
AESON: A Model-Driven and Fault Tolerant
Composite Deployment Runtime for IaaS Clouds

Deepal Jayasinghe, Calton Pu
CERCS, Georgia Institute of Technology

266 Ferst Drive, Atlanta, GA 30332-0765, USA
{deepal, calton}@cc.gatech.edu

Fábio Oliveira, Florian Rosenberg, Tamar Eilam
IBM T.J. Watson Research Center

1101 Kitchawan Rd, Yorktown Heights, NY 10598, USA
{fabolive, rosenberg, eilamt}@us.ibm.com

Abstract—Infrastructure-as-a-Service (IaaS) cloud environ-
ments expose to users the infrastructure of a data center while
relieving them from the burden and costs associated with its
management and maintenance. IaaS clouds provide an interface
by means of which users can create, configure, and control a
set of virtual machines that will typically host a composite soft-
ware service. Given the increasing popularity of this computing
paradigm, previous work has focused on modeling composite
software services to automate their deployment in IaaS clouds.
This work is concerned with the runtime state of composite
services during and after deployment. We propose AESON, a
deployment runtime that automatically detects node (virtual
machine) failures and eventually brings the composite service
to the desired deployment state by using information describing
relationships between the service components. We have designed
AESON as a decentralized peer-to-peer publish/subscribe system
leveraging IBM’s Bulletin Board (BB), a topic-based distributed
shared memory service built on top of an overlay network.

Keywords-Failures, Fault-Tolerant, Model-Driven, Peer-to-Peer,
Publish-subscribe, Recovery

I. INTRODUCTION

The emergence of cloud computing has enabled a new model
of deployment and management of applications and services.
In particular, with the advent of Infrastructure-as-a-Service
(IaaS), many companies started relying on external cloud
providers to host some of their Web and enterprise applica-
tions. One of the motivations for the adoption of IaaS clouds
is to shift the burden of IT management to the cloud provider
so that companies can focus on their own core businesses.

Typical applications deployed to IaaS clouds require com-
plex software stacks comprising a multitude of distributed,
cross-dependent components such as load balancers, Web,
application, and database servers. At deployment time, all
required software components and middleware must be cross-
configured to ensure the application works correctly, and the
entire infrastructure must also be configured to support non-
functional requirements such as performance, availability, and
security. Not surprisingly, deploying and correctly configuring
such applications is a non-trivial, error-prone proposition. In
order to mitigate this problem, previous work has focused on
modeling such applications to automate their deployment and
configuration in IaaS clouds ([1], [13], [15]).

Given the massive scale of the data centers of IaaS
providers, which comprise a large number of heterogeneous

hardware components, it comes as no surprise that hardware
failures happen often in these environments, not to mention hu-
man mistakes made during data center operation, aggravating
this problem. Failures in the IaaS data centers can translate
into partial or complete outages of the hosted applications,
potentially causing the affected companies to suffer revenue
losses. Unfortunately, since the cloud provider lacks semantic
knowledge of the hosted applications and their topologies, it
cannot be trusted to recover them from failures, which may
entail application-specific actions including restarting some of
its components and reconfiguring others. Hence, part of the
management burden still lies on the hosted application owners.

We advocate that the deployment of an application in
an IaaS cloud must encompass a self-contained solution to
properly recover the application from failures should the
hosting cloud misbehave. Therefore, we advance the state-of-
the-art by going beyond mere automation of the initial de-
ployment and configuration; we propose AESON (Activation
Engine on Service Overlay Network), a deployment runtime
that automatically detects node (virtual machine) failures and
eventually brings the application to the desired state by using
a model describing the relationships between the application
components. AESON relies on the application model to deploy
the application as well as to recover it from failures that may
happen during and after deployment. At AESON’s core is a
decentralized peer-to-peer publish/subscribe system leveraging
IBM’s Bulletin Board (BB) [12], a topic-based distributed
shared memory service built on top of an overlay network.

AESON is a lightweight and flexible runtime with negligi-
ble performance overhead, capable of tolerating simultaneous
failures. It can handle three types of failures: node crash, node
hang, and application component failures. AESON guarantees
correctness (execute actions in correct order) and eventual
completeness (execute all actions) of the application deploy-
ment and recovery. We have experimentally verified AESON’s
completeness, correctness, and single and multiple concurrent
recoveries, as well as evaluated its performance overhead.

The remainder of this paper is structured as follows. We
introduce key concepts and formal definitions used throughout
the paper (§ II), describe AESON’s approach and architecture
(§ III), discuss key properties of AESON (§ IV), evaluate
its performance overhead (§ V), summarize the related work
(§ VI), and conclude (§ VII).

II. BACKGROUND

A. Composite Creation and Activation
We define a composite as a collection of inter-dependent
virtual machines (VMs) on which a distributed application
runs to provide a service. E.g., a composite for a Bulletin
Board application, such as RUBBoS [10], could comprise one
Apache server, two Tomcat servers, and one MySQL server.

A composite can be modeled through a virtual image
construction tool [13] as follows (see Figure 1). First, the user
chooses a base virtual image and customizes it by adding the
software packages required by the application (we describe
image creation in detail in [13]). In Figure 1, three virtual
images (Apache, Tomcat, and MySQL) are created. The next
step is to model the composite by specifying the images to use,
the number of instances of each image, and the connections
between the instances. In our sample, we depict a four-node
composite model using the previously created images. The
resulting composite model can later be used to deploy the
composite, i.e., to instantiate and configure the VMs.

A composite model created by the above process contains
operations (in the form of scripts) to be run at deployment time
to configure and cross-configure the software components, as
well as operations to be executed during failure recovery. The
composite model captures all cross-dependencies between the
defined operations, as exemplified in Figure 2.

We define activation as the fully automated process of start-
ing the VMs for a given composite and running the deploy-
time operations to configure the application components on
those VMs so that the application can function properly.
During the deployment of the composite modeled in Figure 1,
one Apache VM, two Tomcat VMs, and one MySQL VM
will be started. Next, the deploy-time operations executing on
the VMs take care of, for instance: configuring Apache to act
as the load balancer for the two Tomcat VMs; deploying the
application logic to Tomcat; and configuring Tomcat to access
the application database on the MySQL VM. In the paper, we
refer to each individual operation performed on deployment as
an activation action, and to each operation performed during
recovery (when a failure occurs) as a recovery action.

B. Definitions and Terms
In this section we formally define some of the terms that

are used in rest of the paper.
Definition 1: Execution of an activation (or recovery) ac-

tion is an atomic event that is either completed successfully
in time tmax or fails in one of two ways: a system error
cause it to terminate before tmax, or it is marked as a
faulty execution after tmax (the user-specified value for the
maximum execution time) has elapsed.

Definition 2: Dependency d = {a1, VM1, a2, VM2} is a
quadruple, where action a1 on VM1 should be executed only
after action a2 on VM2 is completed.

Definition 3: Sensitivity s = {r1, VM1, r2, VM2, l} is
a quintuple, where recovery action r1 on VM1 should be
executed if recovery action r2 on VM2 has been executed
and local state of VM1 has reached the level l.

Fig. 1. The process of creating images and modeling a composite service.

Definition 4: Parameter propagation p = {a1, VM1, p1,
a2, VM2, p2} is given by a sextuple, where action a1 on
VM1 takes a set of input parameters p1 from the set of output
parameters p2 produced by executing a2 on VM2.

Definition 5: Main recovery refers to recovering a failed
node by either restarting or recreating a virtual machine.

Definition 6: Secondary recovery refers to the execution of
recovery actions on non-failed nodes, which is driven by the
specified sensitivity of the nodes.

To illustrate the concepts discussed above, Figure 2 shows
a snippet of the configuration file of our sample compos-
ite’s Tomcat server. It defines two activation actions, namely
deploy and configure. The deploy action does not depend
on any other activation actions; it deploys the RUBBoS
Web application to the Tomcat container. In contrast, Tom-
cat’s configure action depends on MySQL’s configure,
since the former consumes as an input parameter the output
parameter (MySQL URL) produced by the latter. Finally,
the configuration file defines a secondary recovery action
reconfigure, stating that the Tomcat server is sensitive to
MySQL’s restart recovery action after Tomcat has reached
the level configure. In other words, on failure, if the MySQL
VM is restarted, the Tomcat VMs will run reconfigure,
provided they have already run the configure operation.

III. AESON - APPROACH

AESON performs three key activities for a composite service:
activation, monitoring, and recovery. It constantly monitors the
status of the composite service during and after deployment.
In the event of a node failure, AESON detects the failure, de-
termines an appropriate recovery plan (a subset of the defined
recovery actions), and executes the plan to bring the service
back to normal operation. This is illustrated in Figure 3, where

<Activation>

 <VirtualSystem id="rubbos_tomcat">

 <ProductActivation class="deploy">

 <Program cmdLine="true" href="AS/deploy.sh"/>

 </ProductActivation>

 <ProductActivation class="configure">

 <Properties>

 <Property key="mysqlurl"/>

 </Properties>

 <Program cmdLine="true" href="AS/configure.sh"/>

 <ProductDependency class="configure" vsId="rubbos_mysql">

 <PropertyMapping sourceKey="mysqlurl" targetKey=" mysqlurl "/>

 </ProductDependency>

 </ProductActivation>

 <ProductActivation class="reconfigure">

 <Sensitivity sensitivity="restart" vsId="rubbos_mysql" level=" configure "/>

 <Program cmdLine="true" href="AS/configure.sh"/>

 </ProductActivation>

 </VirtualSystem>

</Activation>

Fig. 2. A snippet of the configuration file for the composite’s Tomcat server.

Fig. 3. AESON: monitoring and failure recovery.

the RUBBoS application is (being) deployed and a failure
occurred in the MySQL server (1). The monitor detects the
failure and notifies the recovery module; subsequently, the
recovery module talks to the cloud API to execute the required
main recovery action (restart or recreate the failed VM) (2).
Next, by using the composite model, appropriate recovery
actions are executed on non-failed nodes (in the RUBBoS
case, Tomcat1 and Tomcat2 are reconfigured) (3). As we will
discuss later in the paper, the executed recovery plan is created
in a distributed manner by using the specified sensitivities
(definition 3). After the recovery plan execution, the service
will be back to normal operation (if failed after deployment),
or to a clean state (if failed during deployment) from which
AESON can take the service to the desired deployment state.

A. System Architecture

Our primary goal when designing AESON was to embed
in a composite a management middleware responsible for
recovering it from failures. To realize such self-contained
management, we designed AESON as a peer-to-peer (P2P)
system. In this design, the role of orchestrating deployment
and recovery is distributed to all nodes; we leverage the

multi-node nature of composites to make AESON itself fault-
tolerant: it runs on each node, avoiding a single point of
failure (see Figure 1). In contrast, a self-contained centralized
orchestration approach would exhibit a single point of failure.

For AESON, each composite node is a management peer.
This P2P design naturally captures the dynamic nature of cloud
applications, where nodes (peers) can fail and join at any
time. AESON leverages the publish/subscribe communication
mechanism implemented by IBM’s BBSON [12], which offers
an abstraction that further facilitates our design. Since a
publisher can publish even with no subscribers, the separation
between communication and execution of activation/recovery
actions is clean and elegant.

As shown in Figure 4, AESON consists of four main
components:

Configuration
Every action that AESON takes is based upon the
composite model, which dictates what to do during
both normal activation and recovery.

Communication
Each peer communicates using the BBSON APIs
for publishing and subscribing to topics. AESON
maintains one topic per node for activation and re-
covery orchestration, plus two topics used for leader
election, as explained later.

Failure and Recovery
Constant status monitoring is needed to detect fail-
ures and recover from them. AESON uses a moni-
toring utility provided by BBSON.

VM Control
Interactions with cloud APIs are needed to start, stop,
create, re-create, and restart VMs.

AESON comprises activation, recovery, and logging mod-
ules. The activation module is responsible for tasks related to
normal activation, such as: checking, validating, and enforcing
dependencies; and execution of activation scripts and related
parameter propagation. The recovery module is used during
failure recovery. It checks the sensitivity of nodes and executes
appropriate recovery actions, propagating parameters when
recovery actions so require. The logging module logs all local
ongoing activities and their statuses, so that each node that is
restarted can know which of its actions it has completed and
which ones it has yet to perform.

B. Normal Activation

Normal activation refers to the process of deploying and
configuring a composite service in the absence of failures.
At start-up, each node first joins the AESON group of the
composite; only after all nodes have joined the group does
normal activation start. It ends after all activation actions are
completed successfully, at which point the composite will
have reached the desired deployment state as specified by the
composite model. In Section IV-A we highlight how normal
activation eventually ends in AESON.

During normal activation, the nodes collaborate and coor-
dinate with each other to reach the desired state. Each node

Fig. 4. AESON architecture.

performs the following activities when it executes a normal
activation action. (1) It checks whether all dependencies are
fulfilled; if not, it asks the status of the missing dependencies
by posting on its own topic and waits until all dependencies
are satisfied. (2) If all dependencies are satisfied, the node
publishes on its topic indicating that it is going to start the
action. (3) The node executes the script associated with the
action by passing all the required input parameters. Those
parameters may come from the model or from another script
on which this action depends (e.g., database URL may come
from database-config.sh). Next, the node extracts any output
parameters (output produced by the script), and publishes the
status of the execution along with the output parameters. If the
execution completed as a failure, then it informs the group,
which will terminate the activation process across all nodes.

AESON checks the cross-dependencies of actions to guar-
antee a correct execution order. If a dependency of an action to
be run has not been satisfied yet, the dependent node publishes
on its topic a status request. Once the affected node sees such
a request, it updates the status of the requested action on its
topic. Upon seeing a positive update, the node waiting for it
can then run the dependent action.

C. Fault Model

AESON is designed to support three types of failures: node
crash, i.e., it cannot be accessed through ICMP (ping) or
through the cloud API; node hang, i.e., it cannot be accessed
through ICMP but can be accessed through the cloud API;
and application component failure, i.e., the node can be ac-
cessed through both ICMP and Cloud API, but an application
component running on the node has either crashed or hung.
Node crashes and hangs can be addressed by using two levels
of application-independent monitoring; in contrast, to identify
application component failures we need application-specific
monitoring. The current prototype is implemented to monitor
node crashes and hangs only; application-specific monitoring
will be addressed in future work.

We have leveraged BBSON to realize our fault model. Each
node constantly keeps sending and receiving heartbeats. In
this model, a node is assumed to be failed if other nodes
do not receive heartbeats for a specified time period. Thus,
when a VM hangs or crashes, AESON detects it through

BBSON. Subsequently, AESON waits for the specified time
to see whether the failure is intermittent or permanent; if it is
permanent, AESON uses the cloud API to take the required
main recovery action and trigger the recovery plan. In our
fault model we use two types of operations (main recovery) to
recover a failed VM: restart and create. If the VM cannot be
accessed through ICMP but can be accessed through the cloud
API, then the resolution is to restart it; otherwise, AESON
creates a new VM. Also, if the restart resolution does not
solve the problem, AESON creates a new VM.

In a restarted VM, the recovery module runs only the
activation actions that have not been completed. It uses the
logging module to find the completed actions. In contrast, in
a newly created VM, all normal activation actions will run.
Notably, doing either restart or create on the failed node has
consequences on non-failed nodes as well. For example, if a
VM that runs the database is recreated, then the application
server may need to restablish its database connection. Hence,
non-failed nodes may also need to perform some actions as
part of the recovery. In the next subsection we will detail the
recovery process on non-failed nodes.

D. Recovery

The recovery process is divided into two stages: main recovery
(recovering the failed node, e.g., MySQL server in Fig 3)
and secondary recovery (recovering the non-failed nodes, e.g.,
Tomcat1 and Tomcat2 in Fig 3). In main recovery, AESON
decides the appropriate recovery action (i.e., restart or create)
by retrieving the status of the failed node via the cloud API. In
contrast, secondary recovery is solely driven by the composite
model. Given the model and the failure, the nodes will be able
to coordinate to execute the underlying recovery plan.

The execution of secondary recovery takes place in a
distributed and dynamic manner. Concretely, each node de-
cides the next needed recovery action based on the actions
performed by other nodes, its current local state, and its
sensitivities defined in the model. In our example of Figure 3,
assume a recovery action is “restart the MySQL server.” If the
application server has not deployed the Web application yet,
then no recovery action is needed. However, if the application
server has already created database connections, then it needs
to restablish them. In other words, the application server needs
to perform a recovery action due to the database failure.

When a node failure is detected during deployment, normal
activation is paused on all nodes until the recovery process is
completed. However, if a node is in the middle of a normal
activation action, it completes the ongoing action and then
abstains from executing any further activation actions until
the recovery has been completed.

During recovery, AESON has the notion of an elected
“leader” (see Algorithm 1). A leader is needed mainly to
prevent two nodes from initiating the main recovery action
(i.e., restarting or recreating the failed VM). The leader even-
tually finds the node failure and initiates the main recovery
action. Once the newly created or restarted VM is active, it
automatically joins the AESON group. If the VM is restarted,

it already has the IP address of all other nodes; thus, it uses
one of those as the bootstrap node1. In contrast, if the VM
is recreated then a bootstrap node IP address is passed as a
parameter to the VM.

When the failed node rejoins, the leader informs the group
indicating that it has successfully completed the main recovery.
Consequently, if a node has sensitivity to the main recovery
action, then it will run the recovery action on that node,
which drives recovery action(s) on other nodes based on their
sensitivities. The leader notifies the group when all sensitivity-
driven recovery actions have been executed. Once the recovery
is completed, normal activation is resumed (if the failure
happened during deployment). One should note that the newly
rejoined node performs normal activation actions and does not
perform any recovery actions.

At any given time AESON can handle two types of recov-
eries: single recovery (i.e, only one ongoing recovery) and
multiple recoveries due to multiple failures, including failures
that happen during ongoing recoveries.

1) Single Recovery: In this case, the leader eventually
finds the node failure and initiates the main recovery action.
Importantly, if the leader happens to be the failed node,
then another member of the group is elected the new leader;
the newly elected leader initiates the main recovery action.
Once the main recovery action is completed, a chain reaction
starts, where the execution of one recovery action may trigger
recovery actions on other nodes. Once all secondary recovery
actions are completed, the leader marks recovery as finished
and notifies the group. Upon receiving the recovery-completed
notification, each node resumes normal activation, if the failure
happened during deployment, or else the system is ready.

2) Multiple Recoveries: It is conceivable that more than one
node can fail simultaneously, or that a node can fail during the
recovery of another failure. Regardless of the way in which
nodes fail, in AESON, secondary recovery is performed only
when all nodes are connected in the group. Hence, the first
task is to initiate the main recovery actions for the failed
nodes. Once all nodes are recovered (rejoined the group),
AESON resumes/starts the secondary recoveries, from the
latest sequence to the first. In effect, multiple failures become
a series of single recoveries, where each single recovery
corresponds to a separate recovery plan.

A major challenge in handling multiple recoveries is the
leader failure in the middle of ongoing recoveries. For ex-
ample, assume multiple nodes failed and for some (not all) of
them the leader called the cloud API to start the main recovery;
later, the leader crashes. As mentioned earlier, in the event of
the leader failure, a new leader will be elected using the leader
election algorithm (see Algorithm 1); however, the new leader
needs to start from where the previous leader has left off. This
is possible with our approach because each peer in the system
has the same view on the current system state. Thus, when
the leader fails, the new leader can take over and guide the

1If a new node wants to join a P2P system, then it is required to know the
address of at least one peer.

Algorithm 1: Sketch of AESON’s Leader Election
• Step1: Subscribe to the Election topic and publish process

ID to the Election topic.
• Step2: Subscribe to the LeaderInfo topic.
• Step3: Wait until the membership of the leader is posted in
LeaderInfo by a single process, or a timeout expires.

• Step4: If the timeout expires before the leader info is available
in LeaderInfo, elect a new leader using the Election
topic:

– Select the preferred process with minimum ID among the
publishers to the Election topic as the current leader.

– If not selected as a leader, go to Step3.
• Step5: When there are more than one leader published in the
LeaderInfo and I am not the leader with the minimal ID,
then unpublished myself from LeaderInfo.

• Step6: When the leader process fails (its record disappears
from the LeaderInfo topic):

– If I am the node with the preferred node with the
minimal ID published in the Election topic and post
myself in the LeaderInfo.

– If not selected as a leader, go to Step3

recovery of the system.

IV. SYSTEM STATES AND PROPERTIES

In this section, we briefly outline AESON’s state transitions
that happen during both normal activation and recovery. We
also present key properties that AESON supports.

Figures 5(a) and (b) represent, respectively, AESON’s
global state transitions and local state transitions. The global
state is an aggregated view of the local states of all nodes. For
the reader to better understand the figures, we define below
some of the terms used:

• Initial: For the global case, it means that all nodes in the
composite have joined the group of peers but none has
started normal activation. For the local case, the node in
question has joined the group.

• Desired: It refers to the completion of normal activation
and/or recovery.

• Intermediate: It is a global state between initial and
desired.

• Terminated: It is the state resulting from AESON’s
aborting its operation due to an unrecoverable failure or
a permanent execution error exhibited by an activation or
recovery action.

• Dirty: It refers to the time during which an activation or
recovery action is being executed.

• Failed: AESON has detected a failure, but the corre-
sponding recovery plan has not started yet.

• Recovering: AESON is in the middle of a recovery plan
execution.

In a nutshell, the local state transition graph shows the states
each node can be in while AESON performs its activities
for activation and recovery, whereas the global state transition
graph summarizes the holistic view of the system, based on
all local states.

(a) Global State Transitions (b) Local State Transitions

Fig. 5. State transition diagram for global and local states.

A. System Properties

We now outline important properties supported by AESON,
some of which are directly inherited from BBSON [12].

Dependency Preservation: Let X and Y be activation ac-
tions on two VMs, VM1 and VM2, respectively. If Y depends
on X, then X finishes on VM1 before Y starts running on VM2.
AESON supports this because of two BBSON properties:
eventual inclusion and correctness.

Timeout Enforcement: Let the user-specified maximum
time for an activation or recovery action X be tmax. X’s
execution will be either successfully completed in time t
(where t ≤ tmax), or marked as faulty otherwise.

Sensitivity Enforcement: Let P and Q be two recovery
actions on two different VMs. If P is sensitive to Q, then if Q
is executed, P will be executed. P’s execution will start after
Q’s is completed.

State-Change Enforcement: Let VM1 and VM2 be two
different VMs. Suppose that VM1 performs an action P; as
a result, it will publish P’s execution completion notification
on its own topic. This notification will eventually reach VM2,
since all VMs subscribe to the each other’s topics and BBSON
guarantees eventual consistency. Furthermore, in the case of
recovery, AESON implements a two-phase protocol to ensure
that no state change is lost (see Algorithm 2). With BBSON,
given two consecutive posts to a topic, the subscribers may
only see the last one. During the execution of recovery plans,
AESON’s implementation relies on not missing any posts.

Based on the above properties and those guaranteed by
BBSON, we can make the following claims.

B. Claim 1: Eventual Activation Completeness

Under the assumption that each provided activation action
behaves normally and finishes its execution within time tmax,
AESON guarantees that all activation actions of the composite
will complete.

Eventual activation completeness, as herein defined, comes
as a corollary of state-change enforcement. Since all nodes
will be eventually notified of the execution progress of each

Algorithm 2: Two Phase Protocol for State Enforcement
• Step1: When a node Ni wants to enforce the state transition

for action ai Ni posts a state update message on Ni’s topic.
• Step2: All the connected nodes respond by posting ACKs on

their topics.
• Step3: If Ni unable to receives ACKs from all the connected

node, then it waits time t and reposts the state update.

activation action, all actions will eventually complete, even the
ones that depend on the execution of others.

C. Claim 2: Correctness

As a corollary of dependency preservation and sensitivity
enforcement, AESON guarantees that activation and recovery
actions will be executed in a correct order, as defined in the
composite model.

D. Claim 3: Eventual Single-Recovery Completeness

In the case of a single-node failure, AESON guarantees
that the composite will be restored to the desired state, under
the following assumptions: (1) each provided recovery action
behaves normally and finishes its execution within time tmax;
and (2) the main recovery action (VM restart or create) fixes
the observed node failure.

Given BBSON’s eventual exclusion property, i.e., when a
peer leaves the group all nodes eventually notice it, all nodes
will eventually perceive the node failure. Because of state-
change enforcement, all nodes will be notified of the initiation
and completion of the main recovery action. Similarly, all
nodes will be notified of the execution progress of each
secondary recovery action. Therefore, all recovery actions will
eventually complete, regardless of their sensitivities (depen-
dencies).

E. Claim 4: Eventual Multiple-Recovery Completeness

When facing simultaneous failures, or failures that happen
during an ongoing recovery plan, AESON guarantees that
the composite will be restored to the desired state under
the following assumptions: (1) each provided recovery action

behaves normally and finishes its execution within time tmax;
(2) the main recovery action (VM restart or create) fixes the
observed node failure; and (3) at least one of the nodes does
not fail.

Each failure is eventually perceived due to BBSON’s even-
tual exclusion property. Because of state-change enforcement,
all nodes will be notified of the initiation and completion of
each main recovery action. Similarly, all nodes will be notified
of the execution progress of each secondary recovery action, of
all recovery plans. Therefore, all recovery actions will eventu-
ally complete, regardless of their sensitivities (dependencies).

V. PERFORMANCE EVALUATION

We have experimentally verified AESON’s completeness, cor-
rectness, and fault tolerance. However, due to the associated
complexity of graphical representation, we have limited our
discussion only to the performance overhead of AESON,
which follows.

In order to assess AESON’s performance overhead, we
modeled and deployed a composite for the RUBBoS Bulletin
Board benchmark application [10]. Our composite comprises
one Apache server, two Tomcat servers, and one MySQL
server. Each individual application component is assigned to
a dedicated host and each host has a running instance of
AESON. As a baseline for comparison, we also manually
deployed the RUBBoS composite, running it without AESON.
We varied the RUBBoS workload intensity by generating
requests originating from 100 to 1000 users. We measured
the client-perceived performance overhead (response time and
throughput) as well as the resource utilization at each server.

Each data point shown in the graphs of Figures 6 and 7
represents the average of 3 experiment runs. The observed
average throughput and response time values are shown in
Figure 6(a) and Figure 6(b) respectively. As shown in Figure 6,
AESON shows a performance similar to the baseline case up
to 700 users. From that point on, AESON shows an average
of 6% performance drop.

We also analyzed the CPU utilization in the deployed
servers (see Figure 7(a)) and found that the observed perfor-
mance degradation (for both baseline and AESON) is caused
by a high CPU utilization at the Tomcat servers. For low CPU
utilization, both AESON and the baseline have a negligible
difference in throughput and response time; when the system is
highly utilized, AESON causes a small performance overhead
(6%).

AESON is designed as a P2P system and at runtime each
peer communicates by sending application messages, which
causes network overhead. Thus, to understand the overhead
we measured he number of network bytes sent and received
at each server. The measured results for network are shown in
Figure 7(b) and Figure 7(c). The network overhead introduced
by AESON is negligible. Notably, after 800 users, the baseline
approach exhibits higher network traffic than AESON. This is
due to the throughput drop we observed in Figure 6(a). Since
the throughput is higher for the baseline case, it processes
more requests; hence, more data packets.

(a) Throughput

(b) Response Time

Fig. 6. Performance overhead of AESON (Throughput and Response Time
Comparison).

In summary, in our experiments, AESON showed a small
performance overhead.

VI. RELATED WORK

The issue of detecting failures and doing something to fix
them has been around as computers, for instance, this was
first discussed in the concept of system diagnosis [2]. Some
approaches have focused on automatic restarting of compo-
nents before or after they have failed [3], [4]. There have
also been some works in applying techniques from Markov
decision theory to dependability problems [5]. Yet, most
studies try to recover a service after deployment and focus
on the mechanisms by which recovery can be automated and
made more efficient, rather than determining when and where
the recovery actions should be applied.

Yuanshun et al. studied the self-healing function from the
consequence-oriented point of view [7]. To fulfill the self heal-
ing requirements of efficiency, accuracy, and learning ability,
a hybrid tool that takes advantages from Multivariate Decision
Diagram and Naı̈ve Bayes Classifier is proposed. Kaustubh et
al. combined monitoring and recovery to realize the benefits
that cloud not have been obtained by using them in isolation,
they also presented two algorithms and evaluated those using
fault injections [6]. A fine-grained technique for surgically
recovering faulty application components, without disturbing

(a) CPU Utilization

(b) Network Traffic (Send)

(c) Network Traffic (Receive)

Fig. 7. Performance overhead of AESON (Comparison of CPU Utilization
and Network Traffic).

the rest of the application is presented in [8]. Arun et al.
proposed operating system virtualization techniques to provide
automatic and transparent mechanism for proactive FT for
arbitrary MPI applications [9].

A failure during a failure recovery process poses a tough
problem because of the complexities involved, importantly,
AESON is designed to address this problem. Previously,
Naveed et al have also proposed an approach using the depen-
dency model of the system to address a similar problem [14].
One of the biggest advantages of ours compared to most of
the approaches discussed above is we have designed AESON

as a decenterlized P2P system to prevent the single point of
failure. In addition, AESON does not make any assumptions
about the application; second, it supports three types of faults;
and third, AESON supports fault detection and recovery during
both deployment and after deployment.

VII. CONCLUSION

We presented AESON, a model driven fault tolerant com-
posite service activation runtime to address dependability
issues of enterprise applications that are deployed (and being
deployed) in IaaS clouds. AESON uses a composite model to
automatically heal from virtual machine failures during both
deployment time and after deployment. To prevent the single
point of failure, AESON is designed as a P2P pub/sub system
by leveraging IBM Bulletin Board (a topic-based distributed
shared memory service built on top of an overlay network).
We experimentally evaluated the correctness, completeness,
and ability to recover from single and multiple virtual ma-
chine failures. We analyzed AESON’s performance overhead
showing a negligible impact.

VIII. ACKNOWLEDGMENTS

We would like to thank Vita Bortnikov, Mike Spreitzer, and
Alexey Roytman (IBM Research) for their help with BBSON.
We are indebted to Vita also for the leader election algorithm
and for its integration with BBSON.

REFERENCES

[1] T. Eilam, M. Elder, A. Konstantinou, E. Snible. Pattern-based Composite
Application Deployment. In IM 2011.

[2] F. Preparata, G. Metze, and R. Chien. On the connection assignment
problem of diagnosable systems. In IEEE Trans. on Electronic Comp.,
EC-16(6):848-854, Dec 1967.

[3] G. Candea, J. Cutler, A. Fox, R. Doshi, P. Gang, and R. Gowda. Reducing
recovery time in a small recursively restartable system. In DSN 2002.

[4] D. Oppenheimer, A. Brown, J. Beck, D. Hettena, J. Kuroda, N. Treuhaft,
D. Patterson, and K. Yelick. Roc-1: Hardware support for recovery-
oriented computing. In IEEE Trans. On Computers, Feb 2002.

[5] H. de Meer and K. S. Trivedi. Guarded repair of dependable systems. In
Theoretical Comp. Sci., 128:179-210, 1994.

[6] K. Joshi, M. Hiltunen, W. Sanders, R. Schlichting. Automatic Model-
Driven Recovery in Distributed Systems. In SRDS 2005.

[7] Y .Dai, Y. Xiang, G. Zhang. Self-healing and Hybrid Diagnosis in Cloud
Computing. In CloudCom 2009.

[8] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, A. Fox. Microreboot
- A Technique for Cheap Recovery. In OSDI 2004.

[9] A. Nagarajan, F. Mueller, C. Engelmann, S. Scott. Proactive Fault
Tolerance for HPC with Xen Virtualization. In ICS 2007.

[10] RUBBoS: Bulletin board benchmark. jmob.objectweb.org/rubbos.html.
[11] F. Preparata, G. Metze, and R. Chien. On the connection assignment

problem of diagnosable systems. In IEEE Trans. on Electronic Comp.,
EC-16(6):848854, Dec 1967.

[12] V. Bortnikov, G. Chockler, A. Roytman, M. Spreitzer. Bulletin Board:
A Scalable and Robust Eventually Consistent Shared Memory over a
Peer-to-Peer Overlay. In LADIS 2009.

[13] F. Oliveira, T. Eilam, M. Kalantar, F. Rosenberg. Semantically-Rich
Composition of Virtual Images. In IEEE Cloud 2012.

[14] N. Arshad, D. Heimbigner, A. Wolf. Dealing with failures during
failure recovery of distributed systems. In 2005 workshop on Design
and evolution of autonomic application software

[15] Amazon Web Services. CloudFormation. http://aws.amazon.com/
cloudformation/.

