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Abstract—Service provision networks are popular platforms for 
decentralized service management. eBay and Amazon are two 
representative examples of enabling and hosting service 
provision networks for their customers. Trust management is a 
critical component for scaling service provision networks to 
larger set of participants. This paper presents ServiceTrust, a 
quality sensitive and attack resilient trust management facility 
for service provision networks. ServiceTrust has three unique 
features. First, it encapsulates quality-sensitive feedbacks by 
multi-scale rating scheme and incorporates the variances of 
user's behaviors into the local trust algorithm. Second, 
ServiceTrust measures the similarity of two users' feedback 
behavior and aggregate the local trust values into the global 
trust algorithm by exploiting pairwise feedback similarity 
scores to weight the contributions of local trust values towards 
the global trust of a participant. Finally, pairwise feedback 
similarity weighted trust propagation is utilized to further 
strengthen the robustness of global trust computation against 
malicious or sparse feedbacks. Experimental evaluation with 
independent and colluding attack models show that 
ServiceTrust is highly resilient to various attacks and highly 
effective compared to EigenTrust, one of the most popular and 
representative trust models to date.  

Keyword-trust management, multi-scale rating, trust 
propagation, similarity, attack-resilient 

I. INTRODUCTION 
Service oriented computing refers to architectures, 

platforms and technologies of packaging and delivering 
computing capabilities that are common to multiple domain 
problems as services. In the last decade, we have witnessed 
the evolution of service provision platforms from in-house to 
cloud and from centralized client-server model to service 
provision network model. A unique feature of a service 
provision network is to allow every participant to be service 
provider and service consumer at the same time and to bridge 
between service consumers and service providers on demand. 
For example, when purchasing a product from Amazon or 
eBay, a ranked list of sellers is offered to the users as service 
providers. This ranking is based primarily on consumers’ 
feedback ratings obtained through their prior transaction 
experiences with the service providers. Thus, such rankings 
can serve as valuable references for those users who have no 
prior experience with or no prior knowledge about the 
providers. Although the service provision network model 
offers the opportunities for consumers to be connected to 
unfamiliar service providers and for providers to reach a 
larger and growing customer base, the opportunity to interact 
with unknown providers also opens doors for potential risks 
of dishonest ratings and malicious manipulations.  

Introducing the trust management into a service provision 
network system has proved to be an effective way to improve 

the trustworthiness of the system, as evidenced in eBay and 
Amazon. Trust is regarded by many as one of the most 
important measures for sharing information and developing 
new consumer-provider relationships. Trust management has 
attracted active research in several areas of computer science, 
such as peer to peer systems, sensor networks, social 
networks, eCommerce, mobile computing systems and 
applications, to name a few. Most of the trust models are 
based on per-transaction feedbacks.  Thus the trust of a 
provider is computed in two steps: First, for each pair of 
provider and consumer, a local trust is computed by 
aggregating the set of feedback ratings provided by the 
consumer who has had transactions with the provider. Second, 
a global trust of a provider is computed based on the set of 
local trusts this provider has received from the consumers in 
the service provision network.  

Existing trust management models differ from one another 
in three aspects: (i) how the users’ feedback ratings are 
aggregated in computing the trust of providers, (ii) how 
resilient the local and global trust computation is against 
dishonest feedbacks and malicious manipulations, and (iii) 
how trust is computed in the presence of sparse feedbacks and 
cold start. For example, different methods are used to 
aggregate feedback ratings, ranging from simple algorithmic 
aggregation methods such as those used in eBay to more 
complex feedback aggregation methods based on statistical 
significance, such as naïve Bayesian with majority voting, 
Bayesian belief networks, eigenvector and so forth. 
Unfortunately, most of the existing approaches have been 
developed independently and little efforts have been made to 
compare and understand the relative strength and inherent 
vulnerabilities of different approaches. Concretely, how 
dishonest feedbacks and sparse feedbacks may impact on the 
effectiveness of the existing trust models?  How the cold start 
(new comers) problem is handled, and how robust and 
resilient the existing trust models are and whether the 
proposed trust model will remain to be effective in the 
presence of some known attacks. We believe that answers to 
these questions are critical to critical for building an attack 
resilient trust management for service provision networks.  

Based on these observations, we present ServiceTrust, an 
attack resilient trust management scheme for service 
provision networks. ServiceTrust offers two distinct 
capabilities for establishing and managing trust in a service 
provision network. First, with multi-scale service level 
agreements (SLAs) becoming pervasively employed in 
evaluating quality of services today, ServiceTrust provides a 
quality-sensitive aggregation method to encapsulate multi-
scale feedback ratings as a generalization of binary feedback 
rating scheme. Thus, the local trust computed based on multi-
scale ratings is more sensitive to quality differentiation and 
more resilient to colluding attacks. Second, ServiceTrust 



enhances the attack resilience of global trust computation 
through two steps: (i) ServiceTrust introduces the pairwise 
feedback similarity as a measure of feedback quality, aiming 
at preventing the detrimental effects of dishonest feedbacks 
and malicious manipulation of feedback ratings on the 
validity of global trust value of a participant. (ii) ServiceTrust 
computes the global trust of a participant by utilizing the trust 
propagation kernel powered with the feedback similarity 
based propagation control. This capability enables us to 
effectively discredit those participants who are strategically 
malicious and to control the amount of trust propagating from 
a good participant to a malicious participant. We have 
conducted an extensive experimental evaluation to show the 
effectiveness and efficiency of ServiceTrust. To the best of 
our knowledge, ServiceTrust is the first to exploit multi-scale 
rating similarity based trust propagation to provide attack 
resilience in trust management for service provision networks.  

II. RELATED WORK 
Reputation management often refers to trust management 

in a large social network of participants where trust of a 
member participant is computed based on the feedback 
ratings he or she receives from the rest of the participants. An 
overview of some key issues in reputation management is 
given in [8]. Trust metrics on graphs were given [1]. The 
notion of transitive trust, though initially presented in [1], was 
made popular by EigenTrust [6] through the use of Eigen 
vector [7] based propagation kernel. The feedback credibility 
concept and its role for defending against dishonest feedbacks 
is first introduced in PeerTrust[11]. In addition, [11] also 
describes the roles of transaction context may play in making 
trust model more resilient to attacks. Trust relationships in 
Web-based social networks are studied in [2,4,5,9]. [10] 
proposed a fuzzy logic based aggregation method to compute 
trust. [12] utilizes contextual similarity to evaluate trust in 
eCommerce environment. The contribution of this work is 
two folds. First, we analyze the vulnerability of existing trust 
models in the presence of dishonest feedbacks, sparse 
feedbacks, colluding behaviors. Second, we show through the 
development of ServiceTrust how to utilize pairwise feedback 
similarity during the aggregation of local trust assessments of 
all participants in an efficient and robust manner. 

III. BACKGROUND AND OVERVIEW   

A. Reference Trust Model 
In a service provision network of N participants, each 

participant can be a service provider and also a service 
consumer. Thus the relationship between any two pair of 
participants simulates the peer to peer relationship.  

When a peer Pi acting as a provider to respond to a service 
request from another peer Pj, the receiving peer Pj is allowed 
to enter a feedback rating on Pi in terms of the quality of the 
service provided by Pi. We refer to this as a per-transaction 
based feedback.  

1) Computing local trust by aggregating feedbacks 
Let ( , )tr i j  denote the feedback rating from peer i to peer j 

where i,j ∈[1,…,N] and tr(i,j) is initialized to zero. Using a 
binary rating scheme, when a peer i competes a transaction 

with another peer j at time t, then peer i may rate the 
transaction it has with peer j as positive by tr(i, j, t) = 1or 
negative by tr(i, j, t) = −1 . Let ( , )sat i j denote the total 
number of satisfactory transactions between peer i to peer j, 
and ( , ) denote the number of unsatisfactory 
transactions between peer i to peer j. We define ( , )

unsat i j
s i j  as the 

aggregation of all feedback ratings from peer i to peer j, 
namely, ( , )( , ) ( , )s i j sat i j unsat i j= − . Clearly, ( , )s i j is a 
positive integer if there are more positive feedback ratings 
and negative otherwise.  

Now we compute the local trust based on s(i,j), denoted 
by cij. We need to normalize the local trust values into the 
range of [0,1] in order to make the comparison meaningful 
between peers with high volume of transactions and peers 
with low volume of transactions. For example, we can define 
cij by normalizing ( , )s i j using the maximum satisfactory 
score from all participants who have had the direct 
transactional experiences with peer i as follows: 
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In Formula (1), P denotes a set of pre-trusted seed participants 
(pre-trusted peers). We use the pre-trusted seed peers to 
bootstrap the system initially and to allow new comers to be 
linked to some existing participants in the network.  

2) Computing global trust by trust propagation kernel 
Let n denote the total number of participants in our service 

network system. We define C = [ as a matrix of n rows by 

n columns. Let  denote the initial global trust value of peer 

i. We have t =1/n.  
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Let denote the k-hop global trust value of peer i. We 
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denote the global trust vector of size n at kth iteration (1<k<n). 
The general formula for computing the global trust vector at 
the (k+1) iteration is: 

k = ( )t1
k ,..., ti

k ,..., tn
k

t
k+1 = CT t k                                          (2) 

Thus we have t . The trust vector = (C
T

)
m t 0 t  will 

converge to the left principal eigenvector of C if m is large 
enough [6,7]. For each element of this global trust vector, ti , it 
quantifies how much trust the system as a whole places on the 
participant i.  

Recall the cold start problem in terms of new comers or 
participants with no feedback ratings from others, we address 
this problem by utilizing a set P of pre-trust seed peers as the 
bootstrap peers. Any participant that does not know whom to 
trust can always trust one of the pre-trust peers with a 
probability of 1/|P|.  Thus, we can also initialize the golbal 
trust verctor t  by some distribution  over pre-trust peers, 0 p



e.g., 1/|P|. Furthermore, we need to handle malicious 
collectives who aim at manipulating the system by giving 
each other high local trust values and giving all others low 
local trust values in an attempt to gain high global trust values. 
A common way to break the collectives is by having each 
participant placing some trust on pre-trust seed peers that are 
definitely not a part of the collectives. This will avoid getting 
stuck within a malicious collective.  

With these observations in mind, we revise formula (2) by 
formula (3). Let be the probability of a participant choosing 
to trust only some pre-trusted peers. The revised formula for 
computing the global trust vector of size n at (k+1)th round of 
iterations is: 

a

t k+1 = (1− a)CT t k + ap                             (3) 
This formula implies that a peer i's global trust at (k+1)th 

iteration can be defined by the sum of the local trust values 
that other peers have given to i, weighted by their global trust 
values obtained at the kth iteration, namely  

1

1 1 2 2(1 )( ... )k k k k

i i i ni nt c t c t c t ipα α+ = − + + + +           (4) 
    This reference trust model is known as EigenTrust [6]. 
Before analyzing the inherent vulnerabilities of this trust 
model, we first present the common attack models used in 
this paper. 

B. Threat models  
In the service provision domain, the following threat 

models are frequently used to characterize different forms of 
malicious behaviors.  
Threat model A (Independently Malicious) 

Malicious users always provide inauthentic services when 
selected as service providers. Malicious peers always value 
inauthentic services instead of authentic services. 

As malicious participants never provide authentic (good) 
services, they do not expect getting a good rating from non-
malicious participants. 
Threat model B (Malicious Collectives) 

Malicious participants always provide inauthentic (bad) 
services when selected as a service provider. In addition, 
malicious peers form a malicious collectives by giving a high 
local trust value, say 1, to another malicious peer in the 
network, leading to a malicious chain of mutually high local 
values. This malicious collective chain traps non-malicious 
participants to enter the collective and once a good peer has 
entered, it will be hard to exit and the global trust value of the 
good peer will be exploited to boost the global trust values of 
all peers in the malicious collectives. 
Threat model C (Malicious Collectives with Camouflage)  

In this type of attack, malicious entities provide an 
inauthentic service in %f  when selected as a service 
provider. At the same time malicious peers form a malicious 
collective as describe in the threat model B.  

Under this threat model, malicious peers attempt to get 
positive ratings from some good peers in the network by 
providing good services sometimes, i.e., when . 
Consequently, malicious peers in the collective could get 
higher global trust values. 

0f >

Threat model D (Malicious spies) 

Malicious participants are strategically organized into two 
groups. One group of malicious peers (type D) try to act as 
normal users in the system in an attempt to increase their 
global trust values by only providing good services but 
provide dishonest feedback ratings. The type D peers act like 
spies and use their high trust values to boost the trust values 
of another group of malicious peers (type B) who only 
provide bad (inauthentic) services when selected as service 
providers. 

There are other types of threat models, such as multiple 
independent or colluding malicious colletives, which can be 
represented as a generalized form of the four attack models. 
Other type of attacks, such as Sybil attacks, can be regulated 
through some cost based enforcement, such as enforcing the 
network ID of a participant correspond to a hash value of the 
peer's unique ID in real life, e.g., drive license number. Often, 
Sybil attack is used in conjunction with one of the above four 
threat models. Thus we argue that a highly effective trust 
model for the service provision networks should be resilient 
to all of the above four threat models.  

C. Trust based service selection models 
There are four known service selection schemes: 

Random selection. When trust is not supported, a service 
requestor often randomly selects one provider in the list of 
matching providers as her preferred provider. 

Threshold-based random selection. A requestor 
randomly select a provider from the subset of providers in 
the matching list, whose trust values are higher than a given 
threshold value. 

Deterministic selection. A requestor only selects the 
provider with the highest global trust value among the list of 
matching providers as her preferred provider. The problem 
with this approach is the potential of overloading the 
providers with high trust values.  

Probabilistic-based selection. A requestor chooses each 
matching provider i as its preferred provider with probability 

assuming that there are M matching providers 

that can provide the requested service. In order to give the 
newcomers a chance to be selected, we can complement the 
trust enabled probabilistic selection by allowing a peer j with 
zero trust value to be selected at a system defined maximum 
probability, say 10% [6]. 

ti / t jj=1

M∑

D. Vulnerabilities in the Reference Model 
Although EigenTrust by design has incorporated several 

decisions to increase its attack resilience, which is also the 
main factors for its high popularity and citation in the 
literature, EigenTrust has reported [6] that there are some 
inherent vulnerabilities.  

Figure 1 shows that EigenTrust is effective in the presence 
of varying percentage of malicious peers up to 70% in Threat 
models A and B where malicious peers either are 
independently malicious or form a malicious chain of high 
feedback ratings. However, EigenTrust performs poorly when 
malicious peers are up to 50% or more in Threat model C. For 
threat model D, EigenTrust performs worse than non-trust 
case when the type D peers reach 50% or more of the 



malicious collective. These experiments used the identical 
setup as in [6]. In Threat models A and B, the total number of 
participants is 63, with 3 pre-trust peers. In Threat model C, 
there are 73 participants in the network, including 20 
malicious ones, 3 pre-trust ones and 50 good peers. In Threat 
model D, there are 103 total participants with 40 malicious 
participants, which are divided into two groups (type B and 
type D), 3 pre-trust peers and 60 good peers.  

 
Figure 1.  Robustness and Vulnerabilities of EigenTrust model 

Now we analyze the vulnerabilities inherent in the 
EigenTrust model and illustrate why these vulnerabilities 
cause EigenTrust to perform poorly compared to non-trust 
case when the malicious participants strategically collude 
with one another (Threat models C and D). First, the feedback 
aggregation formula (1) is more vulnerable when type D 
malicious peers exist since it fails to distinguish good 
participants from type D spy peers. Thus, the system fails to 
recognize the dishonest feedbacks given by type D peers, 
which harms the good peers and increases type B malicious 
peers’ local trust values. This is one of the most important 
reasons that EigenTrust fails when 50% or more malicious 
collectives with camouflage in Figure 3(c) (Threat model C). 
Second, the formula (3) for computing global trust vector 
uses a weighted trust propagation model where the local 
trusts received by peer i from other peers, say j, are weighted 
by the global trust value of peer j. This leads to unexpected 
vulnerability when encountering some sophisticated attacks. 
Consider Threat model D, type D disguised peers accumulate 
high global trust values by acting as spy and utilize their high 
global trust values to boost the global trusts of all type B 
malicious peers in the collective. This can easily subvert the 
system as the number of spy peers increases, as shown in 
Figure 3(d). Figure 4 shows the global trust values of all 
participants. We observe that except the 3 pre-trust peers, the 
global trust values of malicious peers are higher than good 
ones, even when the good peers are 60% and malicious peers 
are 40% with 30% type D and 10% type B malicious peers. 

IV. SERVICETRUST 
This section presents the design of ServiceTrust. The 

design of ServiceTrust should embrace a number of design 
objectives with respect to performance, ease of maintenance, 
privacy and attack resilience. First, the system should by 
design scale to large number of participants in terms of trust 
computation, storage requirement and communication 
complexity of the system. This scalability requirement 
demands high performance system level facilities that can 
minimize computational complexity and communication 
overhead for trust management. Second, the system should 
maintain and respect the anonymity of participants’ trust 
values. Third, the system should not rely on central authority 
for maintenance and should be self-configuring, self-policing 
and self-healing. For example, the enforcement of per-
transaction based feedback rating and real-world ID based 
identifier generation should be exercised without central 
authority. Finally, the system should be robust and attack 
resilient with respect to failure and malicious manipulations 
of colluding collectives. 

(a)Threat Model A (b)Threat Model B

A. Multi-scale Rating Scheme 
Multi-scale rating scheme has been widely adopted in 

many real world eCommerce recommendation systems, such 
as Amazon, eBay, to provide high quality and fine grain 
recommendations. We believe that by replacing binary rating 
with multi-scale rating in ServiceTrust, we can potentially 
increase the attack resilience by employing quality sensitive 
metrics to differentiate dishonest ratings by malicious 
participants from feedback ratings by non-malicious 
participants. For example, by enabling a peer i to rate another 
peer j using a scale of 5 or 10, the feedback ratings can be 
more accurately reflect the actual quality difference regarding 
the service received by peer i from peer j. In the rest of the 
paper, the following scale will be used by peer i to rate peer j 
regarding the quality of the transaction service provided by 
peer j to peer i.   

(c)Threat Model C (d)Threat Model D
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B. Local trust computation by multi-scale ratings 
Recall the vulnerability analysis in Section 3, the feedback 

rating aggregation scheme used in EigenTrust [6] has a 
number of inherent vulnerabilities. Thus the design of 
ServiceTrust follows a number of objectives: (i) malicious 
peers should not accumulate positive ratings from good users 
by simply performing well in some transactions while 
providing dishonest feedbacks, such as type D peers in Threat 
model D or camouflage peers in Threat model C. This implies 
that ServiceTrust needs to provide capability of identifying 
such malicious behaviors. (ii) A peer who wants to get a good 
local trust value from other peers must provide consistently 
good enough services. Also peers who always get high scale 
ratings, such as 5 or 4 score in the multi-scale rating scheme 



(4) should have higher local trust values than those with 
always low feedback ratings of 1 or 2. (iii) Malicious 
behavior, be it a bad service or dishonest feedback rating, 
should be punished, in the sense that the trust of a peer is hard 
to build but can drop sharply once detected being malicious.   

With these design goals in mind, we propose to compute 
the local trust value that peer i has for peer j by using their 
rating variance. Concretely,. let J denote the set of 
participants that i gives rating to. We define s(i, j) as follows: 
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In Formula (6), denotes the variance of all the 

ratings that i gives j. Usually, the smaller  is, the more 
stable  j’s service is, which means that j should have relatively 
higher local trust. v i  is computed as follows:  

(6) 
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m
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In Formula (7), we assume that there are m transactions in 
one spectacular interval. is the lth transaction’s rating 
value that i gives to j. 

( , )ltr i j
( , )i jμ  is the mean value of all the 

ratings that i gives to j. ( , )i jμ  is defined as follows: 
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To ensure the local trust value that peer i has for peer j, 
denoted by cij is in the range of [0,1], we normalize s(i,j) as 
follows: 
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C. Global trust computation by trust propagation 
In addition to measure pairwise multi-scale rating 

similarity by variance and mean based normalization, we also 
measure the rating similarity between two peers based on how 
they rate another participant. The former allows us to assign 
higher local trust values to peers that have more similar rating 
behavior. The latter enables us to distinguish those 
strategically malicious participants from good peers, because 
such malicious peers provide satisfactory transactions to get 
high feedback ratings but provide dishonest feedbacks in an 
attempt to subvert the system. Therefore, in ServiceTrust, we 
advocate to incorporate the pairwise feedback similarity into 
the trust aggregation algorithm. The basic motivation for 
using feedback similarity weighted trust propagation metric is 
to differentiate the positive ratings generated by good peers 
from malicious peers acting as spies. We capture the pairwise 
feedback similarity in terms of both positive feedback 
similarity and negative feedback similarity, denoted by 
pos_sim(i,j) and neg_sim(i,j) respectively.  

Positive similarity. Let pos_comm(i,j) denote the subset 
of common participants that both i and j have given positive 

ratings. We propose a similarity function based on the 
Normalized Euclidean Distance(NED) as follows: 
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( , )R i k  is the total number of transactions happened between 
peers i and k. ( , )i kμ  is the normalized mean rating value that 
i gives to k after ( , )R i k  transactions. max_mean(S) denotes 
the maximum mean rating value of the entire service network.  

Negative similarity. Let neg_comm(i,j) denote the subset 
of common users that both i and j have rated.  This measures 
the negative similarity in terms of the number of peers that 
peer i and peer j have opposite mean rating values. 
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The feedback similarity between two users depends on the 
historical transaction information. Thus ( , )i kμ is the average 
rating value between i and k after certain number of 
transactions. We define sim(i,j) as the final similarity value 
between i and user j after we get the neg_sim(i,j) and 
pos_sim(i,j).  
Let wn be the weight of negative similarity and  wp be the 
weight of positive similarity. 

( , ) _ ( , ) _ ( , )n psim i j w neg sim i j w pos sim i j= × + ×

( )R i
         

(11)Let  denote the set of peers that have transactions 
with peers i.  We can compute the similarity weighted local 
trust that i places on j, denoted by scij as follows: 

scij = cij × (sim(i, j) / sim(i,k )
k∈R (i )∑ ) . 

To facilitate the comparison of different local trust values, 
we normalize scij by as follows: ijl
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Let  denote the local trust matrix of size n by n and [ ]ijL l=

t k+1 denote the global trust value vector of size n to be 
computed at (k+1)th round of iterations. We define 
t k+1 = (1− a)LT t k + ap , where a is the probability of a user 
knows none and thus relies on the pre-trusted peers. We can 
expand t k+1 as follows: 

1

1 1 2 2(1 )( ... )k k k k

i i i ni nl l lt t t t ipα α+ = − + + + +                 (13) 



V. EXPERIMENTAL EVALUATION 
This section evaluates the performance of ServiceTrust by 

comparing it with EigenTrust and Non_Trust service 
provision network system under the four attack models.  

A. Experimental Setup 
We simulate service provision networks of varying sizes 

by building a decentralized file sharing service network where 
peers can request files from other peers in the network (as 
service consumer) or respond to file download requests from 
others (as service provider). To make sure that a peer i can 
enter a feedback to another peer j only when peer i has 
received a service provided by peer j, we create a Gnutella-
like peer to peer file sharing network by interconnecting peers 
using a power-law network (resemble to a real world p2p 
network). A query issued by any peer will be propagated by 
iteratively broadcast hop by hop over the chosen hop-count 
horizon of the network, say 7 hop-horizon.  

Nodes in each service network consists of three types: 
pre-trust nodes whose initial global trust is greater than zero, 
normal nodes who participate the network for download and 
upload services, and malicious nodes who are the adversaries 
attempting to degrade or destroy the quality and performance 
of the service network system.  

We use a probabilistic content distribution model where 
each peer initially select a number of content categories and 
share files only in these categories. Within one content 
category files have different popularizes following Zipf 
distribution. Files are assigned to peers probabilistically at 
initialization time based on file popularity and the content 
categories the peer plans to share.  

The simulation of the service network dynamics is done 
through simulation cycles. Each cycle consists of multiple 
query cycles. In each query cycle peers can probabilistically 
choose to ask queries or forward queries or respond to queries. 
The number of queries issued for different file download 
services are also based on Zipf distribution. After issuing a 
query peer waits for response. Upon obtaining a list of 
providers that responded to the query, the peer select one 
provider from the list and starts downloading the file. The 
selection process will be repeated until a user has received an 

satisfied service. We choose the probabilistic-based selection 
as the selection method. At the end of each simulation cycle, 
the local and global trust values are computed. We run each 
experiment several times and the results of all runs are 
averaged. The performance metrics used in this paper include 
the number of inauthentic file downloads (unsatisfactory 
services) v.s. the number of authentic file downloads 
(satisfactory services). If the global trust values accurately 
reflect each peer’s actual behavior, then high global trust 
values minimize the number of inauthentic downloads. We 
are also interested in time complexity and the iteration rounds 
used for trust propagation.  

To make our comparison with EigenTrust fair, in the first 
set of experiments, we choose the same set of configuration 
parameters as those in EigenTrust experiments [6] as shown 
in Table I. In the second set of experiments, we extend to 
larger size networks. We show that the trust scheme that does 
well in small scale networks also performs proportionally 
well in large networks. We set pre-trusted peers to have 10 
initial neighbors. To simulate the hostile environment as is 
done in [6], we also set malicious peers to have at least 10 
initial neighbors and normal peers with at least 2 initial 
neighbors. This scheme allows malicious peers to be 
connected to the highly connected peers and to other 
malicious peers.  

B. Effectiveness of ServiceTrust 
In this section, we compare the effectiveness of 

Non_Trust, EigenTrust and ServiceTrust in terms of attack 
resilience. All simulations are executed under Threat models 
A, B, C and D. The experiment results are shown in Fig.2.  

For Threat models A and B, both EigenTrust and 
ServiceTrust outperforms non_trust systems with consistently 
about 5%-10% of failed services (malicious downloads) no 
matter how the ratio of malicious nodes varies in the network 
from 0% to 90%. Note that the 5-10% of failed services are 
primarily from normal peers performing unintentionally bad 
service or due to the use of the maximum 10% probability as 
newcomer policy, which allows a peer with global trust value 
0 to be selected as a provider. This gives the malicious peers 
with zero trust values 10% probability of being selected as a 
provider. 

TABLE I.  SIMULATION CONFIGURATION 

 parameter value  
Network  # of good users, pre-trust users and malicious users good-(60-100) pre-trust(3) malicious(0-42) 

# of neighbors for pre-trust and malicious users 10 
# of neighbors for regular good users 2 
# of hops for forwarding queries 7 

Service 
distribution  

Number of distinct services of the whole system  20  
fraction of distinct services at good user i  20%  
Set of services categories supported by good peer i  Zipf distribution   

Top % of queries for most popular services malicious users respond to  20%  
Queries of services issued by good user i  Zipf distribution  

System 
Behavior  

% of service requests in which good user i provides unsatisfied services  5%  
% of service requests in which malicious user i provides unsatisfied services  Varied in different threat model  
provider source selection algorithm  Probabilistic based and similarity based  

Probability that user with global trust value 0 is selected as service provider  10% 



 
Figure 2.  Fraction of failed services in four threat models 

For Threat models C and D, the ServiceTrust model 
consistently performs well with 5%-10% of failed services 
(malicious downloads) with the percentage of camouflage 
malicious nodes is increased to 90% in the network. However, 
EigenTrust starts failing compared to Non_Trust system when 
the camouflage probability f% reaches 50% in Threat model 
C. For Threat model D, we simulate a network of 103 peers 
with 60 normal peers, 3 pre-trust users and 40 malicious users, 
divided into two groups, regular malicious peers (Type B) and 
strategically malicious spy peers (type D). We vary the ratio 
of type D and type B peers in each experiment from 40 type B 
users, 0 spy users to 5 type B peers, 35 type D peers. 
ServiceTrust performs consistently  better than both Non-
Trust system and EigenTrust in all cases. When the number 
type D peers (spy) reaches 50% of the malicious peers (20 out 
of 40), EigenTrust starts getting higher number of failed 
services than Non_trust system as the number of type D peers 
increases, while ServiceTrust constently performs well with 
only 5% failed services due to the 10% probabalistic new 
comer selection policy. The strength of ServiceTrust against 
strategic malicious attempts attributes to its feedback variance 
weighted local trust computation and its feedback similarity 
weighted global trust propagation, which makes use of the 
sharp difference between the rating behavior of malicious 
users in the malicious collective and the feedback rating 
behavior of normal peers to control the trust propagation from 
good peers to malicious peers. 

C. Time Complexity and Impact of Network Scale 
In the previous sets of experiments, we use the same size 

of networks as those in [6] in order to provide a fair 
comparison with EigenTrust. Also the network density in [6] 
is fairly dense with degree of 10 for malicious peers. In this 
section we will evaluate ServiceTrust using varying sizes of 
service provision networks, ranging from 100, 500, 1000, 
5000 and 10,000, all with low node degree (on average of 5) 
to evaluate the performance of ServiceTrust in a sparse 
network of varying size from 100 to 10,000 participants.  

Figure 3 shows that when the scale of network is 100,  
only 4 iteration rounds are needed to compute global trust for 
every peer. However, we can only get the global trust values 
for 14% and 7% of all peers in the network within 4 iteration 
rounds when the scale of network are 5,000 and 10,000 
respectively. As the size of the service network increases, the 
number of iteration rounds we need to compute global trust 
through trust propagation also increases. But ServiceTrust can 
finish the global trust computation through trust propagation 
in 7 rounds of iteration for all the network scales in this 
experiment. This shows that even with a network of size 
10,000 and average degree of 5, most nodes can reach out to a 
large population in 7 hops.  

Threat Model A Threat Model B

Threat Model C Threat Model D

 
Figure 3.  The ratio of reached peers in different iterations  

 
Figure 4.  Time Complexity for trust propagation 

Figure 4 shows the time complexity of global trust 
computation in ServiceTrust. As the network size increases 
from 100 to 10,000, the time needed to compute global trust 
for all participants through trust propagation will increase. 
Compare with the network of size 10,000, the time 
complexity of network size of 100 participants is very tiny. In 
7 hops, the time complexity of trust propagation over a 
network of 100 participants is 0.00282 seconds and the time 
complexity increases to 20 seconds when the size of the 
service network reaches 10000. 

Now we compare ServiceTrust with EigenTrust and 
Non_trust system in terms of how the percentage of 
inauthentic downloads varies in Threat model C and Threat 
model D, when we varying the sizes of networks. From 
Figure 5 we observe two facts. First, the percentage of 
inauthentic downloads (failed services) in all three systems is 
less sensitive to the increase of network sizes. Second, as the 
size of the network increases, the number of inauthentic 
downloads (failed services) remains consistently low in 
ServiceTrust for different sizes of networks in both Threat 
models C and D. In contrast, EigenTrust has much higher 
number of failed services in comparison to ServiceTrust. Also 
in Threat model D, the number of failed services in 
EigenTrust is close to that of Non_trust system, showing 



again that EigenTrust is inadequate for managing trust in the 
presence of colluding malicious collectives.  
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Figure 5.  The effect of network scale on trust models. 
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