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Abstract—Performance unpredictability is one of the major
concerns slowing down the migration of mission-critical appli-
cations into cloud computing infrastructures [4]. An example
of non-intuitive result is the measured n-tier application per-
formance in a virtualized environment that showed increasing
workload caused a competing, co-located constant workload to
decrease its response time [12]. In this paper, we investigate
the sensitivity of measured performance in relation to two
factors: (1) consolidated server specification of virtual machine
resource availability, and (2) burstiness of n-tier application
workload. Our first and surprising finding is that specifying
a complete isolation, e.g., 50-50 even split of CPU between
two co-located virtual machines (VMs) results in significantly
lower performance compared to a fully-shared allocation, e.g.,
up to 100% CPU for both co-located VMs. This happens
even at relatively modest resource utilization levels (e.g., 40%
CPU in the VMs). Second, we found that an increasingly
bursty workload also increases the performance loss among
the consolidated servers, even at similarly modest utilization
levels (e.g., 70% overall). A potential solution to the first
problem (performance loss due to resource allocation) is cross-
tier-priority scheduling (giving higher priority to shorter jobs),
which can reduce the performance loss by a factor of two in our
experiments. In contrast, bursty workloads are a more difficult
problem: our measurements show they affect both the isolation
and sharing strategies in virtual machine resource allocation.

Keywords-application co-location; cloud; consolidation; ex-
perimental study; n-tier; performance; interference; RUBBoS.

I. INTRODUCTION

Server consolidation (or simply consolidation) through hard-
ware virtualization technology is a fundamental technique
for achieving economical sharing of computing infrastruc-
tures as computing clouds. Consolidated servers run on the
same physical node in dedicated Virtual Machines (VMs)
to increase overall node utilization, which increases profit
by reducing operational costs such as power consumption.
Unfortunately, the effectiveness of consolidation seems lim-
ited in practice, as shown by reportedly low utilization levels
in production data centers [5], [19]. One of the recognized
problems is the performance unpredictability in virtualized
environments (ranked fifth in the top 10 obstacles for growth
of cloud computing [4]). Performance interferences among
consolidated applications have been demonstrated for a

variety of concrete systems and applications [3], [8], [11],
[15].

A representative example of unexpected phenomena in
consolidated environments is the non-monotonic response
time variations [12], where measured response time de-
creases with increasing workload at high CPU utilization
levels. This kind of surprising result illustrates the interesting
challenges and opportunities in consolidated application per-
formance research. In this paper, we describe detailed mea-
surements to study two factors that affect consolidated ap-
plication performance significantly: (1) consolidated server
specification of virtual machine resource availability, and (2)
burstiness of n-tier application workload.

One of the common assumptions made in consolidation
research is that the hypervisor is able to provide perfect
isolation of CPU allocated to each virtual machine (VM),
e.g., see [10], [20]. Since previous work such as [12]
have shown this assumption to be valid only partially, it
became important to investigate the behavior of hypervisor
CPU schedulers, particularly how the specification of VM
resource allocation strategies affect performance isolation
among the VMs. As a concrete example of this assumption:
with 2 VMs sharing a CPU, an isolation specification of 50%
allocation for each VM would eliminate the performance
interference problem (In this paper performance interfer-
ence is used synonymously with ”performance loss due to
interference”). Perhaps unsurprising to many practitioners,
our experiments show that such a “disjoint” (isolation) VM
CPU allocation strategy can result in large response time
degradation even under relatively low utilization in the
consolidated system (e.g., starting at 40% of assigned CPU).

The first contribution of the paper is an experimental
confirmation that the performance loss due to interference
in a consolidated system can be improved by a “sharing”
allocation strategy. In the above 2-VM example, instead of
50% allocation for each VM, the sharing allocation allows
up to 100% of CPU for each VM. This appears to be an
anti-intuitive result, since the sharing allocation seems to
prevent the hypervisor scheduler from providing resource
isolation among the consolidated VMs. A deeper analysis
of our experimental results shows that the disjoint allocation



loses because it is a “selfish” strategy in which an idle
VM prevents the CPU from doing any work because of its
own reservation. In contrast, the sharing allocation strategy
wins by letting each VM use the CPU during other VM’s
idle time, which is particularly effective at higher utilization
levels when VMs are likely to have queued requests. As a
potential solution to the performance interference problem
found, we measured the system performance (e.g., response
time) under the cross-tier-priority (CTP) based schedul-
ing [22]. We found that CTP can reduce the performance loss
due to interference, up to a factor of two. These experiments
show that improved scheduling could lead to significant
reduction and therefore represents interesting topics of future
research.

The second factor that may cause performance inter-
ference during consolidation is bursty workload, a well-
known challenge of web-facing applications [2], [14]. The
second contribution of the paper is a detailed experimental
study of the impact of bursty workloads on the performance
of consolidated applications. Our measurements show that
bursty workloads degrade consolidated system response time
at normally considered safe CPU utilization of 70% overall.
Furthermore, the negative impact of bursty workloads is
insensitive to CPU allocation of VMs, affecting both the
isolation and sharing strategies.

The rest of the paper is structured as follows. In Sec-
tion II we describe our experimental setup, detailing our n-
tier application deployment and our testbed. Subsequently,
Section III compares several CPU limiting configurations
and shows sharing is better than isolation for consolidated
n-tier applications. Section IV shows the impact of bursty
workload on the performance interference. Section V pro-
vides an overview of related work in this area. Finally,
Section VI concludes the paper.

II. EXPERIMENTAL SETUP

While consolidation in practice may be applied to any type
of application, the focus of this paper are n-tier appli-
cations with LAMP (Linux, Apache, MySQL, and PHP)
implementations. Typically, n-tier applications are organized
as a pipeline of servers1, starting from web servers (e.g.,
Apache), through application servers (e.g., Tomcat), and
ending in database servers (e.g., MySQL). This organization,
commonly referred to as n-tier architecture (e.g., 3-tier in
Figure 1a), serves many important web-facing applications.
In our experiments, we use the popular n-tier application
benchmark system RUBBoS [1]. Due to space constraints,
we solely focus on results obtained with a browsing-only
workload set. Our default experiment ramp-up and run-times
are 180 and 300 seconds, respectively.

1In this paper server is used in the sense of computer programs serving
client requests. Hardware is referred to as physical computing node or node
for short.

(a) Dedicated deployment of a 3-tier application system with
three software servers (i.e., web, application, and database)
and three physical hardware nodes.

(b) Consolidated deployment of two 3-tier systems (Sys_Const and
Sys_Inc) with one server per tier and five physical hardware nodes
in total. The DB servers are co-located in dedicated VMs on a single
shared physical hardware node.

Figure 1: Example of a dedicated (a) and a consolidated (b) 3-tier
application system deployment, presented as mappings of software
servers to physical hardware nodes.

Table I: Summary of experimental setup (i.e., hardware, operating
system, software, and virtualization environment).

CPU Quad Xeon 2.27GHz * 2 CPU (HT)
Memory 12GB
HDD SAS, 10,000RPM, 300GB * 2 (RAID1)

OS RHEL Server 5.3 (Tikanga), 32-bit
OS Kernel 2.6.18-128.el5PAE

Web Server HTTPD-2.0.54
App Server Apache-Tomcat-5.5.17
Connector Tomcat-Connectors-1.2.28-src
DB Server MySQL-5.0.51a-Linux-i686-glibc23
Java JDK1.6.0 23
Monitoring Tools Esxtop

Hypervisor VMware ESXi v5.1.0
Guest OS RHEL Server 5.3, 32-bit
Guest OS Kernel 2.6.18-8.el5

At an abstract level, the deployment of n-tier applications
in a cloud computing infrastructure can be modeled as a
mapping between component servers and physical comput-
ing nodes. An application deployment is dedicated whenever
the number of physical nodes is at least equal to the number
of servers as exemplified in Figure 1a. In contrast, if the
number of physical nodes is smaller than the number of
servers, the deployment mapping is a consolidation, which
requires at least two servers to be co-located on a single
physical node (e.g., Figure 1b). In our experiments, we
denote the first RUBBoS system as Sys_Const and the



Table II: Configurations of major software resources

Tier Parameter name
Configuration name

Liberal-SR Conservative-SR

Apache
MaxClients 340 120
ThreadsPerChild 170 60
WorkerConnection
PoolSize

100 25

Tomcat maxThreads 240 60
DB
conncetions

total # 96 16
# in each Servlet 12 2

second RUBBoS system as Sys_Inc, as illustrated in the
figure. Unless otherwise stated, the default consolidation
methodology in this paper is to affiliate (i.e., pin) both VMs
to the same CPU core (i.e., the maximum processing power
totally allocated to the VMs is 2266MHz) and limit both
virtual CPUs to 1133, 1360, 1586 or 2266MHz (i.e., 50%,
60%, 70% or 100% of 2266MHz) with a reservation of
0.00MHz and normal shares (i.e., both VMs have the same
priority). Other important characteristics of our experimental
testbed are summarized in Table I.

Software configuration, in the context of our work, refers
to software settings that specify how many software re-
sources such as processes, threads or DB connections in
servers are allocated. Both systems are configured with
practical resource allocation settings that are derived from
our previous experiments with the same consolidation sce-
nario [12]. The two configurations of software resource al-
location adopted for the systems are summarized in Table II.
Both of the two configurations were validated in the previous
experiments to achieve good total performance if used with
the dedicated n-tier deployment.

In the following sections, we use the notation
Sys Const[SRconf1], Sys Inc[SRconf2], Limit = X%
to show an experimental configuration of Sys_Const and
Sys_Inc with software resource configurations SRconf1
and SRconf2 in Table II respectively, and the maximum CPU
allocated to each VM is limited to X% of the core clock.

III. PERFORMACE INTERFERENCE: SHARING IS BETTER
THAN ISOLATION

As shown in our previous study, the non-monotonic response
time variations are mainly caused by a hypervisor’s CPU
scheduling artifacts and appear in consolidation scenarios
under high CPU utilization [12]. In this section our further
experimental investigations reveal that, in order to reduce
the impact of the performance interference, sharing on
resource allocation is better than isolation in a virtualized
infrastructure. In Subsection III-A we show the disjoint
allocation (splitting CPU fifty-fifty between two systems)
cannot remove the performance interference. Then, in Sub-
section III-B we compare several configurations of CPU
sharing (concretely “Limit” of CPU on VMware hypervisor)
to show that a highly shared configuration is better than a

humbly shared configuration to reduce the impact of per-
formance interference. Finally, in Subsection III-C we show
our previously proposed cross-tier-priority based scheduling
is successfully applied and effective as a solution to mitigate
the impact of the performance interference.

A. Can we Avoid Performance Interference by Removing
CPU Sharing?

In Figure 2 we show a set of experimental results with
the disjoint CPU allocation strategy (Limit=50%) to reveal
whether the performance interference caused by consoli-
dated n-tier systems can be avoided with the isolation-
oriented configuration. In this configuration, the processing
power of a CPU core is split fifty-fifty (i.e., 1133MHz each)
and assigned to each VM of the consolidated two n-tier
systems Sys_Const and Sys_Inc, which are deployed
as shown in Figure 1b. In all experiments in this paper, the
amount of workload on Sys_Const is always kept constant
while the amount of workload on Sys_Inc is increased
monotonically up to 2,500 concurrent users in steps of 100
users as labeled on the x-axis. Here the response times
of each system under varying workloads on Sys_Const
are separately shown in Figure 2a (Sys_Const) and Fig-
ure 2b (Sys_Inc). Figure 2b also contains the response
times of Sys_Inc executed on a dedicated deployment
which is shown in Figure 1a (i.e., Only Sys_Inc receives
a workload while Sys_Const receives no workload).

Figure 2a shows that the response time degradation also
appears in this case contrary to the motivation (i.e., isolation)
of such a configuration. Furthermore, the increment starts
from low workload on the consolidated Sys_Inc until
the Sys_Inc’s workload exceeds Sys_Const’s amount.
This result, combined with the knowledge revealed in our
previous research [12], shows that the disjoint allocation
is unable to prevent the disruption of job-execution on
Sys_Const’s VM caused by the low priority on CPU
scheduling, which gives higher priority to the VM with
averagely lower CPU utilization. This disruption causes job
processing to be delayed and results in the large degradation
of overall response time in the system.

On the other hand, what needs to be emphasized in
Figure 2b is that Sys_Inc achieves the best response
time with the highest workload on the consolidated system
among the five cases in the graph. Comparing the two
cases with workload 1600 and 2300 on the consolidated
Sys_Const, surprisingly, Sys_Inc’s response time is
much better under a higher workload of 2300 than under
the lower workload of 1600. In other words, Sys_Inc
consolidated with Sys_Const under WL=2300 provides
short response time to a 10% higher number of concur-
rent users than that consolidated with Sys_Const under
WL=1600. This is contrary to the intuitive understanding
that performance decreases as the total workload on a node
increases. Even more surprisingly, Sys_Inc consolidated
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(a) Response time of Sys_Const according to its own work-
load. The disjoint allocation cannot avoid the performance
interference caused by a consolidated system, which starts
under low workload on the consolidated system and appears
as the non-monotonic response time variations.
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Figure 2: Each response time (a)(b), throughput (c), and each VM’s CPU utilization (d) of the two consolidated 3-tier systems Sys_Const
and Sys_Inc which are deployed as shown in Figure 1b. The workload of Sys_Const is kept constant, while the workload of Sys_Inc
is increased monotonically as show in the x-axis. The Limit values of both VMs are 50% of CPU clock speed (that is, disjoint allocation).
Sys_Const [Conservative-SR], Sys_Inc [Liberal-SR], Limit=50%.
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Figure 3: Histogram of CPU utilization on the VM in Sys_Inc at
workload=2200. This comparison shows that the CPU capping for
Sys_Inc’s VM is relaxed when the workload of the consolidated
side is high at 2300. The flexible allocation of more CPU results
in the shorter response time than other cases in Figure 2b.

with Sys_Const WL=2300 achieves slightly better re-
sponse time than that on a dedicated deployment.

In order to investigate the reason why such an inversion

phenomenon happens, the histograms of CPU utilization
in the cases are compared in Figure 3 (the workload on
Sys_Inc is at 2200). These CPU utilization data are
collected by Esxtop every 2 seconds during a 300 second
run-time (totally about 150 samples in an experiment). The
histograms show that Sys_Inc is nearly capped at 50% of
CPU power when it is executed on a dedicated deployment,
while it is more strictly capped in the case consolidated
with Sys_Const WL=1600 (i.e., lower workload than that
on Sys_Inc). These are natural results of the hypervisor’s
CPU scheduling to keep the Limit=50% configuration. In the
case consolidated with Sys_Const WL=2300, on the other
hand, it is observed that the CPU capping for Sys_Inc
is relaxed, that is, it can utilize more than 50% CPU
power frequently. The combination of the following two
factors can better explain this result: 1) Sys_Inc’s VM and
Sys_Const’s VM have the same CPU scheduling priority
since their workloads are similar, 2) The hypervisor needs
to relax the capping in order to keep a fair CPU allocation
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(a) Limit=60%
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(b) Limit=70%
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Figure 4: Comparing the response time of the consolidated Sys_Const and Sys_Inc with three Limit values of 60% (a), 70% (b),
and 100% (c). The workload of Sys_Const is kept constant at 2,400 while the workload of Sys_Inc is increased monotonically from
1,600 to 2,500. This comparison shows that the performance interference can be mitigated with a highly shared configuration (100%).
Sys_Const [Liberal-SR], Sys_Inc [Conservative-SR].

Table III: Average CPU utilization of each VM during 5 minutes
run-time of the experiments with workload Sys_Const=2400 and
Sys_Inc=2100, which correspond the high peaks in Figure 4a,
4b and 4c.

Limit VM in Sys_Const [%] VM in Sys_Inc [%]

60% 51.63 48.20
70% 51.57 48.29

100% 51.91 47.58

between the two VMs under the congested CPU utilization
situation.

B. CPU Sharing can Mitigate the Performance Interference

The previous subsection shows that the disjoint allocation
of CPU allocation between the VMs on two consolidated
n-tier systems cannot remove the performance interference
caused by the consolidated system. Instead, it results in large
response time degradation due to its limited flexibility on
CPU allocation which is strictly capped at a certain amount.
Next in this subsection, we compare three configurations
of CPU sharing with Limit=60%, 70% and 100%2 to show
that resource sharing works well to mitigate the impact of
the performance interference in the consolidated deploy-
ment scenario. In fact, the fully-shared configuration with
Limit=100% achieves better performance than other humbly
shared configurations with Limit=60% and 70%.

Figure 4 shows the response time of each system in the
three configurations with Limit=60%, 70% and 100%. In
these experiments, the amount of workload on Sys_Const
is constant at 2,400 concurrent users, while the amount of
workload on Sys_Inc is increased monotonically from
1,600 to 2,500 concurrent users. The figures show at a
glance that all the three cases have non-monotonic variations
of response time, which peak around workload 2000 or
2100 on Sys_Inc. Since we keep the amount of workload
on Sys_Const constant, the non-monotonic variations are

2On the hypervisor, we specify 1360MHz, 1586MHz, and 2266MHz
respectively as the Limit values.
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Figure 5: Comparing the histograms of CPU utilization on the
VM in Sys_Const (workload=2400) consolidated with the VM
in Sys_Inc (workload=2100) under two different Limit values
60% and 100%. With Limit=100%, the VM in Sys_Const can
use over 50% CPU power more frequently than 60% case, and it
achieves better response time as compared in Figure 4a and 4c.

contrary to the intuitive understanding that the response time
of Sys_Const should be kept constant. As explained in the
previous subsection (and also in our previous research [12]),
these non-monotonic response time variations are caused
by performance interference between consolidated systems
which is a result of the hypervisor’s CPU scheduling. In
the CPU scheduling, a system which on average a higher
workload than the other consolidated system gets lower CPU
allocation priority compared to the consolidated one.

In comparison to the results in Figure 2a, Figure 4 clearly
shows that the response time degradation only appears at
relatively high workload on the consolidated Sys_Inc in
this shared CPU configuration. Furthermore, simply judging
based on the small samples, it seems like a large Limit
value always leads to small response time degradation.
As shown in Table III, however, the average CPU utiliza-
tion of both VMs under workload Sys_Const=2400 and
Sys_Inc=2100 with each Limit value do not have any
differences. To figure out the reason for the performance
differences among the three configurations, we compare the
histograms of CPU utilization on Sys_Const’s VM with
two Limit values 60% and 100% in Figure 5. Comparing
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Figure 6: Cross-tier-priority based scheduling can mitigate
the performance interference caused by a consolidated VM.
These experiments correspond to those in Figure 4a, that is,
Sys_Const [Liberal-SR] with constant workload at 2400,
Sys_Inc [Conservative-SR], Limit=60%.

these two cases, Limit=100% case records CPU utilization
at the range between 53% and 55% more frequently than
Limit=60% case. This occurs because the configuration can
utilize more than 60% CPU power when the workload of the
consolidated VM is instantaneously low.3 This result denotes
that, with higher sharing configuration, VMs can utilize the
CPU more flexibly and can assign the extra CPU power to
mitigate the impact of performance interference caused by
a consolidated VM.

C. Another Approach of Reducing Performance Interference
with CTP Scheduler

So far we have shown that the performance of an n-tier
system can be significantly interfered by its consolidated
systems in a non-trivial way and the magnitude of interfer-
ence depends on some system level factors such as CPU
sharing/limiting strategies. The root cause of the perfor-
mance interference is due to the “unfair” resource (e.g.,
CPU) contention between consolidated VMs when resource
utilization is high. To solve this problem, one possible solu-
tion is to change the current hypervisor scheduling algorithm
and make efforts to provide perfect isolation among VMs.
We will leave it as one of our future research.

In this section, we show another practical approach to
make an n-tier system more robust to the performance inter-
ference cause by consolidated systems. Our previous work
[22] introduced a technique named cross-tier-priority based
scheduling (CTP scheduling) which can mitigate the large
response time fluctuations of an n-tier system under high
hardware resource utilization. Here we show that the CTP
scheduling also works well in the case of the performance
interference caused by resource contention among VMs.

3It should be noted that the granularity of recording CPU utilization in the
results is 2 seconds since it is the minimum value of the Esxtop command.
So, comparing with the result of the Limit=60% case, it is reasonable to
consider that the 53-55% are the results of aggregation among instantaneous
values of CPU utilization higher than 60% and low values.

CTP scheduling is essentially an extension of applying the
shortest-job-first scheduling policy for a web server [9], [16]
in the context of n-tier systems. It categorizes transaction4

types in an n-tier system into several groups according to
the total service time one transaction takes in the bottleneck
tier. Transactions with short service times (i.e., light trans-
actions) are granted with a higher priority to execute while
transactions with long service times (i.e., heavy transactions)
are granted with a lower priority.5 By giving higher priority
to light transactions during transaction execution, the CTP
scheduling prevents light transactions from being involved
in the long waiting time for heavy transactions during
transient saturation of hardware resources in the bottleneck
tier. Overall, CTP scheduling can decrease the influence
caused by transient saturation of a hardware resource and
achieve stable, good response time of the system. In our
VM consolidation scenario, the CPU resource of a VM is
frequently limited by the consolidated VM due to resource
contention; thus applying CTP scheduling can mitigate the
negative interference from the consolidated VM and achieve
a more stable response time.

Figure 6 shows the comparison between the response
time of the original RUBBoS and the modified RUBBoS
with CTP scheduling during transaction execution. At work-
load=2100 on Sys_Inc in the figure, CTP scheduling
decreases the high peak of response time caused by the
performance interference from the consolidated system.

IV. BURSTY WORKLOADS INCREASE PERFORMANCE
INTERFERENCE

In this section, we show how the burstiness of the workload
on a consolidated system can cause performance interference
and impacts the non-monotonic response time variations.
Our detailed experimental observation reveals that the re-
sponse time of even an under-utilized n-tier system can
be largely degraded when the workload on a consolidated
system becomes bursty. This fact suggests that it is quite
difficult to achieve stable response times in a consolidated
deployment scenario on a virtualized infrastructure since
the burstiness of workload on a consolidated system is
unavailable or unpredictable in many cases.

Bursty workloads are very common in real world n-
tier web-facing applications. For instance, the popular term
Slashdot effect describes a phenomenon where a web page
linked by a popular blog or media site suddenly experiences
a huge increase in web traffic [2]. Mi et al. [14] proposed
a bursty workload generator which takes into account the
Slashdot effect. The bursty workload generator uses one

4A transaction services an entire web page requested by a client and may
consist of multiple interactions between different tiers.

5Whether a transaction is heavy or light is application level knowledge;
the operating system in each individual server cannot distinguish heavy
transactions from light transactions, thus traditional OS-level shortest-job-
first scheduling policy does not improve performance here. See [22] for
more details.
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Figure 7: Response time of Sys_Const (workload=2100)
with various burstiness levels of workload on the consolidated
Sys_Inc under fully shared configuration (Limit=100%). The per-
formance interference becomes larger as the burstiness of workload
on the consolidated system becomes larger. Sys_Const [Liberal-
SR], Sys_Inc [Liberal-SR], Limit=100%.

parameter to characterize the intensity of the traffic surges:
index of dispersion, which is abbreviated as I. The larger the
I is, the longer the duration of the traffic surge.6 In this sub-
section, we use the bursty workload generator (with I=100,
400, and 1000) to investigate the non-monotonic response
time variations under the condition that the workload of a
consolidated system is bursty.

Figure 7 shows the response time of Sys_Const with
the original RUBBoS workload (constant at WL=2100)
consolidated with Sys_Inc which has bursty workload
with various I values (also I=1, that is, the case of original
RUBBoS workload). Here, the CPU sharing configuration
is Limit=100% on each VM since it has the minimum
response time increment in previous experiments as shown
in Figure 4. The response time of Sys_Inc is omitted due
to space constraints.

Figure 7 includes two significant facts to understand the
impact of bursty workload on the performance interference.
First, as the burstiness of the workload on a consolidated
Sys_Inc increases, the larger the response time degra-
dation on Sys_Const becomes. It means that the non-
monotonic response time variations depend not only on
the amount of workload and the CPU sharing configura-
tion but also on the burstiness of the workload on the
consolidated systems. Second, as the workload burinstess
increases on a consolidated Sys_Inc, the peak of non-
monotonic response time variations of Sys_Const shifts
to a lower workload. When the burstiness increases to a
certain level, the variations of workload are recognized as the
periods with high workload and the other periods with low
workload by the CPU scheduler of the hypervisor. Thus, in
the periods recognized as high workload, the VM is assigned
low priority on CPU allocation by the scheduler.

6The burstiness level of the original RUBBoS workload generator is I=1.
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Figure 8: Response time of Sys_Const (workload=1700) con-
solidated with Sys_Inc (bursty workload: I=1000) in the dis-
joint CPU allocation. The performance interference from bursty
workload on the consolidated system is unavoidable even under
unsaturated CPU utilization in the disjoint CPU allocation scenario.
Sys_Const [Liberal-SR], Sys_Inc [Liberal-SR], Limit=50%.

Finally, one more result with the Limit=50% configuration
(i.e, fifty-fifty CPU splitting) is shown in Figure 8, so as to
show the performance interference from bursty workload on
a consolidated system is unavoidable even under unsaturated
CPU utilization in the disjoint CPU allocation scenario.
Here, the burstiness of workload on Sys_Inc is solely
I=1000 and the amount of workload on Sys_Const is
1700. In this case, surprisingly, Sys_Const is degraded
to twentyfold response time by the bursty workload on the
consolidated system even though the VM in Sys_Const
still remains the assigned CPU power (the CPU utilization
of the VM is about 40% of core power, i.e., 80% relative
utilization) and also the total CPU utilization of the core is
far from saturation (70% overall).

V. RELATED WORKS

VM consolidation in cloud environments has become a very
active research in recent years due to its practical interest.

Analytical approaches that assume linear consolidation
performance have been proposed for performance prediction
and management under VM collocation scenario (e.g., [6],
[7], [13], [18]). For example, Ferreto et al. [6] apply linear
programming to improve consolidated application perfor-
mance through dynamic VM migration. Similarly, most
papers that model and solve consolidation as a bin-packing
optimization problem assume linear consolidation. Clearly,
our experimental study of consolidation performance does
not invalidate these good results, but our work helps to
delimit the applicability of such results that assume linear
consolidation performance.

Experimental approach that measures the performance
interference between consolidated applications in virtualized
environment has been studied before. For example, Padam
et al. [3] have characterized and analyzed server consoli-
dation benchmarks. Their experiments have shown that the



performance of any workload suffers considerable loss when
it is run in a consolidated environment. Aritra et al. [17] in-
vestigated the problem of data center consolidation with the
goal of minimizing the total costs of running a data center;
they built a tool called CloudBridge by combining hardware
and software consolidation. Curino et at. [5] use a non-linear
optimization algorithm to find the consolidation strategy,
and then evaluated their optimization algorithm through
measurements of benchmarks and real database usage traces.
Their measurements found a very close match between their
optimized consolidation solution and the measured results,
even for relatively high CPU utilization levels (30% average
and the 95% percentile at near 60%). To the best of our
knowledge, their work is the first experimental paper that
claims low performance interference in their measurements
of production clouds at realistic CPU levels, which rep-
resents a significant evolution from other measurement-
based papers on performance interference. Consequently,
this paper corroborates our research that aims at providing an
extensive evaluation of consolidation performance in diverse
scenarios.

VI. CONCLUSION

We have investigated the sensitivity of consolidated n-tier
application performance, particularly response time, with
respect to two factors: (1) consolidated server specification
of virtual machine resource availability, and (2) burstiness
of n-tier application workload. With respect to scheduling
isolation, our measurements show that the usual assumption
of good hypervisor scheduling isolation (e.g., 50-50 even
split of CPU between 2 VMs) may not yield the best overall
performance. In fact, a sharing strategy (e.g., two co-located
VMs each allowed 100% of CPU) enabled higher overall
CPU utilization and better response time as well as through-
put. The explanation is that isolation resulted in unused CPU
due to reservation, and sharing enabled better utilization of
CPU when one of the VMs became idle. As a potential
solution to the performance interference among VMs, we
studied cross-tier-priority (CTP) based scheduling [22] and
found CTP effective in reducing performance loss by a factor
of two.

The second part of our research studied the impact
of workload burstiness on consolidated application perfor-
mance. Our measurements show that sufficiently bursty
workloads can degrade the consolidated application response
time at relatively low overall CPU utilization of 70%.
Furthermore, the negative impact of bursty workloads is
insensitive to the CPU allocation strategy of VMs, affecting
both the isolation and sharing strategies. Our experimen-
tal study shows that multiple factors (CPU allocation and
workload burstiness) have non-trivial negative impact on the
performance of consolidated applications. The experimental
evidence corroborates the current belief that it is unlikely
a simple solution will address consolidated application

performance interference problem completely. Given the
importance of consolidation for improved cloud utilization,
it is clear that further research in this area is needed to
improve our understanding of the performance interference
phenomenon and find solutions that can effectively reduce
its negative impact.
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