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Abstract—Increasing the productivity of the Service-Oriented
Software Engineering through a model-driven methodology needs
to go beyond business services modeling and the automation of
transforming models that adhere to the SOA style. Commonly,
the business analysts focus on modeling business processes. Then,
IT developers implement software architectures that are automat-
ically generated from the process models. In this paper we look
forward to maintaining the alignment between business services
and their supporting IT assets when business settings evolve.
We introduce an approach for an incremental synchronization
between business process models and component configuration
models that follow SOA architectural principles. We automate the
change forward propagation by enforcing in-place translations of
the updates on the models in order to preserve their consistency.
Rather than executing the entire development process again,
software architects can assess the necessity of propagating design
decisions to the implementation level by adapting the deployed
IT assets according to the business evolutions.

Index Terms—Business Process, SOC, MDE, SOA Alignment

I. I NTRODUCTION

Maintaining the alignment between evolving business solu-
tions and their supporting IT capabilities is essential forenter-
prise information systems [1]. Service-Oriented Computing [2]
has emerged as an approach for modeling, building and man-
aging software applications on the basis of Service-Oriented
Architecture [2] (SOA). Software architectures that adhere
to this style are implemented as loosely-coupled software
components that are composed in configurations and linked by
connectors. Those service-component realize business services
at the implementation level by enacting process tasks. They
expose their functionalities as business services, and consume
other services in an uniform way [3].

Business-Driven Development experience shows that us-
ing Model-Driven Engineering [4] (MDE) enables to align
software architectures with the business processes. During
the initial development activities, IT developers can rapidly
instantiate software architectures from business processes with
an automated model transformation. However, thisBusiness-IT
alignmentcan disappear when business requirements evolve
incrementally. Here, we want to enable the behavioural
and architectural evolutions of business processes that imply
structural adaptations. We support the adaptation of service-
component implementations when the business processes are
modified to maintain their alignment.

To achieve that goal, we propose an incremental model syn-
chronization framework. Following the generative approach
of our previous work [5], we enforce a conceptual mapping
between a business process model and a service-component
configuration model. We automate the change forward propa-
gation to translate consistently an update on the process model
into the service model when a transformation was previously
executed. We base our work on the formal foundations of
graph rewritings [6], [7] to preserve the model consistency. We
have developed a proof-of-concepts prototype to validate our
method of the consistency management between the models.

The paper is organized as follows. In Section II, we
sustain the usage of two domain-specific languages for our
MDE approach to bridge the gap between cross-organizational
processes modeling and SOA development. Section III for-
mally describes our framework and Section IV presents our
incremental model synchronization principles. In SectionV,
we demonstrate a proof-of-concept implementation of those
principles with a discussion on their theoretical and exper-
imental evaluations. Finally, we situate our work with the
related research in Section VI, and we present future possible
extensions in Section VII.

II. B RIDGING THE GAP BETWEENPROCESSES ANDSOA

In this section, we present an example (inspired from [8]) of
a Supply Networkwhich illustrates some situations that occur
when software architects have to propagate business process
evolutions to the supporting service-component logic.

To model the business logic [3] of each partner in the
network we use the Business Process Model and Notation
[8] (BPMN) standard. It refers to a service orchestration [2]
as a set ofparticipants with processesin a collaboration.
BPMN combines graphical and textual annotations to describe
business process models with cross-domain capability sharing
that are decoupled from their supporting software architec-
tures. The BPMN diagrams in Figure 1 shows business ser-
vice interactions between the collaborating partners (Supplier,
Customer, Shipperand Invoicer). It specifies the behavioural
(flows betweentasks) and architectural (conversation links
betweenparticipants) views of the business partners. The
information exchanges are modeled asconversations that
capture service contracts and interactions. The dotted boxin s
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describes the design decisions made by the business analysts
for the Ordering service (betweenSupplier and Customer)
with a send-receive interaction pattern [9]. It is capturedby a
single BPMN conversation. We consider that the core BPMN
constructs subset, drawn in the legend of Figure 1, is sufficient
to capture the most important service-oriented design aspects.
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Fig. 1. BPMN-to-SCA model transformation example.

In [5], we provided a development scenario to transform
a source BPMN collaboration model into a target service-
component configuration model described using the Service-
Component Architecture standard [10] (SCA). SCA provides
a model for composing applications that embraces SOA prin-
ciples. We refer to the program executions that implement
the BPMN-to-SCA conceptual mapping (functional relation
among BPMN and SCA constructs [11]) as model transfor-
mations. For example,s generates the modelt of Figure 1. A
simplified conceptual mapping is shown in the figure’s legend.

In order to automate model transformations, we conceptu-
ally map BPMN collaborations to SCA composites. Likewise,
the BPMN participants map into SCA components. Those
composites modularize and compose service-enabled business
functionalities in a manner that is decoupled from their imple-
mentation code. For example,t describes a composite (Supply
Network) of four components (Supplier, Customer, Shipper,
Invoicer). It specifies the behavioural (flows betweentasks),
their service dependencies and other related artifacts which
specify how they are consumed and offered. Each component
exposes ports, also called services. It requires other services by
means ofreferences. It’s configured to interact with the other
components throughwires. When a component is implied in
bidirectional interaction patterns,callbacksare defined for the
services and/or references (seeCustomerand Supplierin the
dashed box oft). The callback of the consumer component
(Customer) is used by the provider (Supplier).

The SCA wire is conceptually similar to the BPMN con-
versation construct. It represents anactivation logicbetween
two components and means an explicit message exchange.
However, there is no mean of control flow between SCA
services and references: each of them represents the direction
of the first message exchanged between two components.
Therefore, conversations between participants map1 into wires.
A BPMN task maps into SCA service or reference, depending
when it sends the first or the last message of the collaborations.
For this purpose, we add an explicitindex for each task
in each process by extending the BPMN standard notation
with the two icons: init and fin. The icon init (resp. fin)
indicates aninitial (resp., afinal) task that sends or receives
the first (resp. last) message in a service interaction pattern
[9]. By introspecting process structures, an initial receive task
is mapped to a service. Accordingly, a first send task maps
to a reference. After the first receive task (resp., first service
task), a process can contain a range of other send tasks (resp.,
receive tasks) that interact with the same participant. Thus, a
final send task (resp., receive task) maps to a callback that is
associated with the first mapped reference (resp., service).

The SCA composites can be deployed in a runtime engine
that provide binding mechanisms and maintain the neutrality
between component composition logic and their implementa-
tion code. Each component contains an implementation [10]
of service orchestration process with a suited programming
language. BPMN processes map into SCA implementations.
In this sense, BPMN processes can be transformed2 into other
process execution languages, or even directly enacted witha
BPMN-compliant workflow engine.

A. Maintaining alignment between Business Process and SOA

Now, we consider that business analysts need to change
the Supply Networkby separating the services concerns of
Ordering and Invoicing as a best way to deal with their
business requirements. They make a design decision to split
the Ordering service (modeled in theas-is source models
of Figure 1). As depicted in (theto-be source model)s’ of
Figure 2, they updates with two separate conversations for
send-after-receive and receive-after-send patterns [9].

Then, software architects have to propagate this source
BPMN model change (so-called delta) to the previously gen-
erated target SCA modelt of Figure 1. According to the
BPMN-to-SCA conceptual mapping [11], they must adapt
the (as-is) target modelt to a (to-be) target modelt’ as
depicted in Figure 2. The software architects have to add
a wire (Invoicing) between a service and a reference, and
delete two callback. Here, change forward propagation is
challenging since similar BPMN constructs are transformed
into different SCA constructs: taskInvoicemaps to a callback
in t and to a service int’ (because of the multivalued3

1We mainly focus on the mapping of sequence and message flows, and
put the transformation of data flows between into language-agnostic data
structures (being generated) out of this article’s scope.

2We assume well-formed and well-behaved business processes[9], [12].
3There maybe multiple SCA models for the same BPMN model [11].
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Fig. 2. BPMN and SCA model evolution use case.

mapping relations). Manual adaptations of the SCA model
are potentially error-prone [9]. Especially, they can leadto
misalignments if they do not follow a strict roadmap and a
thorough delta analysis betweenas-isand to-bemodels [13].
Thus, enabling uncontrolled updates ont is problematic.

Executing a full transformation ofs’ to get another model
t∗’ and automatically adaptingt to t∗’ is possible. We can
operate an automated model difference (so-calleddiff), so that
the difference and overlapping between the two model versions
t andt∗’ can be extracted. Then, we can computet’ by adapting
t with the diff. However, a full transformation ofs (when it
evolves) is not suitable since any additional information in t
is lost when applying thediff. The elements int which are not
covered by the overlapping cannot be derived automatically
in t’ and are thus lost. Hence, a practical approach should
not replacet by t∗’ , but it has to reuset in order to preserve
extensions and refinements (crucial prerequisites to foster the
MDE paradigm). Reusing previous SCA implementations for
a new component composition logic and tracking the change
impact at the architectural level becomes very difficult.

Moreover, when enforcing adiff-based model synchroniza-
tion [14], the change roadmap computation effort (to obtain
to-bemodels fromas-isones) is proportional to the size of the
models and not to the size of the updates. Recomputing a full
transformation even though only a small fraction of the source
model has been modified becomes very costly, especially when
a frequent synchronization is considered. In practice, when the
business logic evolves with incremental and localized updates
that do not radically modify the BPMN model, we have to
operate complex computations to obtain SCA models. For this
reasons we want toincrementallyadapt them.

Existing general synchronization frameworks [15] and trans-
formation languages [14] cannot work well for a functional
and multivalued mapping [11], since they are intended for
generic model transformations. First, they require users to
explicitly write a synchronization code to deal with each up-
date, and on each domain-specific language. Second, mapping
complexity of each change is compounded with the decisions
regarding information loss or gain related to different levels
of heterogeneous synchronizations [14]. Thus, what soundsso
straightforward in theory while using a model-driven approach,
turns out to a very challenging endeavor in practice. To

foreshadow a consistent maintenance of theBusiness Process-
SOAalignment and change propagation automation, we intro-
duce a framework which guarantees thestructural consistency
between our assorted domain-specific languages. We consider
that thisincremental BPMN-to-SCA model synchronizationis
a major use case for preserving theBusiness-IT alignment.

III. M ODEL SYNCHRONIZATION FRAMEWORK

This section formalizes our incremental model synchroniza-
tion framework. We also introduce the requirements that have
to be satisfied by a tool support (so-calledsynchronizer[6]).
Our following explanations are based on Figure 3. It shows
the relations between the models of Figure 2.
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Fig. 3. Formalization of the incremental model synchronization.

The key difference between thediff-based and the incremen-
tal synchronization is in remembering previous transformation
results. The former discards previous transformation results
and recomputes new ones, while the latter updates them. It
synchronizes two models by a change propagation. It preserves
the information which is not covered by the transformation and
minimizes the computational effort. Formally, consider that
a BPMN-to-SCA model transformation is a partial function
denoted by trans : S → T that takes a source BPMN col-
laboration model from a set of BPMN modelsS and produces
a target model in a set of SCA modelsT . Executingtrans

establishes aconsistency relationbetween two models which
is denoted byC ⊆ S × T . This relation is derived from the
conceptual mapping between BPMN and SCA. For example,
consider a BPMN models in S and a SCA modelt in
T being transformed suchtrans(s) = t. Those models are
consistentwith respect to the binary relation as(s,t) ∈ C.
Furthermore, given a source updateU∆S that alterss to
s’ such it produces inconsistent models with(s′,t) 6∈ C,
the unidirectional incremental source-to-target synchroniza-
tion frameworkconsists in computing a target updateU∆T

from U∆S such that the application of the both updates results
in consistent models:(s′,t′) ∈ C. It producest’ by adapting
t such asU∆T (t) = t′ and U∆S(s) = s′ and establishing
the relationC. We denote theincremental synchronization
function by sync : C ×∆S → T . The updates on the tar-
get model are obtained by directly interpreting the source
model updates. We denote thisinterpretation by a function
interp : ∆S → P(∆T ) that interprets source changes in∆S

into a partition of target changes∆T .
To automate the incremental BPMN-to-SCA synchroniza-

tion and to be compliant with our formalization, our syn-
chronizer must implement adecidablealgorithm. We consider
that its execution (when synchronizing two models) has to



satisfy the following criteria:uniformity, validity, conformity,
stability, autonomy and idempotence. The uniformity and
validity criteria require that it must produce consistent models.
The conformitymeans that the resulting target models must
conform to the SCA metamodel4. The stability means a non-
destructive behavior on the SCA model when the BPMN
model is not modified. Theautonomyand the idempotence
mean that it must returns the same proposed modifications on
the target model when merging source models or their changes.

In practice, the synchronizer detects BPMN models
changes. It translates them into SCA updates. When propa-
gating those updates, it creates elements in the target if such
elements do not exist. It modifies elements if such elements
exist but have changed, and it deletes elements otherwise.
These principles are explained below.

A. Abstracting Models to Graphs for Change Detection

In order to detect BPMN model evolutions and to adapt
the SCA model, we relate models tolabelled nested typed
rooted graphs [7]. Those graphs provide an intuitive and
general5 formalism to represent BPMN and SCA models. We
consider the BPMN and SCA models as collections of typed
objects and links with some structural constraints defined by
the BPMN and SCA metamodels. A node can represent any
kind of model object. Edges are used to represent all kinds
of associations between objects. Nesting in graphs implies
a number of constraints for model instantiations that must
be enforced when models evolve. For this purpose, we use
graphs with distinguished containment edge type and syntactic
constraints to make model conform to metamodels.

We assimilate each model to a tuple(V , E ,B,Y, I,Z) that

includes the functionslabel:V ∪ E → B , type:V ∪ E → Y ,

source, target:E → V , and index:V → I . The functions
express the labeling, the nesting and the typing in a graph.
The tuple contains disjoint sets of node identifiersV , edge
identifiers E , node and edge labelsB , nodes and edge types
Y , indexesI , and a structural correctness relation to express

the nesting and associations constraints denoted by

Z = {(v, e, v′, i) ∈ V × E × V × I | index(v′) = i ∧
source(e) = v ∧ target(e) = v′∧

type(e) = cons(type(v), type(v′))}.

The function cons:Y2 → Y captures the language-specific
syntax as a relation between model object types according
to the metamodel. We use the relationZ to avoid the def-
inition of an additional relation to capture the conformity
relation between a model and its metamodel. For example,
we write the equalitycons(Collaboration, Participant) =
Contain to mean that BPMN collaborations contain par-
ticipants.We writecons(Wire, Reference) = Source and
cons(Wire, Service) = Target to express that SCA wires
can be connected to references or services.

4Which offers the vocabulary for formulating reasonings on top of models.
5Graph transformations are proven in [16] for all category ofgraphs.

Given a BPMN models = (Vs, Es,Bs,Ys, Is,Zs), and
a SCA model t = (Vt, Et,Bt,Yt, It,Zt), we express our
multivalued BPMN-to-SCA conceptual mapping with a partial
function map : (Ys × Is)→ Yt where Ys denotes source
types,Yt denotes target types andIs denotes model constructs
indexes. We define our BPMN-to-SCA mapping relation as

CC = {(y, i, y′) ∈ Ys × Is × Yt | y′ ⊆ map(y, i)}.

For example,(Participant,∗,Component)∈ CC means that
BPMN participants map into SCA components with their
nesting constraints. Also, mapping BPMN initial send tasks
to SCA references is given by(SendTask,init,Reference)∈ CC.
Finally, we denote theconsistency relationas a binary relation
between source and target objects

C = {(o, o′) ∈ (Vs × Vt) ∪ (Es × Et) | ∃i ∈ Is :
(type(o), i, type(o′)) ⊆ CC}.

IV. A UTOMATING THE INCREMENTAL SYNCHRONIZATION

In order to sustain automated synchronizations, we have
built a synchronizer which is based on three principles: change
detection, change impact analysis and change propagation.We
present those principles in the following sections.

A. Change Detection as Primitive Operations on Graphs

Since we relate a model to a graph, an update on a
model describes a modification on a graph structure. Model
evolutions can be expressed by graph rewritings [16] and mod-
eled by graph productions6. A production is defined through
application rules which consist of in-place graph updates that
are performed with a description of positive and/or negative
patterns. Those conditional graph productions [17] are given
through structural graph properties, while graph rewritings are
usually defined through push-out constructions [16].

Compared to our previous work [13], here, we investigate
heterogeneous incremental model synchronizations. Actually,
we have shown that conditional graph productions can be
expressed by graph update operations in order to guarantee
the correctness of the model evolution. Now, we examine in
more details how to express compound model updates with
primitive operations on atomic constructs. This approach offers
finer model consistency management.

TABLE I
PRIMITIVE UPDATE OPERATIONS AND THEIR APPLICATION RULES.

Operation Precondition Invariant Postcondition
create(φ) –φ –(φ, ∗, ∗) +φ
destroy(φ) +φ –(φ, ∗, ∗) –φ
update(φ, µ, ν) –(φ, µ, ν) +φ +(φ, µ, ν)
undo(φ, µ, ν) +(φ, µ, ν) +φ –(φ, µ, ν)

Table I shows a complete and minimal set of four primitive
update operations and their corresponding application rules.
This set is complete because we can indicate all the structural
modification in a model assimilated to a graph. It is also

6They are based on the concept of gluing graphs and graph morphisms
[16]. They describe how to modify a right-hand graph to produce a related
left-hand graph with forward transformations [7].



minimal because we can not replace operations with each other
to express the same update. For example, assigning the type
Taskand the labelOrder to an existing object with an identifier
θ is given byupdate(θ, type, Task), update(θ, label, Order).
To create an edge with identifierω and assign a target node
θ to this edge, we usecreate(ω), update(ω, target, θ). We
also define the opposite operations for deleting an object from
a graph and undoing a property of an object. The operation
updatecan be considered as redo operation for theundo.

Our application rules include finite negative or positive
application conditions that must be satisfied by each graph
rewriting. Before applying an operation, it is necessary to
verify invariants and verify that thepreconditionis fulfilled
in the model that should be updated. Thereafter, the existence
of positive or negative patterns has to be checked. If they are
verified, invariantshave to be checked and then updates can
be applied andpostconditionsverified. For example, before
applying the operationadd(φ), we must avoid that an object
with the same identifierφ already exists. The effect of this
operation is thatφ is added to the graph. Those rules allow to
avoid structural conflicts by detecting contradictions between
assertions. Table II presents the assertions used in Table I.

TABLE II
L IST OF ASSERTIONS AND THEIR CONTRADICTIONS.

Assertion Notation Contradicts
Object φ exists +φ –φ
Object φ hasν as a value forµ +(φ, µ, ν) –(φ, µ, ν)
Object φ has no properties –(φ, ∗, ∗) +(φ, µ, ν)

The assertions are well established in the software com-
munity as a formal way to specify the applications rules
for conditional graph productions [18]. In order to describe
contradicting primitive operations, they are attached to graph
productions operation rather than to graphs – we consider
that models are related by morphisms that are totally label-
preserving, type-preserving [17] and root-preserving [7]. We
distinguish between positive and negative assertions to express
the presence or the absence of a structural property. The
negative assertions are denoted by a minus sign and mean the
opposite of the positive assertions. We use wild-card assertions
to express transitive constraints. For example, –(φ, ∗, ∗) means
that in order to assign properties toφ we must apply anupdate
operation. Also, to apply anundoon a propertyµ with a value
ν, +(φ, µ, ν) imposes that this property is already assigned to
φ. Thus, we can not replaceupdatewith undo.

B. Change Detection as Compound Operation Sequences

The business analysts can edit a BPMN model in many
places during a modeling session. The structural correctness
checking of model updates is complex since it relates to
the combinatorial explosion of the graph patterns [19]. We
decompose the model updates into primitive operations on
atomic constructs. We can record their changes on a model
s as a finite sequence of primitive operations that result in a
models’ = U∆S(s) such as the update

U∆S : {δi : S → S | δi is a graph production}1≤i≤n ∈ ∆S .

In order to reduce the checking complexity and to comply
with the BPMN and SCA modeling tools, we define atomic
combined graph update operations as well-formed sequences
of primitive operations. Tables III gives a non-exhaustivelist
of combinations. Combining operations provides enhanced
semantics to express much meaningful updates [17], [13]. We
state that two primitive operations in a sequence are distinct,
if they affect independent model objects [15], [20]. It means
that they can commute in the sequence without changing the
result. The syntactic correctness of a sequence can be checked
if the assertions imposed by an operation in the sequence do
not contradict assertions of the earlier operations as given in
Table II. An update sequence{δi}1≤i≤n is well-formed7

if ∀αpi ∈ (δk.pre ∪ δk.inv) | 2 ≤ k ≤ n ∧ ∀αip ∈
(δl.inv ∪ δl.pos) | l < k : αpi does not contradictαip.

This definition ensures that the syntactic correctness is
also maintained for a compound update. For example, the
sequence{update(θ, label, Order), destroy(θ)} is ill-formed
because assertion –(θ, ∗, ∗) in the invariants ofdestroy(θ)
contradicts the assertion +(θ, label, Order) in the postcondi-
tion of update(θ, label, Order). Actually, we have to remove
all object properties before to destroy it.

Assuming that a modeling session starts with a structurally
correct model which conforms to his metamodel, the resulting
graph of an update should be a structurally correct model
that conforms to the same metamodel. In order to check the
conformity of the resulting model after applying a compound
update, we verify operation sequences towards the structural
correctness relation (i.e.,Z in the previous section). For
example, consider that adding a receive task node to the
model s in Figure 1 is expressed withaddNode(7, Invoice,
ReceiveTask, 3, fin). This addition preserves the BPMN model
structural correctness since by construction the operation
addNode(v,b,y,v’,i)in Table III verifies that(v,e,v’,i)∈ Zs,
wheree is the edge inserted for nestingv in v.

C. Change Impact Analysis as Propagating Updates

In the previous section, we have defined the necessary
properties to guarantee correct update applications on each of
the BPMN and SCA models. In this section, we introduce
the foundations for our consistency management approach.
Namely, we propose a method for a change impact analysis
which ensures that compound operations are propagated form
BPMN to SCA models in a consistent manner.

An update operationδ ∈ U∆S on the source model is
propagated, if it forces a synchronization on the target model
[14]. It has to establish the consistency relation between
the source model and the target model such that it pre-
serves(U∆S(s), U∆T (t)) ∈ C. Therefore, our synchronizer
produces update operationsU∆T on the target model such
that U∆T = interp(δ). Otherwise,δ is non-propagating. A
simplified algorithm that provides the interpretation function
interp is listed in Algorithm 1.

7pre, postand inv represent the assertion sets shown in Table III.



TABLE III
COMBINATIONS OF PRIMITIVE UPDATE OPERATIONS.

Compound Operation Description Primitive Operations

addNode(v,b,y,v’,i) Adding a nodev of type y nested in nodev’ with a
label b and an indexi

add(v), update(v,label,b), update(v,type,y), update(v,index,i), add(e),
update(e,type,Contain), update(e,source,v’), update(e,target,v)

insertEdge(e,b,y,v,v’) Inserting an edgee with a labelb and a typey
between nodesv andv’

add(e), update(e,label,b), update(e,type,y), update(e,source,v), up-
date(e,target,v’)

dropNode(v,b,y,v’,i) Deleting an existing nodev from nodev’
undo(e,type,Contain), undo(e,source,v’), undo(e,target,v),
undo(v,index,i), undo(v,type,y), undo(v,label,b), destroy(e), destroy(v)

setIndex(v,i,i’) Updating the index of the nodev from i to i’ undo(v,index,i), update(v,index,i’)
setSource(e,v,v’) Updating the source of the edgee from v to v’ undo(e,source,v), update(e,source,v’)

The algorithm is written with inference rules of the form:
if premises/ then conclusions. The premisesrefer to op-

erations and conditions on the source BPMN model, and
conclusionsrefers to the propagating operations on the target
model. As stated in Section III, our incremental synchronizer
takes as parameters an update on the source modelU∆S ∈ ∆S

(U∆S(s) = s′) and two consistent models such(s, t) ∈ C.
Rather than executing the entire novel transformation, it en-
forces an in-place synchronization by interpretingU∆S into a
target updateU∆T ∈ ∆T (t′ = U∆T (t)) to get t′ consistent
with s’ such(s′, t′) ∈ C holds. It interpretsU∆S into U∆T and
then propagates them tot.

Algorithm 1: Algorithm of the interpretation function.
in : U∆S out : U∆T

foreach δ ∈ U∆S do /* Initially U∆T = ∅ */

1
if δ=addNode(v, b, y, v′, i) ∧ (v′, v′′) ∈ C ∧ (y, i, y′) ∈ CC
then (v, v′′′) ∈ C ∧ addNode(v′′′, b, y′, v′′, i) ∈ U∆T

elseC ← C ∪ (v, ∅) /* δ is non-propagating */

2

if δ=insertEdge(e, b, y, v, v′) ∧(v, v′′), (v′, v′′′) ∈ C ∧
(y, ∗, y′) ∈ CC

then (e,e’) ∈ C ∧ insertEdge(e′, b, y′, v′′, v′′′) ∈ U∆T

elseC ← C ∪ (e, ∅) /* δ is non-propagating */

3

if δ=setIndex(v, i, i′) ∧ (v, v′), (v, v′′) ∈ C∧
(y, i, y′), (y, i′, y′′) ∈ CC

then dropNode(v, b, y, v′, i), addNode(v′, b, y′′, v′′, i′) ∈
U∆T

4

if δ=setSource(e, v, v′) ∧ (e, ∅), (v′, v′′), (v′′′, v′′′′) ∈ C ∧
(y, ∗, y′) ∈ CC

then (e, e′) ∈ C ∧ insertEdge(e′, b, y′, v′′, v′′′′) ∈ U∆T

In order to illustrate our interpretation algorithm, consider
that the BPMN models is altered tos’ (i.e., the case study
of Figure 2) with the well-formed update sequence fors’
in the Figure 4. ThesetIndex (7, fin, init, 3)is interpreted
to dropNode(5, 4), addNode(5,Invoice,Service,2,init)for t’ by
the rule in line4. It supposes that a propagating operation
addNode(7, Invoice, ReceiveTask, 3, fin)on s was already
translated toaddNode(5, Invoice, ReferenceCallback, 4, fin)
on t suchC contains(7,5). The rule in the line5 translates
setSource (23, 20, 25)into a propagating insertion of the edge
with a labelC3 in t’ and updatesC with (23,14).

Note that the consistency relationC serves as a working
memory for tracking the interpretation of the update operations
and transformation history-awareness. It keeps track of objects
and links of the source model and their counterparts in the
target model. The synchronizer locates the corresponding con-
structs in the transformation working memory that are affected

by the source update. With the correspondence identified in the
mapping relationCC, it computes in-place operations on the
target with values from the source. Due to our partial mapping,
some updates on the source model – which involve BPMN
types without corresponding SCA types – are not propagated
to the target model. For example, the BPMN constructs such
as gateways have no counterparts in the SCA space because
they are not relevant for the SCA configuration topology. Thus,
when an operation is non-propagating, the working memoryC
is updated with a tuple(*,∅) to mean that the BPMN objects
have no counterparts in SCA.

dropNode (5, Invoice, Service, 4, fin) 

addNode(5, Invoice, Service, 2, init) 

dropNode (9, Invoice, Reference, 8, fin) 

addNode (9, Invoice, Reference, 6, init)

addNode (13, Invoicing, Wire, 1, 4)

insertEdge (14, C3, WireSource, 13, 9)

insertEdge (15, C4, WireTarget, 13, 5)

setIndex (7, fin, init)

setIndex (16, fin, init)

addNode (25, Invoicing, Conversation, 1, 4)

setSource (23, 20, 25)

setSource (24, 20, 25)

(7,5)

(16,9)

(25,13)

(23,14)

(24,15)

                                                                                              Operation sequence for t'Operation sequence for s' C

Fig. 4. Update operations and consistency relations of Fig 2.

D. Change Propagation as Interpreting Updates

Finally, as depicted in Figure 3, our incremental synchro-
nizer computes the traget modelt’= sync(s, t, U∆S) such
as the updatesU∆S and U∆T produce consistent models. It
establishes the consistency relation(U∆S(s),t′) ∈ C by propa-
gating theU∆T to the target modelt. It adapt the SCA model
t by computing t’= U∆T (t) rather than executing the full
transformation of the BPMN model. We see that the benefits of
such a MDE approach include generating a roadmap, namely
the deltaU∆T , to adapt the component configurations when
business settings evolve. In practice, the SOA development
stakeholders can rapidly assess the necessity to propagate
adaptation of the SCA models into the application code by
making different updates on the BPMN models. To help them
to make rational decisions, we propose a tool to simulate
and to evaluate this change impact of the different business
evolutions that can be modeled in the business process models.
This tool support is presented in the following section.

V. TOOL SUPPORT IMPLEMENTATION AND EVALUATION

In this section, we describe a proof-of-concept implemen-
tation of our principles (change detection, change impact
analysis and change propagation) for a tool that sustains
automated synchronizations. We also provide a theoreticaland
experimental evaluation of our synchronizer.

We have implemented our synchronizer as an extension to
a BPMN Editor [21] to demonstrate that it can be integrated
business process modeling suites. The editor is used to model a



source BPMN and model. We have developed a filter that logs
the primitive BPMN editing operation sequences. After ap-
plying our interpretation algorithm, we obtain a graph editing
operation sequence that manipulates SCA constructs. We apply
this sequence to another graph to produce the SCA model. We
have implemented our interpretation algorithm in theDrools
[22] rules engine. Due to this implementation we could meet
the synchronization execution criteria presented in Section III.
The interpretation function is based on thedecidability and
confluenceoffered by theRetealgorithm [22] implemented
in Drools. Theuniformity andvalidity criteria are verified by
construction since theinterp algorithm produces consistent
models according to the conceptual mapping. We support
conformity through the (primitive and combined) update op-
erations that we have defined. We support the requirement of
stability since we prohibit the application of the same update
operations with specific conditions. We satisfyautonomyand
idempotencesince we assimilate model to graphs and their
updates to conditional graph productions.

Our synchronizer behaves like a model transformation en-
gine. Consider that two empty BPMN and SCA models are
consistent. Building the BPMN model means applying BPMN
updates that are contained in a non empty operation sequence.
Synchronizing the two empty models with the BPMN update
sequence produces the SCA update sequence which generates
the SCA model. However, taking into account a source update
sequenceU∆S on the source BPMN model that givess′, the ef-
fort to interpret those updates,O(size(U∆S)), should be lower
than computing a full transformation of the altered source
model,O(size(s′)). It results in a reasonable decoupling from
the source model size whensize(U∆S

) ≤ size(s′) . Thus,
when the source update is small, it usually corresponds to
a small target update, and the performance improvement to
interpret the update operations is expected to be high.

In order to experiment our incremental synchronizer, we use
the size of update operations as a metric to quantify the sizeof
models and their changes. The size of a model (i.e., cardinal
of objects and links) can be quantified by making a difference
between the number ofcreateoperations anddestroyopera-
tions in the sequence which represents that model. The size of
a change (i.e., the number updates) is similarly calculatedfrom
the sequence which represents that change. This metric is in-
dependent from the experimental environment considerations.
Our experimental evaluations consist in generating random
update sequences for 1000 BPMN models and 1000 BPMN
changes. In this way, the sizesize(U∆S

) of the generated
updates is independent from the sizesize(s) of the generated
models. The generated models do not contain meaningful
business logic, however they conform the BPMN metamodel.
The operation sequences are randomized to have different sizes
in such a way they equally likely overlap with the BPMN-SCA
mapping. Then, we pass the update sequences representing
the BPMN models (i.e.,s in Figure 3) into our synchronizer
to obtain the update sequences representing the SCA models
(i.e., t in Figure 3). Again, we enforce interpretations of the

update sequences representing the BPMN changes (i.e.,U∆S

in Figure 3). This results in the update sequences representing
the SCA changes (i.e.,U∆T

in Figure 3). We can sum the
update sequences ofsize(s) andsize(U∆S

) to obtainsize(s′).
Summingsize(t) andsize(U∆T

) givessize(t′).
The Figure 5 plots the distribution of BPMN models size

size(s′) (blue cloud) and BPMN change sizesize(U∆S
) (red

cloud) against the fraction
size(U∆S

)

size(s′) . It also plots the distri-
bution of SCA models sizessize(t′) (yellow cloud) and SCA
change sizessize(U∆T

) (green cloud) against the fraction
size(U∆T

)

size(t′) . This figure gives two interesting observations. First,
it confirms that our synchronizer implements a partial function
due to the BPMN-SCA mapping, sincesize(t′) ≤ size(s′)
(yellow and blue clouds) andsize(U∆T

) ≤ size(U∆S
)

(green and red clouds). Second, it illustrates the efficiency
frame of the incremental synchronization. Actually, when
size(U∆S

) / size(s′) (i.e., the left side of the black lane)
it is less complex to interpret the BPMN updates (red cloud)
than the BPMN models (blue cloud). Otherwise, the size of
the SCA updates (green cloud) becomes greater than the size
of SCA models (yellow cloud). This empirical observations
confirm the expected behavior of our synchronizer. Also, an
unexpected behavior arises in the practical experiments. It
concerns an almost linearity between the factorssize(s′)

size(s) and
size(t′)
size(t) . Since the generated updates are not correlated to the
models (i.e.,s′ are not proportional tos), then this supports
that our synchronization behaves like a transformation.

Evidently, there are some limitations inherent to our
operation-based method whensize(U∆S

) > size(s′). For
example, when adding two BPMN elements and deleting one
of them it is less interesting to translate three operationsthan
transforming the model (i.e., by neglecting thediff effort). To
address this scalability issue we can reduce the update se-
quences by eliminating the redundancy and enforcing distinct
operations. For example, an addition of a node followed by an
update of node’s attributes can be resolved to a single addition
with the appropriate attributes. Also, opposite operations can
be discarded. Thisnormalization[18] algorithm is decoupled
from the synchronizer since it is integrated with the BPMN
editing operations filter. We refer the reader to [6], [16] for
further discussions on the scalability concerns.
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Fig. 5. Incremental synchronisation efficiency.



VI. RELATED WORK

Building cross-organizational business systems with an SOA
[2] that leverage the service-enabled process management best
practices [3] implies a range of technical and methodological
issues. First of all, the alignment between business settings
and application functions has to be achieved with a Service
Dominant Logic [1]: the Service-Oriented Software Engineer-
ing. This requirement should drive the production of the busi-
ness services to achieve desired business processes. Second,
business processes evolution is an aspect which affects the
software life-cycle. There are many ways to change software
artifacts. They range from the requirements evolution of the
business processes to the SOA and the source code. Several
frameworks have emerged to help organizations to charter
successful route to Service-Oriented Computing [2]. The
Model-Driven Architecture provides a mean for using UML-
based transformations to drive the Service-Oriented Software
Engineering [4]. However, as UML is neither fully service-
oriented, nor business process-centered, it needs to address the
gap between the emerging standard notations and the lower-
level standards. A methodology suggested in [23] advocates
the integration of the business values perspective to Service-
Oriented Computing. It defines a methodology for the business
process space, but unfortunately fails to provide a practical
development scenario. Also, some attempts [24] provide tools
to transform BPMN to SCA models. Unfortunately, they do
not consider collaborative processes transformations anddo
not provide a mean for incremental model synchronizations.

To our knowledge, there is no tools providing automated in-
cremental synchronization and change impact analysis frame-
work with an advanced BPMN-to-SCA mapping. Only the
general model synchronizationframeworks [15] were used for
the consistency management among heterogeneous models.
Those frameworks give a general representation of the model
updates, but rely on users to write code to handle each
type of the modification in each metamodel [13]. Further-
more, QVT standard [25] encourages to use external model
synchronizer. In our case, the synchronizer extracts informa-
tions automatically from previous model transformations and
does not require users to write more synchronization code.
Graph transformation theory allows us to compute conflicts
and dependencies of transformation by relying on the idea
of critical pair of operations (i.e., on two assorted models)
analysis. Research conducted in the area of conditional graph
rewriting [6], [7] has mainly been driven by theoretical com-
puter scientists who put an emphasis on developing sound
theory [16]. However, change propagation across heteroge-
neous software models remains an open problem [15]. In [17],
the operation-based graph productions were used to express
refactoring software transformations and their evolution. The
usage of the assertions facilitates the detection of the syntactic
merge conflicts when transforming the graphs. The graph
transformations are executed in a uniform and scalable way.
However, this technique is mainly focused on homogeneous
model transformation, i.e., where the source and target models

conform to the same metamodel. In our work, we perform a
more thorough investigation on the heterogeneous incremental
model synchronization.

VII. C ONCLUSION AND FUTURE WORK

Providing sound and effective ways to maintain the align-
ment between the business logic and its supporting software
architectural logic is a challenge. It has become an important
challenge today where services are pervasive and where BPM
is mainstream in large companies strategy. In this paper, we
have tackled this issue from the perspective of the relation
between business process modeling and evolution and the
corresponding Service Component Architecture design. Our
approach not only allows to derive a component architecture
from a business process collaboration, but, as demonstrated in
this paper, allows to incrementally maintain this relationeven
in case of business evolutions. We have shown that a model-
driven approach can be used to derive an abstract service archi-
tecture from a business process. It also serves to maintain their
alignment when the process model is incrementally updated.
By deriving changes that have to be applied to the architecture,
we avoid to recreate an entire transformation. Our framework
is integrated to a change impact simulation and analysis
tool which is based on graph rewriting technique to avoid
the inconsistencies caused by change propagations. Finally,
we propose metrics for measuring the impact of business
process evolutions on SOA maintenance and demonstrating
model transformation/synchronization efficiency which en-
sures knowledgeable change governance. The scope of our
contribution is limited so far to the Service-Oriented Software
Engineering that uses BPMN and SCA languages. However,
it can be generalized to other domain-specific languages and
further domain modeling.

This work raises important questions. For example, if the
behavioural properties (deadlock, controllability [9], etc) on a
business process can be verified at design-time, are they still
valid for the component configuration at the execution-time.
Likewise, how IT developers can adapt their assets without
losing design decisions and diverging from the business set-
tings. We are also thinking about using it to consider the cloud
as the runtime framework where SCA is used for integrating
composite applications with the service delivery platform.

REFERENCES

[1] H.-M. Chen, R. Kazman, and O. Perry, “From software architecture
analysis to service engineering: An empirical study of methodology
development for enterprise soa implementation,”TSC, vol. 3, pp. 145–
160, 10.

[2] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-
oriented computing: State of the art and research chall.”Computer,
vol. 40, pp. 38–45, 07.

[3] M. Dumas and T. Kohlborn, “Service-enabled process management,” in
Handbook on BPM 1, ser. IHIS. Springer B., 10, pp. 441–460.
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