obtain a graph iedit the SCA changes (i.el/», in Figure[3). We can sum the
operation sequence that manipulates SCA constructs. We apipdate sequences efze(s) andsize(Ua) to obtainsize(s’).
this sequence to another graph to produce the SCA model. Beammingsize(t) and size(Ua,) givessize(t').

have implemented our interpretation algorithm in fols The Figurelb plots the distribution of BPMN models size
[22] rules engine. Due to this implementation we could megize(s’) (blue cloud) and BPMN change sizéze(Una) (red
the synchronization execution criteria presented in 8efflil cloud) against the fractioﬁ%_ It also plots the distri-
The interpretation function is based on thecidabilityand pytion of SCA models sizesize(t') (yellow cloud) and SCA
confluenceoffered by theRetealgorithm [22] implemented change sizessize(Ua,) (green cloud) against the fraction
in Drools. Theuniformity and validity criteria are verified by size(Ua,)

. . he laorith d _ szery - 1his figure gives two interesting observations. First,
construction since thenierp algorithm produces consistenty «qnfirms that our synchronizer implements a partial fiorct
models according to the conceptual mapping. We supp

. L ; Qe to the BPMN-SCA mapping, sinegze(t’) < size(s’
conformitythrough the (primitive and combined) update Op(y?llow and blue clouds) andize(Ua.,) (S) ;ize(UiS;

eraS_(l)_ns t_hat we havi_%gflr;ed. WEI}_ su_pportftr%e reqwreme(zjntég een and red clouds). Second, it illustrates the effigienc
sta ||t_y sihce we proni it € app ication O_t € Same Uplary me of the incremental synchronization. Actually, when
operations with specific conditions. We satisfytonomyand

)) - size(Ung) S size(s') (i.e., the left side of the black lane)
idempotencesince we assimilate model to graphs and the., . ~ .

e . it is less complex to interpret the BPMN updates (red cloud)
updates to conditional graph productions.

than the BPMN models (blue cloud). Otherwise, the size of
Our synchronizer behaves like a model transformation etine SCA updates (green cloud) becomes greater than the size
gine. Consider that two empty BPMN and SCA models akgf SCA models (yellow cloud). This empirical observations
consistent. Building the BPMN model means applying BPMIdonfirm the expected behavior of our synchronizer. Also, an
updates that are contained in a non empty operation sequengexpected behavior arises in the practical experiments. |

Synchronizing the two empty models with the BPMN updateoncerns an almost linearity between the fac%% and
sequence produces the SCA .updlate sequence which genergteat’)_ Since the generated updates are not correlated to the
the SCA model. However, taking into account a source updatge(t) = 7" = . _
. models (i.e.,s’ are not proportional ta), then this supports

sequencé/a s on the source BPMN model that give's the ef- L . .

. _ that our synchronization behaves like a transformation.
fort to interpret those updated(size(Uas)), should be lower Evidently. th limitati inh t 1
than computing a full transformation of the altered source Vi t_en g ((jare ?r:edsowe. |m[|]a 1ons |n. ere? FO our
model,O(size(s')). It results in a reasonable decoupling fronfPeration-vased method w anze(Uns) > size(s'). For

. ; ; , example, when adding two BPMN elements and deleting one

the source model size whe size(Ua,) < size(s’) . Thus,

. X f them it is less interesting to translate three operattbas
when the source update is small, it usually corresponds (io 9 P

a small target update, and the performance im rovementtrtameOrming the model (i.e., by neglecting i effort). To
. 9 P ' : P pro address this scalability issue we can reduce the update se-
interpret the update operations is expected to be high.

guences by eliminating the redundancy and enforcing distin
In order to experiment our incremental synchronizer, we usgerations. For example, an addition of a node followed by an
the size of update operations as a metric to quantify theagizeupdate of node’s attributes can be resolved to a singleiaddit
models and their changes. The size of a model (i.e., cardimath the appropriate attributes. Also, opposite operatioan
of objects and links) can be quantified by making a differente discarded. Thisormalization[18] algorithm is decoupled
between the number afreate operations andlestroyopera- from the synchronizer since it is integrated with the BPMN
tions in the sequence which represents that model. The sizeediting operations filter. We refer the reader [td [6].][16t fo
a change (i.e., the number updates) is similarly calcuffited further discussions on the scalability concerns.
the sequence which represents that change. This metrie is in
dependent from the experimental environment considersitio T ——
Our experimental evaluations consist in generating random 1z | = 2P Uedete
update sequences for 1000 BPMN models and 1000 BPMN L = s
changes. In this way, the sizéze(Ua,) of the generated '
updates is independent from the sizee(s) of the generated oot
models. The generated models do not contain meaningful eof
business logic, however they conform the BPMN metamodel. '
The operation sequences are randomized to have differst si 7
in such a way they equally likely overlap with the BPMN-SCA o
mapping. Then, we pass the update sequences representing of
the BPMN models (i.e.s in Figure[3) into our synchronizer 0.0t o1 ! 10 100 1000
. . BPMN Update/BPMN Model (Blue&Red), SCA Update/SCA Model (Yellow&Green)
to obtain the update sequences representing the SCA models
(i.e., t in Figure[3). Again, we enforce interpretations of the Fig. 5. Incremental synchronisation efficiency.

400 -

V1. RELATED WORK conform to the same metamodel. In our work, we perform a
more thorough investigation on the heterogeneous increahen
Building cross-organizational business systems with aA S@nodel synchronization.

[2] that leverage the service-enabled process managerasnt b
practices[[8] implies a range of technical and methodoklgic VII. CONCLUSION AND FUTURE WORK
issues. First of all, the alignment between business gettin pyqyiding sound and effective ways to maintain the align-
and application functions has to be achieved with a Servigg.t petween the business logic and its supporting software
Dominant Logic [1]: the Service-Oriented Software Engireey chitectural logic is a challenge. It has become an importa
ing. This requirement should drive the production of theibus;5jienge today where services are pervasive and where BPM
ness services to achieve desired business processesdSeGonnainstream in large companies strategy. In this paper, we
business processes evolution is an aspect which affects fage tackled this issue from the perspective of the relation
software life-cycle. There are many ways to change softWaigiyeen business process modeling and evolution and the
artifacts. They range from the requirements evolution & th.,responding Service Component Architecture design. Our
business processes to the SOA and the source code. Sevgigloach not only allows to derive a component architecture
frameworks have emerged to help organizations to chargsy, 5 pusiness process collaboration, but, as demongirate
successful route to Service-Oriented Computing [2]. Thgjs paper, allows to incrementally maintain this relateen
Model-Driven Architecture provides a mean for using UMLj, case of business evolutions. We have shown that a model-
based transformations to drive the Service-Oriented $0EW qryen approach can be used to derive an abstract servie arc
Engineering [[4]. However, as UML is neither fully servicejecqyre from a business process. It also serves to maifiteiin t
oriented, nor business process-centered, it needs (o€ jianment when the process model is incrementally updated.

gap between the emerging standard notations and the lowg-qeriving changes that have to be applied to the architectu
level standards. A methodology suggested(inl [23] advocaigs 4\ qid to recreate an entire transformation. Our framiewor

the integration of the business values perspective to &ervi;g integrated to a change impact simulation and analysis
Oriented Computing. It definesamet_hodologyf(_)rthe busin_el%m which is based on graph rewriting technique to avoid
process space, but unfortunately fails to provide a practiGhe inconsistencies caused by change propagations. yinall
development scenario. Also, some attempts [24] provid&toque propose metrics for measuring the impact of business
to transform BPMN to SCA models. Unfortunately, they do,qcess evolutions on SOA maintenance and demonstrating
not consider collaborative processes transformationsdind ,qqe| transformation/synchronization efficiency which- en
not provide a mean for incremental model synchronizationg g knowledgeable change governance. The scope of our
To our knowledge, there is no tools providing automated igontribution is limited so far to the Service-Oriented Sfte
cremental synchronization and change impact analysiseffangngineering that uses BPMN and SCA languages. However,
work with an advanced BPMN-to-SCA mapping. Only thg can be generalized to other domain-specific languages and
general model synchronizatidrameworks|[15] were used for fyrther domain modeling.
the consistency management among heterogeneous modelphis work raises important questions. For example, if the
Those frameworks give a general representation of the mogghavioural properties (deadlock, controllability [9ic)eon a
updates, but rely on users to write code to handle eagfisiness process can be verified at design-time, are they sti
type of the modification in each metamodel[13]. Furthegqjid for the component configuration at the execution-time
more, QVT standard [25] encourages to use external mog@lewise, how IT developers can adapt their assets without
synchronizer. In our case, the synchronizer extracts iméer |osing design decisions and diverging from the business set
tions automatically from previous model transformationsl a tings. We are also thinking about using it to consider theidlo
does not require users to write more synchronization codg; the runtime framework where SCA is used for integrating

Graph transformation theory allows us to compute conflicimposite applications with the service delivery platform
and dependencies of transformation by relying on the idea

of critical pair of operations (i.e., on two assorted moylels REFERENCES

analysls. esearch conQucted in thg area of cond|t.|onphgra[1] H.M. Chen, R. Kazman, and O. Pery, “From software ire
reW”tmg_]:_ [7] has mainly been d”V_en by theoret“_;al COM ~ * analysis to service engineering: An empirical study of rodthogy
puter scientists who put an emphasis on developing sound development for enterprise soa implementatioF$G vol. 3, pp. 145-

; 160, 10.
theory @] However, Change propagation across heterog j M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymé&wervice-

neous SOft_’Vare models remains an open problem [15].In [17]," oriented computing: State of the art and research ch@lbimputer
the operation-based graph productions were used to express vol. 40, pp. 38-45, 07.

refactoring software transformations and their evolutibhe [3] M. Dumas and T. Kohlborn, “Service-enabled process ganeent,” in
9 . - . . Handbook on BPM lser. IHIS. Springer B., 10, pp. 441-460.
usage of the assertions facilitates the detection of th&as$in (4] p. Lopes, S. Hammoudi, J. Bézivin, and F. Jouault, “Gatieg trans-

merge conflicts when transforming the graphs. The graph formation definition from mapping specification: Applicati to web
transformations are executed in a uniform and scalable way, Service platiorm,” inCAISE vol. 3520. Sprin. Ber., 05, pp. 183-192.
H hi hni . inlv f d h K. Dahman, F. Charoy, and C. Godart, “Generation of Congmt Based

owever, this tec .n'qu'e IS mainly Tocusea on homogeneo Architecture from Business Processes: MDE for SOA EROWS Ayia
model transformation, i.e., where the source and targetisod Napa, 10, pp. 155-162.

(6]
(7]

(8]
El

[10]
[11]
[12]

(23]

(14]

[15]

[16]
[17]
(18]

[19]

[20]

[21]
[22]
(23]

[24]
[25]

H. Giese and R. Wagner, “From model transformation taréntental
bidirectional model synchronization3oSyM vol. 8, pp. 21-43, 09.

E. Biermann, C. Ermel, and G. Taentzer, “Precise seroanif emf
model transformations by graph transformationMoDELS Springer
B., 08, pp. 53-67.

Business Process Model and Notation 2.0, Bet®WG, May 09.

W. van der Aalst, A. Mooij, C. Stahl, and K. Wolf, “Servidateraction:
Patterns, Formalization, and Analysis,"\WiS-FM Springer B., 09, vol.
5569, pp. 42-88.

SCA Assembly Model Specification,1dpen SOA, Mar. 09.

K. Dahman, F. Charoy, and C. Godart, “From businessgs®¢o com-
ponent architecture: Engineering business to it alignfhémtEDOW,
Helsinki, 11, pp. 269-274.

F. Puhlmann and M. Weske, “M.: Investigations on sowessnregarding
lazy activities,” inBPM. Sprin. Ver., 06, pp. 145-160.

K. Dahman, F. Charoy, and C. Godart, “Towards consistemanage-
ment for a business-driven development of SOA,EBOC, Helsinki,
11, pp. 267-275.

M. Antkiewicz and K. Czarnecki, “Design space of hetgneous
synchronization,” inGRRSE Il Springer B., 08, pp. 3—46.

Y. Xiong, D. Liu, Z. Hu, H. Zhao, M. Takeichi, and H. Mei,Towards
automatic model synchronization from model transfornratjoin ASE
New York, NY, USA: ACM, 07, pp. 164-173.

Z. Diskin, “Algebraic Models for Bidirectional Modely&chronization,”
in MODELS Springer B., 08, pp. 21-36.

T. Mens, “Conditional graph rewriting as a domain-ipdadent formal-
ism for software evolution,” iIPAGTIVE 00, pp. 357-359.

——, “Transformational Software Evolution by Asser®” in CSMR
Lisbon, 01.

G. Taentzer and A. Rensink, “Ensuring structural crasts in graph-
based models with type inheritance,” FASE Springer B., 05, pp.
64-79.

A. Habel and B. Hoffmann, “Parallel independence irrd&iehical graph
transformation,” inGraph Transformationsser. LNCS. Springer B.,
04, pp. 207-210.

lsourceforge.net/projects/bpmn/], “Yaogiang bpntlitar,” (Dec. 12).
-'WM%OIS (iboss rules),” €. 12).

C. Huemer, P. Liegl, R. Schuster, H. Werthner, and M.|&&h “Inter-
organizational systems: From business values over busspresesses to
deployment,” inDEST, 08, pp. 294 —299.

[www.eclipse.org/sod/], “Soa platform project,” (AfL3).

OMG, Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification, Version 1, Dbject Management Group Std., January.

	Introduction
	Bridging the Gap between Processes and SOA
	Maintaining alignment between Business Process and SOA

	Model Synchronization Framework
	Abstracting Models to Graphs for Change Detection

	Automating the incremental synchronization
	Change Detection as Primitive Operations on Graphs
	Change Detection as Compound Operation Sequences
	Change Impact Analysis as Propagating Updates
	Change Propagation as Interpreting Updates

	Tool support implementation and evaluation
	Related Work
	Conclusion and Future Work
	References

