
Predicting Service Composition Costs With Complex Cost Behavior

Robson W. A. de Medeiros1,2,3

1Federal Rural University of Pernambuco
Department of Statistics and Informatics

Recife, Brazil
rwam@cin.ufpe.br

Nelson S. Rosa2

2Federal University of Pernambuco
Centre of Informatics

Recife, Brazil
nsr@cin.ufpe.br

Luı́s Ferreira Pires3

3University of Twente
Enschede, The Netherlands
l.ferreirapires@utwente.nl

Abstract— Nowadays, many companies expose their com-
petencies as services on the Internet to facilitate the cooper-
ation with their customers. This situation has created a new
marketplace where services have been provided with similar
functionality but different qualities such as cost, performance,
and reliability. In this scenario, service composition providers
have faced the challenge of choosing services that fulfill an
expected quality without compromising a planned budget.
This challenge is even more stringent when services have
different cost behaviors. As a consequence, services can be less
expensive than others in a scenario and be more expensive in
others. Several approaches have been proposed to address cost
analysis of service compositions. However, these approaches
have not considered all classes of possible cost behaviors, e.g.,
fixed, variable, mixed and step cost. This paper addresses
this limitation by proposing a solution to analyze costs of
service compositions taking into account service reliability
and all classes of cost behaviors. In order to evaluate the
proposed solution, we carried out some experiments that show
its effectiveness.

Keywords-Service-Oriented Computing; Service Composition
Management; Cost; Cost Management; Reliability.

I. INTRODUCTION

The service composition process allows multiple services

to be aggregated in order to create more complex ones,

called service compositions [1]. In this paper, we are adopt-

ing the term service composition to both the process of com-

posing services and to the resulting composite service. Once

service compositions are implemented by combining other

services, their quality and cost depend on the quality and

cost of each atomic service involved in the composition. For

instance, a single unsecure or unreliable service can affect

the security and reliability of the whole service composition.

Moreover, the presence or absence of these qualities can

also affect the cost of the service composition. In the

case of security, for instance, more secure services tend to

consume more computational resources (e.g., CPU, memory,

and bandwidth) needed to perform security activities (e.g.,

encryption and decryption) [2]. In the case of reliability, the

failure of a component may demand more resources for the

execution of corrective behaviors in the service composition,

leading to an increase of cost.

* Partially sponsored by CNPq (Brazilian Research Council)

Business Process Model and Notation (BPMN) [3] is a

standard widely used to model business process and service

compositions. An important advantage of using BPMN

to model service composition is that all stakeholders can

understand this notation when they cooperate to model the

compositions. Another advantage of the BPMN is that the

service designers can analyze functional and non-functional

requirements before the service composition is implemented.

Nowadays, providers offer services with different pricing

schemes, like prices that vary according to the number

of invocations and the size of the exchanged messages.

Furthermore, in order to stimulate the service consumption

and remain competitive, providers offer discounts that vary

according to the volume of use of their services. This is

the case of Amazon Simple Email Service (Amazon SES)

[4], which is a large-scale e-mail solution to send marketing

and transactional messages. To predict the cost of using this

service, it is necessary to take into account three attributes

of its utilization: number of sent messages, amount of data

transferred and length of message’s attachments. Moreover,

by reaching a certain level of utilization, the service cost is

reduced to stimulate its use.

Therefore, the planning of service compositions should

consider all cost behaviors (i.e., variable, fixed, mixed and

step cost) and identify situations that affect the profitability

of the composition. To address this issue, some approaches

have been proposed to compute cost of business processes

and service compositions [5]. However, these approaches do

not take into account all classes of cost behaviors that a

service can have. In this paper, we contribute to the state-

of-the-art by proposing an analytical approach to predict

the cost of service composition taking into account all

aforementioned classes of cost behavior. Moreover, since the

reliability of a service can affect the behavior and cost of

the whole composition, reliability is also considered in the

cost computation. In practice, we model cost behaviors of

all atomic services using the metamodel introduced in [6],

and annotate the description of the service composition with

their reliability, cost behaviors, and cost drivers information.

Typically, cost driver is the level or volume of activity that

directly affects the cost.

In order to demonstrate and evaluate our solution, we

2015 IEEE International Conference on Services Computing

978-1-4673-7281-7/15 $31.00 © 2015 IEEE

DOI 10.1109/SCC.2015.64

419

2015 IEEE International Conference on Services Computing

978-1-4673-7281-7/15 $31.00 © 2015 IEEE

DOI 10.1109/SCC.2015.64

419

2015 IEEE International Conference on Services Computing

978-1-4673-7281-7/15 $31.00 © 2015 IEEE

DOI 10.1109/SCC.2015.64

419

2015 IEEE International Conference on Services Computing

978-1-4673-7281-7/15 $31.00 © 2015 IEEE

DOI 10.1109/SCC.2015.64

419

implemented a service composition and its necessary atomic

services. We then simulated the behavior of both the atomic

services and service composition. As result, we compared

the cost computed by our approach against the cost com-

puted separately for each atomic service.

The rest of this paper is organized as follows. Section II

introduces the conceptual background of cost and reliability.

Section III describes our approach to predict the cost of ser-

vice compositions. Section IV presents the evaluation of our

proposal. Next, Section V discusses related work. Finally,

Section VI gives our conclusions and some directions for

future work.

II. BASIC CONCEPTS

In this section, we introduce the two key concepts used

throughout the paper, namely cost and reliability.

A. Cost

Cost is the entire expenditure required to create and sell

products and services [7], and it is characterized in terms

of classes of cost behavior. In [6], we developed a cost

metamodel to model these classes.

1) Cost behaviors: Cost can be classified according to its

behavior, which is usually referred to variable, fixed, mixed,

and step cost [8] [7] [9]. Variable cost is only computed if

the service is used and its value is directly proportional to

the level of use of the service, as show in Figure 1(a). The

factor that causes change in this cost behavior is known as

cost driver. A cost driver is a unit of an activity that changes

the cost of the service as the activity is executed. In contrast,

fixed cost is a behavior that remains constant independently

of the use of the service within a relevant period, like day,

month or year, as show in Figure 1(b).

���

��
Volume / Period

(a) Variable Cost

$

/

$

Volume / Period
(b) Fixed Cost

$

Volume / Period
(c) Mixed Cost

$

Volume / Period
(d) Step Cost (Pattern 1)

$ $

x y z

/ P i d

$

V l / P i

$

V l Volume / Period
(e) Step Cost (Pattern 2)

$

V l

x y z

Variable cost

Fixed cost

Volume / Period
(f) Step Cost (Pattern 3)

$

x y z

$

Figure 1. Classes of cost behavior.

Mixed cost behaviors combine variable and fixed costs.

Mixed cost behavior starts with a fixed value that increases

proportionally to the use of the service, as shown in Figure

1(c). Step cost is a class of cost behavior that can be divided

into three patterns: (1) one in which the cost of an unit of

a cost driver starts with a value and that is modified when

the volume of the cost driver crosses some thresholds, as in

Figure 1(d); (2) one in which a specific cost is defined for a

volume unit of a cost driver in between each threshold, as in

Figure 1(e); and (3) one in which the cost fixed within ranges

of use of the service is defined and after each threshold the

fixed cost is modified to a new value, see Figure 1(f).

2) Cost metamodel: In [6], we introduced a cost meta-

model to model service cost behaviors in service compo-

sitions. CostDriver, Rules, Choose, and Cost are the main

metaclasses of this metamodel. The metaclass CostDriver
represents a cost driver that is directly associated to a

variable and a unit. The variable represents a process at-

tribute that should be used to compute the cost, for instance,

‘message length’ and ‘activity identification’. The metaclass

unit represents the unit of the variable, such as Megabyte,

Minute, Hour, and so on.

The cost behaviors (i.e., fixed, variable, mixed and step

cost) are defined in the metaclass Rules, which is composed

of metaclasses Cost and Choose. Metaclass Cost defines

the function to compute cost. Fixed cost behavior, for

instance, is defined in metaclass Cost, by informing the

monetary value charged for a certain amount of resource

utilization, the currency of the value, the amount of resource

utilization to which the value refers to, and the accounting

period of the cost. Similarly, variable cost is defined by

a value, a currency, an amount of resource utilization and

an accounting period. Additionally, this cost behavior has

also a cost driver that is necessary to compute the cost

variation. Metaclass Choose defines the rules that should

be applied to choose the appropriate Cost. Step cost and

its thresholds are defined in the metaclass Choose. This

metaclass contains one or more instances of a metaclass

When and optionally one instance of a metaclass Otherwise.

The metaclass When consists of a logical expression. If the

logical condition holds, the costs defined in it have to be

considered. Otherwise, a set of default costs defined in the

Otherwise metaclass is used.

B. Reliability

Reliability is often defined as the probability of a system

to perform its intended function free of failures within a

specified period of time [10]. We assume that unreliable

services can harm the entire cost of a service composition

[11] [12], since if a service fails, all services invoked

previously have been already accounted for calculating the

total cost.

The reliability of service compositions can be computed

by recursively applying rules on workflow patterns of the

composition behavior, such as the sequential, parallel, loop

and conditional branching patterns [11] [13] [14]. These

rules are intended to reduce the reliability of n atomic

services in one reliability, as if all services were reduced to a

single one sr. Figure 2 shows n services ordered sequentially

in a process, each one with reliability R(si). In this case,

the reliability of the reduced service sr can be computed

420420420420

by multiplying the reliability of all services since failure

probabilities are cumulative, as shown in Equation (1).

Figure 2. Sequential workflow reduction.

R (sr) =
n∏

i=1

R (si) (1)

When two or more services are executed in parallel, as

shown in Figure 3, the sequence of execution cannot be

guaranteed at design time. However, like the sequential

pattern, all services must be executed correctly in the end

of the parallel branches to enable the service composition

to continue executing. Therefore, the reliability of this

workflow pattern can also be computed by multiplying the

individual probabilities of the n parallel services by applying

Equation (1).

Figure 3. Parallel workflow reduction.

In the conditional branching pattern, in contrast, only

one path is executed in a workflow execution. To analyze

this pattern, we consider the probability of each path be-

ing executed. For instance, in Figure 4, each service has

probability wi to be executed in the workflow and the

sum of probabilities must be 100% since each service has

different probabilitis to be executed and only one must be

chosen among all options. Therefore, the reliability R(sr)
of executing n services in a conditional pattern can be

computed as in Equation 2.

R (sr) =
n∑

i=1

wiR (si) (2)

When a loop pattern has one or more services, these

services can be invoked multiple times during the same

process execution, depending on the condition defined in

the service composition (see Figure 5).

To analyze this pattern, we consider either the number of

iterations n or the probability that the process moves either

forward wj or backward wi to invoke again the services

in the loop. Equation (3) shows the reliability of a service

Figure 4. Conditional workflow reduction.

Figure 5. Loop workflow reduction.

sr can be computed by taking into account the number of

iterations n. This equation can be adopted when the average

number of iterations is known. Otherwise, Equation (4) can

be adopted to compute the reliability taking into account the

probability wi of a service si getting into the loop.

R (sr) = R (si)
n

(3)

R (sr) =
(1− wi)R (si)

1− wiR (si)
(4)

III. COST PREDICTION

Figure 6 shows the flow of tasks defined to predict the

cost of service compositions. Firstly, we model the service

composition in BPMN (Business Process Model and Nota-

tion) [3] (Model Service Composition) and the cost behavior

of each individual atomic service of the composition (Model
Cost Behaviors) using our metamodel (see Section II). We

then annotate the service composition model with service

reliability parameters (Annotate Reliability), the probability

of each alternative path (Annotate Conditional Statement
Probabilities) and cost information. The cost information

consists of the cost behaviors (Annotate Cost Behavior
Identification). In the case of variable cost, it is necessary

to add the list of cost driver averages (Annotate Cost Driver
Values).

With the service composition modeled and annotated with

the aforementioned information, Algorithm 1 is executed

(Compute Cost Driver Values per Service Composition Ex-
ecution). Since the cost driver values annotated in each

atomic service are independent from the service composition

behavior, this algorithm computes the average cost driver

values for each service composition execution. It takes into

account the probability that the atomic service executes and

terminates correctly, which depends on its reliability and the

probability associated to the path that includes the invocation

of the atomic service. After that, Algorithm 2 is executed to

421421421421

Figure 6. Process to compute cost of service composition.

compute the cost of the entire service composition (Compute
Cost of Service Composition). This algorithm computes the

service composition cost by taking into consideration the

period of cost analysis, the cost behavior of each service,

the average cost driver values associated to each service

composition execution computed in the last task and the

average number of the service composition execution for

the period being considered.

Algorithm 1 Compute average of cost driver per execution

of service composition

1: procedure COMPUTECOSTDRIVERVALUE(BP)

2: CDV := empty � A set of cost driver values per

cost model

3: for all tasks sj in BP do
4: cmk := sj .getAnnotatedCostModel()
5: ACDj := sj .getAnnotatedCostDrivers()
6: for all annotated cost drivers acdji in ACDj do
7: cdvji := PCE(sj) ∗ acdji.value
8: CDV.add(cmk, acdji.name, cdvji)
9: end for

10: end for
11: Return CDV
12: end procedure

The input of Algorithm 1 is the annotated business process

BP . Since there is no guarantee that a service is invoked

when the composition is executed, the algorithm visits all

tasks of the business process to compute the average of each

cost driver value per execution of the service composition

(Lines 3 - 10). For each task sj in the BP , the cost

model (cmk) and the annotated cost drivers (ACDj) are

obtained. Next, the cost driver average execution value is

computed (Line 7) taking into account the probability that

the service terminates correctly during the execution of the

service composition (PCE) and the value of the cost driver

(acdji) annotated in the business process. Consider task sj
with reliability R(sj), si a task executed before sj with

reliability R(si), and wij the probability that sj is executed

after si, the PCE (Probability of Correct Execution) of task

sj is computed as in Equation 5.

PCE (sj) = PCE (si)× wij ×R(sj), (5)

where PCE (si)× wij = 1.0 if sj is the first task.

When sj is preceded by a set of tasks in sequence (see

Figure 2), in parallel (see Figure 3), conditionally (see Figure

4) or in a loop (see Figure 5), Equation (1), Equation (2),

Equation (3), and Equation (4) can be applied to reduce the

reliability of the set of tasks into a unique reliability in order

to compute PCE(sj).

Since the same service can be adopted to perform more

than one task, the average execution value of the cost driver

is represented as a tuple < key, value > (Line 8), where key
is defined in terms of the cost model (cmi) and cost driver

identifications (cdi), and value is computed by multiplying

the value of the cost driver by the PCE of the respective

task. This tuple is stored in a set of cost driver values (CDV)

whose key must be unique. Therefore, when a new tuple

needs to be stored and its key already exists, its value is

added to the existing one. Otherwise, a new tuple is added

to CDV .

Algorithm 2 uses the average of the execution values of

the cost drivers (CDV) and the set of cost models (CM)

annotated in the business process to compute the cost of the

service composition. This computation considers the period

of analysis (periodOfAnalysis) and the mean number of

executions (n) in the period, e.g., 10 executions per day. CM
has no duplicate objects and this ensures that if one service is

adopted to perform more than one task, it is considered only

once, rather than multiple times. However, CDV contains

the sum of all the values of the cost drivers spent in each

task that invoke the respective service, which ensures the

correct cost calculation.

Each cost model (cmk) has a set of cost functions (ci) that

define how to compute the service cost. Moreover, ci can be

related to a cost driver. In this case, the value of the cost

driver is calculated as shown in Line 8 of the Algorithm 2. In

422422422422

Algorithm 2 Compute cost of service composition

1: procedure COMPUTESERVICECOMPOSITIONCOST(BP , CDV , periodOfAnalysis, n)

2: CM := BP.getCostModels()
3: costV alue := 0.0

4: for all cmk in CM do
5: for all cost ci in cmk do
6: periodRate := periodOfAnalysis

ci.getPeriod()
7: if (there is cost driver in ci) then
8: costDriver := ci.getCostDriver() ∗ periodRate ∗ n
9: end if

10: if ((ci is in a choose element) AND (condition is true)) OR (ci is NOT in a choose element) then
11: if costDriver is NOT NULL then � Variable cost

12: costV alue := costV alue+ costDriver
ci.getAmount() ∗ ci.getV aluePerAmount()

13: else � Fixed cost

14: costV alue := costV alue+ ci.getV aluePerAmount() ∗ periodRate
15: end if
16: end if
17: end for
18: end for
19: return costV alue
20: end procedure

addition, conditions can be used to define the proper function

to be adopted. If that is the case, we must first evaluate the

condition before using the cost function as shown in Line

10. When the cost function can be used, we verify if there

is a cost driver associated to the cost function (Line 11).

In the case of the ci has a cost driver, the cost function

has a variable behavior (Line 12). Otherwise, it has a fixed

behavior (Line 14). In the case of variable behavior, the cost

is computed as shown in Equation 6.

V ariableCost =
costDriverV alue

amount
∗ valuePerAmount(6)

where, costDriverV alue is the cost driver value accumu-

lated in the period of analysis and the valuePerAmount is

the value that is charged to consume an amount of a cost

driver (amount).
In the case of fixed behavior, the cost function only

depends on the period of analysis (periodRate). Moreover,

it has the same value (V aluePerAmount), which is inde-

pendent of the use of the service, as shown in Equation (7).

FixedCost = valuePerAmount ∗ periodRate (7)

IV. EXPERIMENT

We conducted an experiment in which some services

are composed in order evaluate our approach. All atomic

services and the service composition were fully implemented

and simulated in this experiment. Moreover, we assigned

values that we found reasonable to the costs of the atomic

services.

In order to evaluate our approach, the cost of the com-

position was calculated in two different ways: by adding

up the cost computed directly for each atomic service and

by applying the proposed approach. Then, we compare both

costs to evaluate the results obtained with our approach.

A. Application

The application consists of a service composition that

converts audio files from WAV to MP3 (see Figure 7). The

process starts when the customer invokes the composition

by informing her e-mail address and the WAV file to be

converted. The e-mail address is validated by the first service

(Validate Email Address) and, if it is valid, the WAV file

is converted into the MP3 file format by another service

(Convert WAV to MP3 Audio Format). In contrast, if the

e-mail address is invalid, the service composition sends an

e-mail to notify the composition administrator, informing

that an error has happened (Notify Administrator by Email).
If the file is converted correctly, the customer receives an e-

mail with the file in the new format (Send Email to Customer
with the MP3 File).

Each task of the service composition is performed by a

web service with the cost behaviors shown in Table I.

B. Simulation

All services were implemented in Java and deployed in

a Tomcat server running on an instance of t2.micro virtual

machine of Amazon EC2. Moreover, all service data were

persisted in a MySQL database [15] installed in the same

virtual machine.

423423423423

Figure 7. Test case business process with cost annotations.

Table I
COST BEHAVIORS

Tasks Service Cost Model
Validate Email
Address ValidateEmail $0,05 per invocation.

Notify
Administrator
by Email

SimpleEmail $2,00 per month.

Convert WAV
to MP3 Audio
Format

WAVtoMP3 $10.00 per month; and,
$0,03 per 1 MB of file.

Send Email to
Customer with
the MP3,File

CompleteEmail

$0.10 per 100 emails / month;
and, Attachments:
First 10 GB/month: $0.12/MB,
Greater than 10 GB/month:
$0.09/MB

The service composition was modeled and executed using

Activiti [16]. The SimpleEmail service was used to perform

task Notify Administrator by Email. Task Validate Email
Address was performed by web service ValidateEmail with

a variable cost that depends on the number of invocations.

In order to simulate different scenarios, we forced that 95%

of the e-mails sent to this service were valid and 5% of

them were invalid. Service WAV toMP3 realized the task

Convert WAV to MP3 Audio Format and has a mixed cost

with a fixed cost of $20,00 per month plus a variable

cost driver depending of the file size. In relation to its

reliability, this service converts 95% of files correctly and

5% incorrectly. Moreover, the size of the WAV files sent

to this service followed an uniform distribution between 1

and 5 MB. For the MP3 files sent back to the customer

by the task Send Email to Customer with the MP3 File,

we assumed that they had a compression ratio following a

normal distribution with mean equal to 0.20622 and standard

deviation equal to 0.04755 with respect to the corresponding

WAV file. These parameters were obtained by observing

some WAV to MP3 conversion rates. Finally, we assumed

that 5% of the e-mail sending attempts failed.

In order to simulate the number of daily service composi-

tion executions, we generated a random number in between

20 and 50 with a continuous uniform distribution function.

As result of this function, we obtained the value 33, which

means that the service composition in our experiment has an

average of 33 daily executions. Therefore, for each simulated

day, the number of the service composition executions was

determined by a normal distribution function with mean

33 obtained previously and standard deviation 1, which we

assumed to compute the distribution.

C. Predicting cost

By using the approach presented in Section III, we first

modeled the service composition in BPMN (Model Service
Composition) and the cost behavior of all services using our

cost metamodel (Model Cost Behaviors). Next, we annotated

the business process with the cost behaviors (Annotate Cost
Behavior Identification), cost driver values (Annotate Cost
Driver Values), task reliability (Annotate Reliability) and

probabilities to all alternative paths of the business process

(Annotate Conditional Statement Probabilities). After the

business process was annotated, we executed the Algorithm

1 to compute the probability of correct execution (PCE) of

each service and the average cost driver values per service

composition execution (Compute Cost Driver Values per
Service Composition Execution). These cost driver values

are obtained by multiplying PCE, the average value per

invocation of each cost driver of the respective service and

the number of invocations in the period as shown in Table

II. Finally, Algorithm 2 was executed to compute the cost

of each service according to its respective cost behavior

(Compute Cost of Service Composition).

Table II
COST PREDICTION OF SERVICE COMPOSITION

Service PCE Cost Driver Values Cost
ValidateEmail 1.0000 Invocations: 990 $49.50
SimpleEmail 0,0500 ———————– $2.00
WAVtoMP3 0.9025 Files: 2,680Mb $90.40

CompleteEmail 0.8574
Email: 849
Attachments: 525.25Mb

$63.88

Total Cost $205.78

D. Hypothesis Testing

In our experiment, we simulated the cost of 30 days of

service composition execution in order to test the hypothesis

test: ‘the mean cost calculated by service providers invoked

by the composition (η1) is significantly different from the

one predicted by our approach’. For this purpose, we gener-

ated 20 examples of the cost computed by services providers

and compared them with the cost computed by our approach.

The parameters of our hypothesis testing are the following:

• Mean cost calculated by service providers invoked by

the composition: (η)

• Cost predicted by our approach: $205.78

424424424424

In order to identify which hypothesis test should be ap-

plied in our experiment, we tested if the examples collected

fitted a normal distribution. Since the P-value we obtained

was 0.228, we can not reject the hypothesis that the data

follows a normal distribution with 95% of confidence level,

mean 205.4 and standard deviation equal to 2.503, as shown

in Figure 8.

Figure 8. Testing the normalization of the examples.

Therefore, we applied the Z-test with 95% of confidence

level and standard deviation 2.503 to test the hypotheses:

• Null Hypothesis (H0): η = 205.78
• Alternative Hypothesis (H1): η �= 205.78

Figure 9. Histogram of the cost examples for 33 invocations per day.

According to the result of the hypothesis test (see Figure

9), with P-value equal to 0.645, we cannot reject the null

hypothesis that the cost computed directly by the service

providers is equal to 205.78, which is the cost computed by

our approach.

V. RELATED WORK

BPMN [3] is a standard that allows organizations to

graphically model their business processes as service com-

positions and analyze these processes before they are imple-

mented. Magnani et al. [17] proposed an approach to analyze

the cost of business processes by adding cost properties

to BPMN elements. Similarly to our solution, they also

add probabilities to all alternative branches in the process.

However, only the average cost is annotated in each element

of the BPMN, and neither reliability nor all cost behaviors

are considered.

Saeedi at al. [12] proposes a BPMN extension to predict

cost. Unlike [17], Saeedi‘s approach is also able to predict

performance and reliability of service composition. How-

ever, different from our approach, they do not take into ac-

count all cost behaviors and the reliability and performance

of the services are not used to compute the cost of the service

composition.

Sampathkumaran [11] also proposes a BPMN extension

to predict the cost of business processes. Additionally, this

approach takes into account the reliability of each task when

computing the cost of the service compositions. Like other

approaches, only the average cost is annotated in the BPMN

task, and the cost of the services is computed by only

considering the number of invocations. In our approach,

instead of annotating the average cost, we annotate the cost

behavior of each task.

The work of Wynn at al. [18] presents a framework

for reporting and predicting the cost of business processes

with cost model annotations. Moreover, their approach uses

ProM [19] as part of their framework for accounting busi-

ness process cost. To compute the process cost, ProM

receives cost-annotated event logs enriched with detailed

cost information and a business process cost model. In the

absence of a log, the framework generates logs that can

be used to predict cost. In their work, they mention that

the framework computes variable, fixed and mixed cost.

However, only variable costs are supported since they treat

costs per invocation as fixed costs. In our approach, we do

not use process mining nor logs to compute cost of service

compositions. However, we consider that business execution

logs should not be annotated with explicit cost values, since

in step cost behavior the cost can vary during the accounting

period, for example, due to discounts and execution failures.

Table III shows a comparison of all the works mentioned

in this section and shows that our contribution advances by

considering all classes of cost behavior to compute cost of

service compositions.

VI. CONCLUSION

In this paper, we proposed an analytical approach to

predict the cost of service compositions. Unlike related

work, our approach takes into consideration all classes of

cost behaviors, i.e, variable, fixed, mixed and step cost.

Moreover, as reliability can affect the cost of the entire

composition, we also take into account reliability in the cost

computation.

425425425425

Table III
COMPARISON OF COST PREDICTION APPROACHES.

Approach Cost Behaviors Non-Functional
Properties

Variable Fixed Mixed Step Reliability
[17] Yes No No No No
[12] Yes No No No No
[11] Yes No No No Yes
[18] Yes No No No Yes (implicit)
Our Yes Yes Yes Yes Yes

In our approach service compositions are not annotated

with simple cost information. Instead, we prescribe the

annotation of the cost behavior of each service, as well

as the average values of the cost drivers involved in ser-

vice invocations. Since many costs can have their behavior

modified over time, our approach calculates the cost of the

composition by taking into account the average number of

service composition executions within an accounting period.

In order to evaluate our approach, we carried out experi-

ments to simulate the cost of service composition executions.

In the experiment, we tested the hypothesis that the mean

cost calculated by adding up the cost of each atomic service

was significantly different from the one predicted by our

approach. As result, we asserted that the cost computed by

our approach is statistically similar to the cost computed

directly by the atomic service providers, which showed us

the accuracy of our approach.

In future work, we intend to apply our approach in a real

world case study. Moreover, we intend to work on simulation

techniques to predict the cost of service compositions by

taking into account all classes of cost behaviors. We believe

that simulation can improve even more the accuracy of the

cost prediction in this case. Furthermore, we also intend to

investigate algorithms to select optimal sets of services in

a service composition taking into account these classes of

cost behavior.

REFERENCES

[1] M. P. Papazoglou and D. Georgakopoulos, Service-Oriented
Computing. The MIT Press, Nov. 2008.

[2] E. Spyropoulou, T. Levin, and C. Irvine, “Calculating costs
for quality of security service,” in Computer Security Applica-
tions, 2000. ACSAC ’00. 16th Annual Conference, Dec. 2000,
pp. 334–343.

[3] “Business process model and notation (BPMN).” [Online].
Available: http://www.omg.org/spec/BPMN/

[4] “AWS | amazon simple email service (SES) | pricing.”
[Online]. Available: //aws.amazon.com/ses/pricing/

[5] R. Albuquerque de Medeiros, N. Souto Rosa,
G. Medeiros Campos, and L. Ferreira Pires, “A survey
of cost accounting in service-oriented computing,” in 2014
IEEE World Congress on Services (SERVICES), Jun. 2014,
pp. 77–84.

[6] R. W. A. Medeiros, N. S. Rosa, and L. F. Pires, “A metamodel
for modeling cost behavior in service composition.” Doha,
Qatar: IEEE, Oct. 2014.

[7] S. M. Bragg, Cost Accounting Fundamentals: Essential Con-
cepts and Examples. Centennial, Colo.: AccountingTools,
Jan. 2012.

[8] C. T. Horngren, S. M. Datar, and M. V. Rajan, Cost Account-
ing: A Managerial Emphasis, 14th ed. Upper Saddle River,
N.J: Prentice Hall, Jan. 2011.

[9] D. R. Hansen and M. M. Mowen, Cornerstones of Cost
Management, 2nd ed. Mason, OH: Cengage Learning, Jun.
2012.

[10] M. Xie, K.-L. Poh, and Y.-S. Dai, Computing System Relia-
bility: Models and Analysis, 2004th ed. New York: Springer,
Apr. 2004.

[11] P. B. Sampathkumaran, “Computing the cost of business
processes,” Ph.D. dissertation, Mnchen, Ludwig-Maximilians-
Universitt, Diss., 2013, 2013. [Online]. Available: http://d-
nb.info/103707632X/34

[12] K. Saeedi, L. Zhao, and P. Sampaio, “Extending BPMN
for supporting customer-facing service quality requirements,”
in 2010 IEEE International Conference on Web Services
(ICWS), Jul. 2010, pp. 616–623.

[13] J. Cardoso, J. Miller, A. Sheth, and J. Arnold, “Quality of
service for workflows and web service processes,” Journal of
Web Semantics, vol. 1, pp. 281–308, 2004.

[14] C. Xie and J. Ren, “A dynamical reliability prediction
algorithm for composite service.” [Online]. Available:
http://downloads.hindawi.com/journals/mpe/aip/917903.pdf

[15] Oracle, “MySQL.” [Online]. Available:
http://www.mysql.com

[16] T. Rademakers, Activiti in Action: Executable business pro-
cesses in BPMN 2.0, 1st ed. Shelter Island, NY: Manning
Publications, Jul. 2012.

[17] M. Magnani and D. Montesi, “BPMN: How much does it
cost? an incremental approach,” in Business Process Man-
agement, ser. Lecture Notes in Computer Science, G. Alonso,
P. Dadam, and M. Rosemann, Eds. Springer Berlin Heidel-
berg, Jan. 2007, no. 4714, pp. 80–87.

[18] M. T. Wynn, W. Z. Low, A. H. M. ter Hofstede,
and W. Nauta, “A framework for cost-aware process
management : cost reporting and cost prediction,” Journal of
Universal Computer Science, Aug. 2013. [Online]. Available:
http://eprints.qut.edu.au/63036/

[19] W. M. P. v. d. Aalst, Process Mining: Discovery, Conformance
and Enhancement of Business Processes, 2011th ed. New
York: Springer, Apr. 2011.

426426426426

