2015 IEEE International Conference on Services Computing

Workflow-Based Service Selection Under Multi-Constraints

'Chao Xia, 2Chi-Hung Chi, 3Raymond Wong, “Andreas Wombacher, “Luis F. Pires, “Marten van Sinderen, *Chen Ding
'School of Software, Tsinghua University, Beijing, China
*Digital Productivity Flagship, CSIRO, Australia
*Department of Computer Science, University of New South Wales, Sydney, Australia

*University of Twente, Netherlands

*Department of Computer Science, Ryerson University, Toronto, Canada

Abstract — Despite the availability of services with
similar functionality but from different providers in the
cloud, using them in a workflow might subject to
constraints such as service QoS and service bundling.
Service bundling refers to the situation where the
subscription of two services have to be done together;
such requirement might be imposed by service providers
and/or by the alliance group that the providers join in.
In this paper, we focus on the service selection problem
under the QoS constraints from the user and the
bundling constraints associated with the chosen services.
We first formulate the service selection problem as a
multi-constrained selection problem. Then we propose a
recursive heuristic search algorithm that takes the
required QoS and bundling constraints into
consideration for service selection. This algorithm has
two unique functions: (i) utility function to measure the
quality of the selection strategy under consideration, and
(ii) acceptance function to limit the selection strategy
only to those potential service candidates that have
higher chance to satisfy the bundling constraints.
Experiments show that our proposed solution can find
better solutions than the existing ones without too much
extra performance overhead.

Keywords — service computing, workflow, scheduling, multi-
constraints

L

With the popularity of services available in the cloud,
putting these services together in some workflow is a
classic, yet challenging problem. Services with similar
functionality from different providers can easily be found in
the cloud. One key aspect that differentiates them is their
non-functional properties, which include not only QoS and
cost, but also service bundling. Service bundling refers to
the situation where the subscription of two services have to
be done together; such requirement might be imposed by
service providers and/or by the alliance group that the
providers join in. Service bundling is a reasonable practice
from both business and also security viewpoint (e.g. single
sign-on).

In this paper, we focus on the service selection problem
under multiple constraints, which include service QoS, cost,

INTRODUCTION

978-1-4673-7281-7/15 $31.00 © 2015 IEEE
DOI 10.1109/SCC.2015.53

and service bundling. We first formulate the service
selection problem as a multi-constrained selection problem.
Then we propose a recursive heuristic search algorithm that
takes the required QoS and bundling constraints into
consideration for service selection. This algorithm has two
unique functions: (i) utility function to measure the quality
of the selection strategy under consideration, and (ii)
acceptance function to limit the selection strategy only to
those potential service candidates that have higher chance to
satisfy the bundling constraints. Experiments show that our
proposed solution can find better solutions than the existing
ones without too much extra performance overhead. This
work is important because it facilitates users to customize
their workflow with more realistic constraints that they
expect from cloud services.

The organization for the rest of this paper is as follows.
Section 2 gives a formal description of the problem that this
paper wants to address. Assumptions made in the paper are
also listed. Section 3 describes the proposed algorithm. Both
the ideas behind and the details of the algorithm
implementation are given. Section 4 presents the
experimental result of our algorithm and shows that it can
actually out-perform the existing algorithms. Section 5 gives
a survey on research efforts related to this paper. Finally, the
paper concludes in Section 6.

II. PROBLEM DEFINITION AND ASSUMPTIONS

In this section, we would like to formulate the service
selection problem under multi-constraints formally. To make
the formulation clearer, we will first define the notations
used in this paper and give the assumptions made.

A. Notations and Workflow Structure Description

Table 1 gives the notations used in the workflow
description. Note that in this paper, the term “service”
usually refers to “web service™ and they might be used
interchangeably unless it is explicitly stated.

A workflow W is represented as <7, E>, where 7 is the
set of tasks involved in Wand F'is the set of dependencies
among tasks. A task ¢ is a function node in W; it is expected
to be performed by some web service offering its expected
function. To describe W, we use a recursive definition for
tasks and define four basic types of tasks here: (i) atomic, (ii)
sequential, (iii) parallel, and (iv) exclusive. The latter three
types are shown in Figure 1. And they are defined below.

. IEEE
(@ computer
soclety

Table 1: Notations Used in Workflow Description

Notation
w
Tt P=Ayies o}
B=%fe={tt) Lj=1, .. B}
S={syi=1,..,nj=1,.. m}
F =06, 1= sadi) =1 wun}
C={c,i=1, ..,k

Explanation
Workflow

Tasks of workflow

Dependency of tasks
Candidate services of task
QoS of tasks

QoS constraints

~ . AN
X, kO])
S Sor

by (©)

AN,

(=) (X

(a)

Figure 1: Three Different Types of Composite Tasks. (a) Sequential, (b)
Parallel, (¢) Exclusive

An atomic task is the basic unit in Wto be performed by
a web service. It can be described by the attribute vector
AtomicTask:

AtomicTask =
<TaskType,TaskID,CandidateServiceList,Edge,SolutionList>

where CandidateServiceList is the set of candidate services
for a given atomic task, SolutionList is the selection strategy
for the task, and Edge is the dependency of atomic task
given below:

Edge = <EdgeType,TaskID,Parent TaskList,Child Task>

There are five types of dependencies: sequential, AND-
Split, AND-Join, OR-Split, and OR-Join.

A sequential task is a composite task; it is composed of
two tasks, as is shown in Figure 1(a). Both the start task A
and the end task B can be of any arbitrary types, hence the
definition is recursive. It is described as follows:

Sequential Task = <TaskType,Task1,Task2,SolutionList>

A parallel task is a composite task; it is composed of
four tasks, as is shown in Figure 1(b). Task A and task D are
split node and join node respectively; they need to be of
atomic type. For task B and task C, they can be of any
arbitrary types.

The final type is the exclusive task shown in Figure 1(c).
Just like the parallel task, Task A and task D need to be
atomic type, while task B and task C can be of any arbitrary
types. It is shown in Figure 1(c).

Both the parallel task and the exclusive task are called
branch task. The only difference between them is in their
execution of branch. The branch task can be described as
follows:

BranchTask=<TaskType.StartTask,Branch1Task,Branch2 Task,En
dTask,SolutionList>

where StartTask and EndTask are of atomic type, and
Branch1Task and Branch2Task are of any arbitrary type.

B. QoS Constrants

We use a vector to describe the QoS constraints that a
user specifies for a given workflow execution.

Constraint = <TimeConstraint,CostConstraint>

where TimeConstraint and CostConstraint are the maximum
time and cost that the user will accept. Given this definition,
the QoS of a workflow needs to satisfy the following
inequalities:

Time(W) < TimeConstraint
Cost(W) =< CostConstraint

C. Service Selection Solution

The service selection solution for a give workflow is
given as follows:

Solution = <Mapper,Time,Cost,Utility>
Mapper = <TaskID,ServicelD>

where Mapper is the mapping of an atomic task to an
available service, Time and Cost are the execution time and
cost of the service respectively, and Utility 1s a value
calculated using the time of cost of current task (Refer to
Section 3A for its computation formula).

A (web) service can be described by an attribute vector
given below:

Service = <ServicelD, TaskID, Time,Cost,Availability,
ExpectedTime,BundlingServiceList>

where the expected time can be computed as follows:
ExpectedTime = Time +Time*(1-Availability)

Here, we assume that the selected service might fail to
complete, and we need to find another service to replace it
and continue the execution, thus resulting in the
ExpectedTime formula above. Note that the failure of the
service will affect only the Time, but not the Cost involved.
Finally, the service bundling constraints can be described in
the form of a set given below:

Bundling = {ServicelD;,ServicelD,,....Servicel Dy}

D. Assumptions

In this paper, there are two assumptions made. The first
assumption is related to the structure of the workflow. We
only consider three types of structures: sequential, parallel
and exclusive. In order word, we do not consider complex
structures such as loops. We also assume that branch

structures do not overlap each other. The second assumption
18 related to the QoS critenia. In this paper, we only consider
time and cost as the service QoS.

E. Problem Definition

Given workflow W AN atomic tasks with M candidate
services for each task, and the constraint vector € and
service bundling requirements, the service selection problem
can be formulated as the mapping of tasks to services as
follows:

R: t;— s, i€[1,N], jE[1,M] such that f{ W) < ¢, ViE[1,K]
and the bundling constraints 1s satisfied

Note that the selection problem seeks for solution that
satisfies the constramts rather than for an optimal solution.

Input.

We use the overall composite task to represent the
workflow; it includes all atomic tasks mside as well as the
correlated dependencies among them.

For the constraints, we use time and cost as the QoS
criteria and also the service bundling requirements that need
to be observed.

Related to the web services that the atomic tasks can be
mapped to, each web service has both functional attributes
and non-functional attributes. Functional attributes are
necessary requirements to map task to service; and non-
functional aftributes are time, cost and the availability of
service. Furthermore, the service bundling requirements are
included in the WSDL document of the web service. Finally,
the List of possible web services for a given atomic task is
mncluded in its task description.

Output.

The output of the problem will give multiple feasible
solutions, each of which will describe one possible mapping
of tasks to services that satisfies all the constraints. The
number of feasible solutions can be configured, and it is
highly correlated to the execution time of the algorithm.

ITT. ALGORITHM

In this section, we first give the key ideas behind our
algorithm, followed by the algorithm implementation
details.

A. Ideas Behind the Algorithm

There are five aspects of the algorithm that we would
like to highlight below.

(i) Non-linear utility function

To measure the quality of the current service selection
strategy, we would like to adopt some utility function to
quantify it. About its choice of, we reference the ones found

334

in TAMCRA and SAMCRA [12] [13] and give the function
used in this paper as follow:

cost(s) time(s)

costConstraint’ timeCDnstraint}

utility(s) = max[

Obviously, when utility(s) > 1, the strategy fails.

{ii} Non-dominated strategy

Given strategy s and s, if {{cost(s) < cost(s;) and
time(s;) < time(s)} or {cost(s) < cost(s,) and time(s) <
time(s,)}}, s dominates s, (or s; 1s dominated by sp). If 518
not dominated by any strategies, s; is a non-dominated
strategy. We only keep non-dominated strategy in our list.

{iii} K feasible solutions and relaxation cperation

To guarantee the success ratio of the algorithm, each task
will keep k feasible selection strategies with the smallest
utility values. Furthermore, we will use the relaxation
operations (given in the next section) to update the k&
feasible selection strategies.

{iv} Acceptance function

To avoid too many services from the service bundling
that cannot contribute to the final solution, we introduce the
acceptance function to decide whether to accept the strategy.
The formula for the acceptance function 1s given as follows:

.

where p is the probability of acceptance, and diff is the
number of extra services mtroduced by the bundling. The
function has the following features:

¢ pis negatively correlated to the utility value and the
number of services in the bundling; and

p is negatively correlated to the growth of the strategy
size because the utility value 1s non-decreasing.

Owr experiment shows that our algorithm with the
acceptance function gives better success ratio than the one
without it.

W,diff> 0
1 ,diff =10

(v} Divide and conquer

We use divide and conquer to selve the algorithm. Based
on the recursive defimition of tasks given in Section 2A, our
algorithm will recursively find solution for each sub-task,
and then merge solutions of sub-tasks to find the final
solution.

B. Algorithm Description

In this section, details of the service selection algorithm
will first be given, followed by its complexity analysis.
Algorithm 1 shows the pseudo-code of service selection
algorithm and Algorithm 2 shows the pseudo-code of

relaxation function used. Our implementation will first find
solutions for each sub-task recursively, and then merge the
solutions of sub-tasks. Relaxation function is used to select
k strategies.

Alsorithm 1: Service Selection Algorithm

36. solution. mapper<—merge s.mapper,sl.mapper and
s2.mapper

37, relaxation{task,solution)

38. return task.solutionlist

Function: Find mapping between atomic task and web services
Input: composition task, QoS constraints
Output: feasible selection solutions

Algorithm 2: Relaxation Funetion

1 proc findFeasibleSelutions{task,constraint):
2 if task type=atomic:
3 then for each service s in candidate service list:
4. solution.times—s.time
5 soltuTon.cost<—s.cost
6 solution. utility—
max {{solution.cost)/{constraint.cost),{solution.time)/
{constraint.time))
7. solution.mapper<—pair{task.tasklD,s.servicelD)
8. for each bundling service aof s:
9. solution.mapper<—pair{a TaskiD,a.ServicelD)
10. task.solutionList.add{scluticn)
11 eliminate dominated seluticns in selution list
12. else if task.type=sequential:
13. then task1Solutions—
findFeasibleScolutions{task Task1,constraint)
14. task2Solutions<—findFeasibleSelutions{task Task2,constraint)
15. for each selution s1 in task1Selutions:
16. for each solution s2 In task2Sclutions:
17. solution time<—s1.time+s2.time
18. solution.cost<—s1.cost+s2.cost
19. solution.utility—
max {{sclution.cost)/{constraint.cost) (solution.time)/
{constraint.time))
20. solution.mapper<—merge s1.mapper and s2.mapper
21. relaxation{task,solution)
22 else if task.type=parallel or task.type=exclusive:
23. then seqTask<—merge startTask and endTask as a sequential
task
24. seqSelutions—findFeasibleSelutains{seqTask,constraint)
25. branchlSolutions<—
findFeasibleSolutions{task.Branch1Task,constraint)
26. branch2Solutions<—
findFeasibleSolutions{task.Branch2Task,constraint)
27. for each selution s Tn seqSolutions:
28. for each solution s1 in branch1Selutions:
29. for each solution s2 in branch2Selutions:
30. solution time<s.time+ max{s1.time,s2.time}
31. if task.type=parallel:
32. then solution.cost<—s.cost+s1.cost+s2.cost
33. else if task. type=exclusive:
34, then solution.cost<—s.cost+ max {s1.cost,s2.cost)
35. solution.utility«<—

max {{solution.cost)/{constraint.cost) {solution.time)/

{constrainttime))

Function: Check whether current solution can be kept in the solution list
Input: current solution, solution list
Output: true/false

1 nroc relaxation(task,selution):

2 if selution.mapper exists conflicts:

3 return False

4 if selution.utility>1:

5: return False

6 if selution is dominated by any solution in task.solutionList:
7 return False

8 diff<—solution.size-task.size

9 if diff>0:

10. p—1/{1+eMsclution.utility*22diff))

11. randomP<— random{0,1)

12 if p<randomP:

13. return False

14. if task.solutionList.size<K:

15. task.solutionlist.add{solution)

16. return True

17. else if task.solutionList.size=K:

18. find maximum utility in task.selutionList as maxUtility
19. if maxUtility>solution.utility:

20. remaove solution with maximum utllity Tn task.solutionlist
21. task.solutionList.add{sclution)

22, return True

23. return False

335

Algorithm 1 gives the algonthm for service selection.
The algorithm is based on the “divide and conquer” method,
and solves the problem based on different types of tasks.
Line 2-11 deal with atomic tasks, and line 12-21 deal with
sequential tasks, which recursively solve two tasks first.
Line 22-37 solve branch tasks; they combine split task and
join task into a temporary sequential task, and then solve the
compaosite task recursively to get the solution for the branch
task.

Algonithm 2 gives the relaxation function. It 1s used to
check whether the strategy can be put into the solution list.
It checks the following aspects:
¢ whether the strategy violates the service bundling
constraints;
whether the strategy violates the QoS constraints;
whether the strategy 1s dominated by other solutions;
whether the strategy is accepted by the acceptance
function; and
whether the strategy can be put into the solution list
accordmng to its utility value.

To study the complexity of our algorithm, let us denote
the number of atomic tasks be &V, the number of candidate
services per task be M, and the number of solutions for each
task be K

For Algorithm 2, the time complexity of the relaxation
fuimction 1s O(AH-K).

For Algorithm 1, its time complexity is different based
on different task types:

For atomic task, it is Q(M).

For sequential task,

e Best time complexity is O(K™*(M+K))

e Waorst time complexity is O(A* IE*(N+K))

For branch task,

o Best time complexity is O(K *(N+-Ky+M)

e Worst time complexity is O(N* KC*(AN Ky+N*AF)
Assume that M N, K are of the same scale, the worst
time complexity is approximately O(A’), and the best time
complexity is O(AP).

With regard
O(N* MEN*K*N)

to its it 1s

ace
(or O(N"MLH\; *¥))

complexity,

IV. EXPERIMENT

In this section, results of the performance study of the
service selection algorithm under different input parameters
will be given. Table 2 gives the experiment input parameters
and the default values used. For the output, we mainly focus
on two measurements: approximation degree and execution
time.

The first one, approximation degree, refers to the degree
of approximation between the feasible strategy and the
worldlow constraint values. It 1s obtained as follows. First,
the time, solutionTime, and cost, solutionCost, of a feasible

strategy under the workflow QOS constraints
timeConstraint and costConstraint are calculated. Then the
approximation degrees, timeApproximation and

costApproximation, are obtained as follows:

))) solutionTime
timeApproximation = ——————
timeConstraint

)) solutionCost
costApproximation = ———
costConstraint

According to the utility function defined mn Section 3A,
a feasible strategy should have utility value equal to the
maximum of timeApproximation and costApproximation.
The smaller the utility value is, the lower will be the
probability of wviolating the specified constraints, which
implies that the strategy is better. In an extreme case, if the
value of timeApproximation or that of costApproximation is
greater than 1, the strategy will not be feasible because of
violation of the QoS constraints.

The second measurement 1s the execution time. We
measure the performance of the service selection algorithm
under different parameter settings. For each parameter

setting, the algorithm is executed 20 times and the average
time will be reported.

Table 2: Input Parameters in the Experiment Study

Parameter Explanation Default
taskNum # of tasks 50
serviceNumPerTask # of services per task 50
solutionNum # of solutions per task 50
sequentialRatio Sequential structure ratio 0.5
bundlingSize Size of bundling 3
bundlingRatio Services in bundling ratio 0.3
timeConstraintDegree Time constraint degree 1
costConstraintDegree Cost congtraint degree 1
minTagkTime Shortest execution time(s) 100
maxTaskTime Longest execution time(s) 1000
minTaskCost Lowest cost 10
maxTaskCost Highest cost 100
SDRatio Standard deviation ratio 0.1
availMean Availability mean 0.9
availSD Availability 3D 0.05

336

In our experiments, we choose the algorithms proposed
by Yu [15], the deadline distribution (DD) algorithm and its
variant, the budget distribution (BD) algorithms, for
comparison. We piclked these two algorithms because their
functionalities are quite similar to our service selection
problem for workflow. Detailed description of these two
algorithms can be found in[15].

A. Results

In this section, results of all the three algorithms, our SA
(service selection algorithm), DD, and BD algorithms on
different number of tasks and web services will be presented
below. And the measwrement matrices are the
approximation degrees of time and cost, and also the
execution time. Note that sensitivity studies of SA with
respect to the constramt degree, solution list size, service
bundling ratio, and workflow structures were also
performed. However, due to the space limitation, they are
not included here (They can be available upon request).

B. Task Number

The main focus of this set of experiments is to study the
performance of SA, DD, and BD under different task
numbers. The number of atomic tasks in the workflow is
changed from 10 to 100, and the other parameters used are
the default values shown in Table 2.

The result of the time and cost approximation degrees
{(with formula given in the beginming of Section 4) of the
three algorithms with different task numbers is shown in
Figure 2. From this figure, we can see that our selection
algorithm SA can give a superior viable strategy over the
other two algorithms (DD and BD), with approximation
degree of time and cost being lower than those of the other

two. Furthermore, the figure shows that the approximation
degrees (both time and cost) of all the three algonthms are
quite insensitive to the number of tasks in the workflow,
except for the time approximation degree which decreases
with the increase of the number of tasks initially and then
levels off. This shows that SA is more effective in handling
more complex workflow.

1.02

@
- |
& 0.99 ——SAtime
2 o8
= —8—5Acost
2097
© nog —a— DD time
£ 0.96
= 0.95 — 00 cOSE
S 0.04
% : — BD time
G093

0.92 —&— BD cost

0 20 40 60 80 100 120
Number of Tasks

Figure 2: Comparison of Approximation Degrees of Aleorithms under
Different Task Numbers

The result of the execution time of all the three
algorithms with different number of tasks 15 shown m
Figure 3. As is expected, the execution time required by our
SA algonthm 1s higher than that of DD and BD algorithms.
This is due to its higher algorithmic complexity. However, it
is still within the acceptable range for reasonable size
workflow with about 100 tasks.

10

1 //Iﬁw

=
@
£ o1
'E —+— SArun
(=]
._g 0.01 =~ DD run
o
g 0001 - BO run
w
.1-/—
0.0001
4] 20 40 60 80 100 120

Number of Tasks

Figure 3: Comparison of Execution Time of Algorithms under Different
Number of Tasks in the Worldlow

C. Web Service Number

The main focus of this set of experiments 1s to study the
performance of SA, DD, and BD when the number of
possible web services available for each task changes. In the
experiment, the number of web services for each task is
changed from 10 to 100, and the other parameters used are
the default values shown in Table 2.

The result of the time and cost approximation degrees of
the three algorithms with different number of services per
task is shown in Figure 4. Just like the previous situation of
varying the total number of tasks in the workflow, the figure
shows that our service selection SA algorithm performs

superior than the other two algorithms, both in terms of the

357

time and cost approximation degree. Furthermore, when the
number of services available per task increases, our SA
algorithm decreases first, and then levels off. Once again,
this shows the effectiveness of SA m handling complex
workflows with larger number of possible service choices.

1.04
o 102 —i
& %H P
a 3 A 8 & o & —4—SAlMme
a g & T EEE .
¢ 0.98 - ——5Acost
(=}
= 0.96 —d— DD time
g
g 094 DD cOSt
E 0.92 — BD time
5 09 #— BD cost

20 40 60 80

Number of Services

100 120

Figure 4: Comparison of Approximation Degrees of Algorithms under
Different Number of Possible Services per Task

The result of the execution time of all the three
algorithms with different number of service choices per task
is shown in Figure 5. Similar to the situation in Figure 3, the
execution time overhead of SA i1s higher than those of DD
and BD algorithm due to its higher computational
complexity. And this execution time overhead of SA 1s still
within the acceptable range for reasonable size worlkflow
with about 100 tasks.

=
W
E
E 01
5 —#— SArun
-é 0.01 == DD run
2 - — BD run
wi 0.001 ﬂ\._ - ___H___..n-—ﬂ
7 s
0.0001
0 20 40 60 80 100 120

Number of Services

Figure 5: Comparison of Execution Time of Algorithms under Different
Number of Services Available per Task

Y. RELATED WORK

There are three types of research efforts related to thus
paper. They are: (i) multi-constrained path selection, (ii)
workflow scheduling, and (u1) service selection for service
composition.

Multi-constrained path selection problem is onginated
from computer network routing subject to constraints such
as bandwidth, packet loss rate, propagation delay,
transmission, and price. Its goal is to ensure that the
propagation from the source point to the end point satisfies
the given constraints. According to the survey by Garroppo
[1], there are three basic types of multi-constrained path
selecion problems with different objectives: (1) multi-
constrained optimal path (MCOP), (ii) multi-constraint path

(MCP), and (ii1) restricted shortest path (RSP). Our research
18 closer to the MCP problem because the emphasis 1s on the
satisfaction of the constraints, not the optimal solution. Ours
18 different from the MCP problem because while our
solution seeks for solutions that satisfy the constraints of the
overall problem, MCP focuses on the satisfaction of each
individual path constraint.

Given that the algorithm is an NP problem, there are
three typical approaches to solve it. The first one 1s the exact
search using label setting, label comrecting, ranking, and
two-phase method. The basic idea behind 1s to extend the
Bellman-Ford and Dijkstra's algorithm [2] [3] [4] [5] [6] by
defining relations of domination to present the relationship
of paths with multiple criteria. The second one is the
approximate search, by converting the original NP problem
nto an approximate polynomial-time problem. The basic
1dea behind the approximation 1s to discrete criteria values
of edges in the graph [7]. Others such rounding and scaling
[8] [9], and mterval partiton are also used [10]. The third
one is the heuristic search.

Tt is difficult to find the perfect balance between
approximation and execution time of the algorithm.
Therefore, many researchers try to use heuristic search
algorithm to solve the problem. Here we describe three
typical algorithms. Taffe [11] proposes to use a utility
fimetion for the heunstic search algorithm, but it has strong
requirements that all the criteria need to be positively co-
related. TAMCRA [12] and SAMCRA [13] are two
algorithms based on the ideas of non-linear utility function,
K shortest paths, and non-dominated path. Our solution
actually references these two algorithms and makes
modification to them (as described in Section 3A) due to the
difference in the emphasis (1.e. individual path constraints
vs. overall workflow constraints).

For workflow scheduling, there are two basic types:
deadline constraimnts and budget constraints. Good examples
are back-tracking algorithm by Menasce and Casalicchio
[24], and deadline distribution algorithm by Yu [21]. The
latter one is actually quite close to what this paper wants to
do (except that they focus on single criterion while ours
focuses on multiple criteria), hence, we choose it and its
variant, budget constraint algorithm for comparison
purposes.

For service selection in service composition, Yu
[16][17][18][19] proposed a series of method using
combination and/or graph model to find solutions. Ours is
different from these works m the following aspects: (1) Yu’s
graph model is on web service graph while ours focuses on
task graph, (1) Yu's work keeps multiple paths in each
service while ours keep multiple solutions in each task, and
finally (111) Yu’s work gives feasible paths wlile our work
gives selection solutions for the entire workflow.

338

VL

In this paper, we propose a new algorithm to address the
service selection problem for workflow. Two key unique
features of our algorithm are the service bundling and the
acceptance function. Experiment results show that solutions
obtained from our algorithm can out-perform those from the
existing deadline distribution algorithm and the budget
distribution algorithm, though with higher execution time.
As for future work, we will focus on the reduction of the
performance overhead and also on the handling of more
complex workflow structures including loops.

CONCLUSION AND FUTURE WORK

REFERENCES

[1] R. Garroppo, S. Giordano, and L. Tavanti. A Survey on Multi-
Constrained Optimal Path Computation: Exact and Approximate
Aleorithms. Computer Networks, 2010, 54:3081-3107.

TH. Cormen, C.E. Leiserson, RL. Rivest, and C. Stein. Introcduction

to Algorithms. 2% edition. MIT Press, 2001.

P. Hansen. Multiple Criteria Decision Making: Theory and

Application. Economics and Mathematical Systems, 1980, 177:109-

127.

E. Martins. On a Multi-Criteria Shortest Path Problem. Journal of

Operational Research, 1984, 16:236-245.

X. Gandibleux, F. Beugnies, and S. Randriamasy. Marting® Algorithm

Revisited for Multi-Objective Shortest Path Problems with a Maxmin

Cost Function. Journal of Operations Research, 2006, 4:47-59.

D.A. Van Veldhuizen, and G.B. Lamont. Multiobjective Evolutionary

Algorithms: Analyzing the State-of-the-Art. Evolutionary

Computation, 2000, 8:125-147.

S. Sahni. General Techniques for Combinatorial Approximation.

Operations Research, 1977, 25:920-936.

S. Chen, and K. Nahrstedt. Cn Finding Multi-Constrained Paths.

Proceedings of IEEE International Conference on Communications,

1998, 2:874-879.

M. Song, and S. Sahni. Approximation Algorithms for

Multiconstrained Quality-of-Service Routing. IEEE Transactions on

Computers, 2006, 55: 603—-617.

[10] A. Orda, A. Sprintson. Precomputation Schemes for QoS Routing.
ACM Transactions on Networking, 2003, 11:578-591.

[11] I. M. Jaffe. Algorithms for Finding Paths with Multiple Constraints.
Networks, 1984, 14:95-116.

[12] H. De Neve and P. Van Mieghem. TAMCRA: A Tunable Accuracy
Multiple Constraints Routing Algorithm. Computer Communications,
2000, 23:667-679.

[13] P. Van Mieghem, H. De Neve and F.A. Kuipers. Hop-by-hop Quality
of Service Routing. Computer Networks, 2001, 37:407-423.

[14] Daniel A. Menasce, and Emiliano Casalicchio. A Framework for
Resource Allocation in Grid Computing. Proceedings of the I[EEE
12" Annual International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunications Systems, 2004,
259-267.

[153] J. Yu, Rajkumar Buyva, and Chen Khong Tham. Cost-Based
Scheduling of Scientific Workflow Applications on Utility Grids.
Proceedings of 1% International Conference on e-Science and Grid
Computing, 2005, 8-17.

[2]
[3]

[4]
[3]

(6]

(7]
(8]

(9]

[16] Tao Yu, Yue Zhang, and Kwei-Jay Lin. Efficient Algorithms for Web
Services Selection with End-to-End QoS Constraints. ACM
Transactions on the Web (TWEB), 2007, 1:1-26.

[17] Tao Yu, and Kwei-Jay Lin. Service Selection Algorithms for
Composing Complex Services with Multiple QoS Constraints.
Proceedings of International Conference on Service-Oriented
Computing (ICSOC), 2003, 130-143.

339

[18] Tao Yu, and Kwei-Jay Lin. Service Selection Algorithms for Web
Services with End-to-End QoS Constraints. Information Systems and
E-Business Management, 2005, 3:103-126.

[19] Tao Yu, Tao, and Kwei-Jay. Lin. A Broker-Based Framework for
QoS-Aware Web Service Composition. Proceedings of IEEE
International Conference on E-Technology, e-Commerce and e-
Service (EEE), 2005, 22-29.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

