
A Semantics of Business Configurations Using Symbolic Graphs

Nikos Mylonakis and Fernando Orejas
Department of Computer Science

Universitat Politècnica de Catalunya
Barcelona, Spain

Email: nicos@cs.upc.edu, orejas@cs.upc.edu

José Fiadeiro
Department of Computer Science

Royal Holloway University of London
London, UK

Email: jose.fiadeiro@rhul.ac.uk

Abstract—In this paper we give graph-semantics to a funda-
mental part of the semantics of the service modeling language
SRML: business configurations. To achieve this goal we use
symbolic graph transformation systems. We formalize the se-
mantics using this graph transformation system and illustrating
it with a simple running example of a trip booking agent.

Keywords-Service Oriented Computing (SOC); graph trans-
formation systems;

I. INTRODUCTION

SRML ([1], [2], [3]) is a service modeling language
designed within the project SENSORIA [4]. Its state model
is considered at two levels of abstraction. Roughly, at the
lowest level, a state configuration is a graph consisting of
interconnected components and, at the highest level, business
configurations are graphs consisting of interconnected acti-
vities, where each activity is a graph of components. This
definition at two levels of abstraction is needed to allow
for dynamic service binding. Unfortunately, the operational
semantics of SRML was not defined in a way that facilitates
the animation of its models, making any such implementa-
tion too complex.

The goal of this work is to provide a graph transformation
semantics for SRML so that its models could be animated
using a generic graph transformation tool, such as the
Maude implementation of graph transformation [5]. For
this semantics we use symbolic graphs and symbolic graph
transformation [6], which have been shown that it is M-
adhesive. Therefore we show how this framework can be
used to define (part of) a graph transformation semantics
of SRML. We believe that this new semantics has the
advantage that an implementation could be relatively easy if
we had a tool for the graph transformation system that we
propose, because much of the implementation work would
be delegated to the graph transformation tool.

The paper is organized as follows. In Sections 2 and 3,
we present an overview of SRML and symbolic graphs,
respectively. Then, Section 4 is dedicated to showing how we
can define part of the semantics of SRML using symbolic
graph transformation. Finally, in Section 5, we discuss some
related work and conclude the paper.

II. INTRODUCTION TO SRML

The essential concept of the Sensoria Reference Modeling
Language (SRML) is the notion of module which is inspi-
red by the constructions presented in Service Component
Architecture (SCA). See [1], [2], [3], [7] for a detailed
description of the language. Roughly speaking, a module
can be seen as a graph of components that are connected
by wires. Moreover a module also includes some provides
and requires interfaces, which are also connected by wires
to the components. As an example of a module we present a
booking agent. This module, which is graphically depicted in
Fig. 1, is supposed to offer a service for booking trips (flight
and hotel). It includes a single component (BookAgent) that
is supposed to take care of the booking and three interfaces:
a provides interface (Customer) for customer requests and
two requires interfaces (FlightAgent and HotelAgent). The
BookAgent is supposed to receive trip reservation requests
from customers that are connected to the Customer interface.
Then, BookAgent is supposed to request a flight and a hotel
to services connected to the FlightAgent and HotelAgent,
respectively, which are supposed to provide the correspon-
ding reservation confirmations through a hotel and a flight
code. These codes will then be returned to the customer.
For our purposes it is enough to see how the BookAgent
requests a flight to the FlightAgent.

BOOKING AGENT

CR:
Customer

BA:
BookAgent

FA:
FlightAgent

HA:
HotelAgent

CB

BH

BF

Figure 1. BOOKING AGENT service module

montse aragues
Texto escrito a máquina
© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/SCC.2015.29

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

Components are specified by a business role consisting of
a signature and an orchestration part. The signature declares
the events or messages in which that component may take
part and the orchestration describes the behavior of the
component. For instance, below we can see a small part
of the specification of the main component of the booking
agent module.

BUSINESS ROLE BookAgent is
r&s booktrip

from,to:string; out,in:integer;
Btconf : (fcode,hcode);

s&r bookflight

from,to:string; out,in:integer;
Bfconf : fcode;

. . .
ORCHESTRATION

local
from,to:string; out,in:integer;
fconf : fcode; hconf : hcode;

transition Torder
triggered by booktrip

effects

from’ = booktrip.from ∧
to’ = booktrip.to ∧
out’ = booktrip.out ∧
in’ = booktrip.in

sends bookflight

bookflight.from = from’ ∧
bookflight.to = to’ ∧
bookflight.out = out’ ∧
bookflight.in = in’ ∧

. . .

In this specification we
declare that BookAgent
has an interaction called
booktrip in which the
component participates
receiving and then
sending information
(r&s) and another
interaction called
bookflight in which the
component participates
sending and then
receiving information
(s&r). For example,
booktrip has four input
parameters
(from, to, out and in) and
one output parameter
(tconf). Then, in the
orchestration part, first we declare the local variables of
the component and possibly their initialization, and then
we specify the effects of the interactions in which the
component may take part. For instance, in the example, the
local variables from, to, in, and out are supposed to store
the basic data of the trip being booked (source, destination,
departure and return dates, respectively), and fconf and
hconf are supposed to store the flight and hotel reservation
codes that have been booked. In the example, we also
declare the local effects of an interaction, called Torder,
in which the component takes part. This interaction is
triggered by the event booktrip that the component receives.
The contents of the local variables from, to, in, and out
after the interaction are the contents of the corresponding
parameters of booktrip. Moreover, the interaction triggers
an event or message bookflight, which is sent by the
component with the corresponding input parameters.
Thus, components can interact asynchronously with other
components by exchanging events or messages. This form
of interaction is essential for supporting the forms of loose
binding that are typical in service oriented computing.
Therefore, events or messages model the interactions that
are exchanged between parties (service requesters and
suppliers) or internally within a party, but not exchanges
with the middleware infrastructure that implements the
binding.

External interfaces are specified through business proto-

cols. They also include a signature and they specify the
conversations that the module expects relative to each party.
It is the responsibility of the counterparty to adhere to these
protocols. Finally, wires bind the names of the interactions
and specify the protocols that coordinate the interactions
between two parties. For instance, this module includes the
wire CB that connects with two diamonds the business
protocol of the customer of the BOOKING AGENT module
and the business role BookingAgent of the same module.
We do not include here an example of an interface or of a
wire specification, since they are not relevant for this paper.
Another issue of SRML that we do not treat in this paper
in detail is service level agreement (SLA).

In [7] business configurations are defined using the notion
of state configuration. A state configuration is a pair of a
simple graph (undirectecd, without self-loops or multiple
edges) of components and wires, and a configuration state. A
configuration state is a mapping of states to the components
and states to the wires. Thus, a state configuration also
includes the values contained by the local variables of wires
and components and the events or messages that are on the
components and wires waiting to be processed.

These states can evolve in two different ways: execution
steps and reconfiguration steps. In execution steps, the
component states are changed by removing from the buffer
the messages selected to be processed and adding those that
ared delivered to the component. The wire states are changed
by removing from the buffer the messages that are delivered
to the components and adding those that are published to
the wire.

For reconfiguration steps, SRML defines business-
reflective configurations. This concept is needed to capture
the business activities that perform in a configuration and
determine how the configuration evolves. Additionally, it is
needed a typing mechanism of complex structures which
are called activity modules. These activity modules type the
sub-configurations that in a given state, execute the business
activities that are running. Thus, when the requires interface
of an activity module AM matches the provides interface of
a service module SM the two modules are connected and
the activity is bound to this new service. This implies that
initialized instances of the components and wires of SM
are added to the state configuration and also to the activity
associated to AM . The activity module associated to the
enriched activity would include the components and wires
of that activity and, in addition, the remaining (non-matched)
interfaces of AM and SM .

III. SYMBOLIC GRAPHS AND SYMBOLIC GRAPH
TRANSFORMATION

Symbolic (hyper)graphs [6] can be seen as a specification
of a class of attributed graphs (i.e. of graphs including
values from a given data algebra in their nodes or edges).
In particular, in a symbolic graph, values are replaced by

variables and, moreover, a set of formulas, Φ, specifies the
values that the variables may take. Then, we may consider
that a symbolic graph SG denotes the class of all graphs
obtained replacing the variables in the graph by values that
satisfy Φ. For instance, the symbolic graph in Figure 2
specifies a class of attributed graphs, including distances in
the edges, that satisfy the well-known triangle inequality.

Figure 2. A symbolic graph

The notion of symbolic graph is based on the notion of
a special kind of labeled graphs called E-graphs (for more
details, see [8], [9]). The only difference of the notion of
E-graph that we use with respect to the notion in [8] is that
we deal with hypergraphs. This means that, for every graph
G, instead of having source and target functions that map
edges to nodes, we have an attachment function, attachG,
that maps each (hyper)edge to a sequence of nodes, i.e. the
nodes connected by the edge. The definition is the following:

Definition 1: An E-graph G = (V1, V2, HE1, E2, E3,
attach1, (sourcei, targeti)i=2,3) consists of sets
• V1 and V2 called graph nodes and data nodes respecti-

vely,
• HE1, E2, E3 called graph hyperedges, node attribute

edges and hyperedge attribute edges,
and attachment, source and target functions
• attach1 : HE1 → V ∗1
• source2 : E2 → V1, target2 : E2 → V2

• source3 : E3 → HE1, target3 : E3 → V2

Definition 2: A symbolic graph over the data algebra D
is a n-tuple 〈G,ΦG〉, where G is an E-graph over a set
of variables X , ΦG is a set of first-order formulas over the
operations and predicates in D including variables in X and
elements in D.

Given symbolic graphs 〈G1,ΦG1
〉 and 〈G2,ΦG2

〉 over D,
a symbolic graph morphism h : 〈G1,ΦG1〉 → 〈G2,ΦG2〉 is
an E-graph morphism h : G1 → G2 such that D |= ΦG2 ⇒
h(ΦG1

), where h(ΦG1
) is the set of formulas obtained when

replacing in ΦG1
every variable x1 in the set of labels of

G1 by hX(x1).

In Figure 3 we have an example of symbolic rule with one
symbolic graph on the left side of the big black right arrow
and another on the right side. The meaning of the rule will
be explained later on this section and now we describe the
E-graph on the left hand side. It has two hyperedges: one
which denotes an event which has just one node and five
hyperedge attribute edges for its five attributes: the name of
the event (booktrip) and four event parameters. The other
hyperedge denotes a component which has three nodes and
five hyperedges attribute edges: the name of the component
(BookAgent) and four variable components. These kind
of graphs will be part of business activities which will be
defined in the next section.

As we mentioned at the beginning of this section, sym-
bolic graphs specifies a class of attributed graphs. Therefore
next we also give the definition of attributed graphs:

Definition 3: An attributed graph AG over the data alge-
bra D is an E-graph where V2 is the disjoint union of all
the values of every sorted set Ds of the data algebra D.

Symbolic graphs over D together with their morphisms
form the category SymbGraphsD. In [6] it is shown
that SymbGraphsD is an adhesive HLR category, which
means that all the fundamental results of the theory of graph
transformations apply to these kinds of graphs [9].

In symbolic graph transformation we consider that the left
and right-hand sides of a rule are symbolic graphs, where
the conditions on the left hand side on the rule are included
in the conditions in the right hand side of the rule. This
means that applying a transformation to a symbolic graph
〈G,ΦG〉 reduces or narrows the number of instances of the
result. For instance, G may include an integer variable x
such that ΦG does not constrain its possible values. However,
after applying a given transformation, in the result graph
〈H,ΦH〉 we may have that ΦH includes the formula x = 0,
expressing that 0 is the only possible value of x.

Definition 4: A symbolic graph transformation rule is a
triple 〈ΦL, L ←↩ K ↪→ R,ΦR〉, where L,K are E-graphs
over the same set of variables XL, R is an E-graph over
the set of variables XR, with XL ⊆ XR, L ←↩ K ↪→ R is
a standard graph transformation rule, and ΦL and ΦR are
sets of formulas over XL and XR, respectively, and over the
values in the given data algebra D, with ΦL ⊆ ΦR.

Figure 3. A symbolic rule

As an example, in Figure 3 we show a rule with two events
and a BookAgent component. The rule states that when
arriving a booktrip event, the BookAgent registers them and
sends a new bookflight event. The formula below expresses
that the origin, destination, and departure and return dates
are the same in the incoming event (booktrip) and in the
outgoing event (bookflight). The intermediate graph K in
general denotes the common subgraph between L and R.
In our example would be the BookAgent hyperedge. For
simplicity, we do not depict the intermediate graph K, nor
do we state explicitly which are the sets XL and XR of the
given rule. Instead, we assume that XL consists of all the
variables that are explicitly depicted in the left-hand side
graph, and XR consists of all the variables that are depicted
in the rule. Similarly, we just depict a single set of formulas
for a given rule, assuming that ΦR is the set consisting of
all these formulas and ΦL is the subset of ΦR consisting of
the formulas that only include variables in XL.

As usual, the application of a graph transformation rule
to a given symbolic graph SG can be defined by a double
pushout in the category of symbolic graphs. However, it can
also be expressed in terms of a transformation of E-graphs.

As a remark, given a symbolic graph transformation rule
〈ΦL, L←↩ K ↪→ R,ΦR〉 over a given data algebra D and a
symbolic graph morphism m : 〈L,ΦL〉 → 〈G,ΦG〉, we have
that 〈G,ΦG〉 =⇒p,m 〈H,ΦH〉 if and only if the diagram
below is a double pushout in E−Graphs and D |= ΦG ⇒
m(ΦL).

L

(1)m

��

K

(2)

? _oo � � //

��

R

m′

��
G F?

_oo � � // H

and, moreover, ΦH = ΦG ∪m′(ΦR).

IV. A GRAPH-SEMANTICS FOR BUSINESS
CONFIGURATIONS

In our graph semantics business configurations are re-
presented by symbolic graphs, whose hyperedges represent
components and events. Each connected subgraph is a busi-
ness activity whose nodes represent wires. Additionally, in
the semantics we will have two different graph transforma-
tion rules for these two ways of transforming the state: state
transformation rules and reconfiguration rules.

We believe that symbolic graphs are especially adequate
because it is the most convenient graph formalism with
attributes whose values have to be specified. For example,
if we compared symbolic graphs with the most standard
approach [8], there are two reasons for this. On the one hand,
as shown in [6], the formalism of symbolic graphs is more
expressive. For example, it allows us to specify arbitrary
conditions on the attributes of a graph. On the other hand,
with symbolic graphs, we may define different strategies
for evaluating attributes when doing graph transformation,

allowing for more flexibility [10]. The original formalism
specifies values with first order formulas but we plan to
extend the with clause of symbolic graphs with a more
generic set of formulas including temporal ones. This is
necessary to encode the requires and provides specification
of business protocols. This change would not affect the
semantics of business configurations because requires and
provides specifications would be represented in a very natu-
ral way as a set of temporal formulas in the with clause of
symbolic graphs. We do not relate symbolic graphs because
we are not aware of any graph transformation system with
a similar expressive power.

Our graph semantics is presented in the next two subsec-
tions. In the first one, we present the graph semantics of
business configurations, and in the second one its associated
transformation system. The semantics that we propose is
different than the original one [2] and the light version
of [7], and therefore we do not use provide and request
specifications and we do not treat either the problem of
name injections in wires. In [7] one must handle with
SLA (service level agreement) constraints too. We have not
included SLA constraints in our paper either because they
would be treated in a similar way as requires and provides
specifications.

A. Business configurations

In the first definition we present the basic concept of
business activity:

Definition 5: A business activity is a connected symbolic
graph with two types of hyperedges:
• Hyperedges that represent components with a positive

number of nodes, an attribute with the name of the
component and a set of attributes of the component.
We will refer to them as component hyperedges.

• Hyperedges that represent events connected with just
one node, an attribute with the name of the event,
another with the type of the event and a set of attributes
of the event. We will refer to them as event hyperedges.

There are also two types of nodes: internal and inter-
face nodes. Both types of nodes can be part of different
component hyperedges and a set of event hyperedges. The
main difference between these two types of nodes is that
interface nodes are the ones with which subsystem binding
is performed.

Next, we present the concept of business configuration:
Definition 6: A business configuration is a symbolic

graph where it can have in general a set of business activities.
As we mentioned in the definition of business activities,

interface nodes are not connected to another node. When
these nodes have an event hyperedge, they triggered a
process of selection of a reconfiguration rule package. For
example, if a customer has developed an activity module that
requests a booking agent to book a hotel and a flight, the

symbolic graph that represents the initial business configu-
ration with an instance of this activity module consists of a
hyperedge that represents the customer component with a set
of attributes for the flight and hotel reservation. A graphical
representation is in figure 4.

Figure 4. Business configuration with just a customer activity

Additionally, in figures 6 and 8 we have two different
stages of the initial business configuration of figure 4. In 6
we have a customer subsystem with a set of attributes (from,
to, in, out, ...). The hyperedge has an interface node with an
event hyperedge. After triggering a process of selection of
a reconfiguration rule package, the business configuration
evolves to the one in figure 8, binding the interface node
of a booking agent subsystem. This subsystem has also
two additional interface hierarchical nodes. We will explain
further Figure 8 later in this section.

B. Transformation systems for business configurations

In this subsection we present first the two kinds of
rules that we have in transformation systems for business
configurations: state transformation rules and reconfiguration
rules. After that we present reconfiguration rule packages
that combine both kind of rules.

Definition 7: A state transformation rule is a rule that can
make the following transformations in one activity:
• process an event eliminating this event from a node of

a hyperedge component;
• transform the values of the attributes of a component

hyperedge using information of the processed events of
its nodes;

• publish an event in the node of a hyperedge component.
An example of state transformation rule is in figure

5 which publishes an event in the interface node of the
hyperedge component of the customer.

Other possible rules are a rule for processing the informa-
tion of the reply-event of the booking agent or a rule to start
the payment.When the rule initr is applied to the business
configuration, the initiating event is added to the business

Figure 5. Rule initr associated to the customer activity

configuration. The resulting new business configuration is
in figure 6.

Figure 6. New business configuration with a trigger event

Definition 8: A reconfiguration rule connects one busi-
ness activity with another.
An example of a reconfiguration rule is in figure 7: it binds a
business activity with a customer component with a business
activity with a booking agent component.

Definition 9: A reconfiguration rule package contains one
distinguished reconfiguration rule, and it additionally has an
associated set of state transformation rules.

The event in figure 6 triggers a process of selection of
a reconfiguration rule together with a set of state transfor-
mation rules. The selected reconfiguration rule is in figure
7. After applying the reconfiguration rule, an instance of a
booking agent module is connected to the instance of the
customer activity module that is represented in figure 8.

A business repository contains all the possible services
that are available at a certain time to make a binding in a
process of selection of a reconfiguration rule package.

Definition 10: A business repository is a set of reconfi-
guration rule packages.

Figure 7. A reconfiguration rule

Figure 8. Updated business configuration with a booking agent

Now we present the concept of transformation systems
for business configurations:

Definition 11: A transformation system for business con-
figurations consists of:
• a business configuration
• a business repository
• a set of state transformation rules.
Finally we present the two different ways through which

we can transform a transformation system for business
configurations:

Definition 12: A transformation step in a transformation
system for business configuration can be one of the fo-
llowing:
• An application of a state transformation rule to the

current business configuration. The result updates the
business configuration.

• After a process of selection of a reconfiguration rule
package by an interface node of an activity and at least
an event hyperedge, the application of the distinguished
rule of the selected reconfiguration package to the
current business configuration. In this case we update
again the business configuration. The rest of the rules

of the reconfiguration rule package are added to the
current set of state transformation rules.

In our running example, the initial business configura-
tion of figure 4 has been transformed to the the business
configuration of figure 6 by first applying the state trans-
formation rule of figure 5. In a second step, after applying
the distinguished rule of figure 7 of a reconfiguration rule
package to 6, we obtain the business configuration of figure
8. To obtain a reconfiguration rule package it is needed
a process of service discovery and binding. The set of
state transformation rules is then updated with the set of
state transformation rules associated with the reconfiguration
rule. These new set of rules will include rules to process
the initiating event of the customer and generate two new
initiating events to book a flight by a Flight Agent and to
book a hotel by an Hotel Agent.

Figure 9. Updated business configuration with a booking agent

In general, a business configuration can have several
independent activities. In the last figure 9 we have two
independent activities of two different customers, one in the
final state of the running example of the paper, and the other
ready to trigger a process of discovery of another booking
agent which has not to be the same as the chosen for the
other customer. We omit the attributes of the components
and events and the with clause, and we encapsulate the two
independent activities.

Finally, we relate our semantics with the one presented
in [7]. We concentrate on the following concepts of their
semantics:
• configuration steps
• business reflective configurations and reconfiguration

steps
Configuration steps are related to our concept of state

transformation rules. In their work configuration steps affect
components and wires. Components and wires have buf-
fers and in a configuration step it is removed from every
component buffer the messages selected to be processed
and it is added those messages that are delivered to the

component from the wire. From the point of view of the
wires, configuration steps change every state of the wires
by removing from the buffer the messages that are delivered
to the components and adding those that are published
to the wire by the connected components. There are two
constraints which configuration steps must satisfy: every
wire delivers all messages to and only to the component
it connects, and all the messages that are published to the
wire come from the same connected components. Our state
transformation rules do not formalize these behavior exactly
but it is similar. Being more concrete, components do not
have proper buffers and events only exist in the nodes of the
component hyperedges which correspond to the concept of
wires. A state transformation rule can transform the state
of a component but an event can not inhabit it. It can
also generate events to a wire. The two constraints must
be satisfied also in state transformation rules and they must
be checked before adding a reconfiguration rule package to
a business repository.

Their business configurations have the notion of activities
which are typed by activity modules. These types are used
for deciding how the configuration will evolve through
events that will trigger the discovery process. This informa-
tion on the types makes business configurations reflective,
which makes the system adaptable to reconfiguration. In
reconfiguration steps the business configurations evolve at
the level of activities and at the level of types. In our case,
we do not have this notion of type but we could have
information in the with clause of the business configuration
and in the with clause of a reconfiguration rule. More
concretely, in the with clause of the business configuration
we could have the requirements specification of an activity
module, and in the with clause of the reconfiguration rule
we could have also the provides specification of a service
module. But for this, we need symbolic graphs with temporal
formulas.

V. CONCLUSION AND RELATED WORK

The SRML language was designed in the European
project Sensoria (www.sensoria-ist.eu). Although a variety
of tools were developed in the project to aid the creation
and analysis of service-oriented software, a complete im-
plementation of SRML has not been developed. We are not
aware of any implementation of business configurations or
of any alternative semantics for business configurations.

The semantics of SRML has been addressed in several
papers (e.g. see [1], [2], [3], [7]). In this paper we replace the
original semantics of business configurations with a graph-
semantics which can be easily implemented if we had a
tool for symbolic graph transformation. The main difference
of SRML with respect to other approaches in the area of
service oriented is that the language supports service binding
at run time, in contrast with approaches like [11], [12],
[13], [14]. Both semantics are related in the last part of

the previous section. Although they are related, one should
not think that a framework with our semantics would use
the syntax of SRML. Instead, our designers would write
reconfiguration rule packages with both a reconfiguration
rule and a set of state transformation rules, using a graph
transformation tool. Additionally, our approach offers a
formal semantics for binding that is independent of specific
languages that might be adopted. It is also more expressive
in relation to the conditions through which services can be
selected, which could be used to enhance existing languages
such as WSDL.

In future work, we will extend the original formulation of
symbolic graphs using first order formulas in the with clause
to include also formulas of temporal logics. To achieve this,
as in [3] we will probably work with traces which are infinite
sequences of set of actions. This is needed to define in
the with clause requires and provides specifications, which
in SRML are written in business protocols of external
interfaces. An example of a request specification for the
BookAgent of the customer of our running example would
include the following requirements:
• acknowledgment of the request
• acknowledgment of the payment

See [7] for a concrete requirements specification of a cus-
tomer for a MortgageAgent using temporal logic.

We also plan to study how to define hierarchical graph
transformation with flexible notions of hierarchical graph
morphisms so that it is possible to perform transformations
that change the hierarchical structure of a graph. This
approach will be a variation of the work of [15]. We
think that this is necessary to define a semantics of an
ambient calculus with business configurations and business
repositories. Finally, we will also try to study how we can
extend our semantics to cover complex service binding.

ACKNOWLEDGMENT

This work has been partially supported by funds from
the Spanish Ministry for Economy and Competitiveness
(MINECO) and the European Union (FEDER funds) under
grant COMMAS (ref. TIN2013-46181-C2-1-R).

REFERENCES

[1] J. L. Fiadeiro, A. Lopes, L. Bocchi, and J. Abreu,
“The sensoria reference modelling language,” in Rigorous
Software Engineering for Service-Oriented Systems - Results
of the SENSORIA Project on Software Engineering for
Service-Oriented Computing, ser. Lecture Notes in Computer
Science, M. Wirsing and M. M. Hölzl, Eds. Springer,
2011, vol. 6582, pp. 61–114. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-20401-2 5

[2] J. L. Fiadeiro, A. Lopes, and L. Bocchi, “Algebraic semantics
of service component modules,” in WADT, 2006, pp. 37–55.

[3] ——, “An abstract model of service discovery and binding,”
Formal Asp. Comput., vol. 23, no. 4, pp. 433–463, 2011.

http://dx.doi.org/10.1007/978-3-642-20401-2_5
http://dx.doi.org/10.1007/978-3-642-20401-2_5

[4] M. Wirsing and M. M. Hölzl, Eds., Rigorous Software
Engineering for Service-Oriented Systems - Results of the
SENSORIA Project on Software Engineering for Service-
Oriented Computing, ser. Lecture Notes in Computer
Science. Springer, 2011, vol. 6582. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-20401-2

[5] A. Boronat and J. Meseguer, “An algebraic semantics for
mof,” in FASE, ser. Lecture Notes in Computer Science, J. L.
Fiadeiro and P. Inverardi, Eds., vol. 4961. Springer, 2008,
pp. 377–391.

[6] F. Orejas and L. Lambers, “Symbolic attributed graphs for
attributed graph transformation,” in Int. Coll. on Graph and
Model Transformation. On the occasion of the 65th birthday
of Hartmut Ehrig, 2010.

[7] J. L. Fiadeiro and A. Lopes, “A model for dynamic reconfi-
guration in service-oriented architectures,” Softw Syst Model,
pp. 12:349–367, 2013.

[8] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer, “Fundamental
theory of typed attributed graph transformation based on
adhesive HLR-categories,” Fundamenta Informaticae, vol.
74(1), pp. 31–61, 2006.

[9] ——, Fundamentals of Algebraic Graph Transformation,
ser. EATCS Monographs of Theoretical Computer Science.
Springer, 2006.

[10] F. Orejas and L. Lambers, “Lazy graph transformation,”
Fundam. Inform., vol. 118, no. 1-2, pp. 65–96, 2012.
[Online]. Available: http://dx.doi.org/10.3233/FI-2012-706

[11] W. van der Aalst, M. Beisiegel, K. M. van Hee, D. König, and
C. Stahl, “A soa-based architecture framework,” in The role
of business processes in service oriented architectures, ser.
Dagstuhl seminar proceedings, vol. 06291. Schloss Dagstuhl,
2006.

[12] M. Broy, I. H. Krüger, and M. Meisinger, “A formal model
of services,” ACM Trans Softw Eng Methodol, vol. 16, no. 1,
2007.

[13] B. Benatallah, F. Casati, and F. Toumani, “Web service con-
versation modeling: a cornerstone for e-business automation,”
IEEE Internet Computing, vol. 8, no. 1, pp. 46–54, 2004.

[14] W. Reisig, “Modeling and analysis techniques for web servi-
ces and business processes,” in FMOODS, ser. Lecture Notes
in Computer Science, vol. 3535. Springer, 2005, pp. 243–
258.

[15] F. Drewes, B. Hoffmann, and D. Plump, “Hierarchical
graph transformation,” J. Comput. Syst. Sci., vol. 64,
no. 2, pp. 249–283, 2002. [Online]. Available: http:
//dx.doi.org/10.1006/jcss.2001.1790

http://dx.doi.org/10.1007/978-3-642-20401-2
http://dx.doi.org/10.3233/FI-2012-706
http://dx.doi.org/10.1006/jcss.2001.1790
http://dx.doi.org/10.1006/jcss.2001.1790

	Introduction
	Introduction to SRML
	Symbolic graphs and symbolic graph transformation
	A graph-semantics for business configurations
	Business configurations
	Transformation systems for business configurations

	Conclusion and Related Work
	References

