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Abstract—We propose a novel incentive-based framework
for composing energy service requests. An incentive model
is designed that considers the context of the providers and
consumers to determine rewards for sharing wireless energy.
We propose a novel priority scheduling approach to compose
energy service requests that maximizes the reward of the
provider. A set of exhaustive experiments with a dataset and
collected IoT users’ behavior is conducted to evaluate the
proposed approach. Experimental results prove the efficiency
of the proposed approach.
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I. INTRODUCTION

Internet of Things (IoT) is a paradigm where everyday
objects, known as things, are connected to the internet.
These are usually equipped with sensors and actuators. A
recent study has estimated that up to 75 billion connected
IoT devices will be in use by 2025 [1]. Examples of IoT
devices are smartphones, medical sensors, wearables, etc.
IoT devices usually have augmented capabilities such as
sensing, networking, and processing [2]. The ubiquity of
IoT offers opportunities to crowdsource the capabilities of
IoT devices [3].

Crowdsourcing IoT devices is the process of integrating
things by utilizing their data and functionality to create novel
applications [3]. Crowdsourced applications include environ-
mental monitoring, smart grids, and healthcare applications
[3]. The abstraction of crowdsourced IoT devices may
provide novel services [4]. The IoT services are defined by
the functional and non-functional properties of IoT devices
[4]. Examples of IoT services include Wi-Fi hotspot sharing
and energy sharing [5] [6].

Energy sharing service, also known as Energy-as-a-
Service (EaaS), is defined as transferring wireless energy
among IoT devices using the service paradigm [5]. An
energy provider is a thing that can share energy1. An energy
consumer is a thing that requires energy. Consumers and
providers are owned by users. Energy may be harvested
through wearables e.g. smart textile or smart shoes [7]. The
wearables may harvest energy from resources such as body
heat or kinetic movement [8]. For example, the PowerWalk
kinetic energy harvester provides 10-12 watts on-the-move

1We will use interchangeably the terms owner and provider to refer to
the owner of the IoT device

power [8]. Users wearing a PowerWalk harvester on each leg
can generate enough power to charge up to four smartphones
from an hour walk at a comfortable pace [9].The harvested
energy could be shared with nearby IoT devices as EaaS
with the newly developed technology called “Over-the-Air
wireless charging” [10]. For example, Wattup technology,
developed by Energous, enables wireless charging up to
distances of 15 feet2. We focus on the use of wearables
and IoT devices as energy providers.

Providing EaaS has several advantages. For example,
EaaS is a crowdsourced green solution as it utilizes spare
and renewable energy. Additionally, EaaS provides an al-
ternative to using the power grid. Providing EaaS is a
convenient solution compared to carrying power banks or
plugging into a power outlet. Recently, there has been an
increased interest in the concept of wireless crowdcharging
[11]. There are several fields were EaaS is needed where
a power outlet is not available. Examples include disaster
management, entertainment, and emergency response [9].
The proposed environment typically consists of microcells,
i.e. confined areas. A confined area may be any place
where people aggregate such as coffee shops, restaurants,
and movie theaters. In the environment, things may share
energy using the Energy-as-a-Service model. We assume that
a trust framework [12] has been implemented, hence, the IoT
environment is secured for crowdsourcing EaaS.

As previously indicated, Energy-as-a-service model is
defined by its functional and non-functional (QoS) properties
[5]. The function of the energy service is defined as the
transfer of energy among IoT devices. The non-functional
properties describe the quality of service which would
include energy capacity, location, and duration. To the best
of our knowledge, existing research primarily focuses on
the EaaS composition from a consumer perspective [5].Our
research focuses on the selection and composition of energy
service requests from the provider’s perspective.

One of the main challenges in composing EaaS is the
resistance of providers. The resistance mostly occurs due
to the limited resources of the IoT devices and lack of
trust [13]. In many cases, providers may share energy
altruistically to help the environment. They can also be
egoistic since energy is a critical resource for their devices.
Incentives are a way to encourage providers to share their

2https://www.energous.com/
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energy. Incentives additionally act as compensation for
the providers’ resource consumption. To the best of our
knowledge, there is no previous work done on incentivizing
users to provide wireless energy sharing. Existing incentive
models in a crowdsourced environment are not applicable
in EaaS as the context of wireless energy sharing requires a
customized model [13]. We focus to design a novel incentive
model in selecting and composing energy services requests.

We propose an incentive model that considers the charac-
teristics that affect the willingness of the provider to partic-
ipate. An incentive model relies on intrinsic or extrinsic re-
wards to motivate participation. Intrinsic reward is an inter-
nal satisfaction motivated by altruistic purposes. In contrast,
extrinsic reward is motivated by materialistic compensations
[14]. In this work, we focus on computing the extrinsic re-
ward using an incentive model. Our incentive model will not
consider intrinsic rewards as they are self-motivated. The in-
centive model will consider the contexts of the providers and
consumers that may affect the willingness of the provider
such as the amount of requested energy and the required
time to complete the energy service. Our aim is to compose
the best set of energy requests using our incentive model.

Motivation. We consider an incentive-based composition
for energy service requests as a motivating scenario (see
Figure 1). Assume that a geographic area, such as a building
or a mall, is divided into microcells where a microcell
is a confined area such as a coffee shop or a restaurant
(see Figure 1a). Assume several IoT devices (providers
and consumers) are distributed in a microcell (see Figure
1b). The devices are assumed to be equipped with wireless
energy transmitters and receivers such as Energous3. The
distance between devices exchanging energy may reach
the maximum distance (15 feet using Energous) to ensure
successful wireless transmission. An owner of a device such
as a smart shoe, which has spare energy, would like to
share the energy to available IoT devices. The provider
receives requests from multiple energy consumers. All local
energy requests and advertisements are processed at the edge
i.e, a router associated with the microcell. Consumers may
have different requirements in terms of requested energy,
charging speed, time availability, and location. The provider
may resist offering their spare energy even if they had the
intention because of multiple reasons. This may include the
fear of needing excess energy at a later time. The provider
may get motivated to give energy if an incentive is offered.
Providers may be incentivized differently. For example, a
provider may prefer providing the service in the shortest
time. A second provider may desire to receive an extrinsic
reward (monetary). Another provider may want to give all
their energy to contribute to a green environment. We aim
to select and compose energy service requests that will
maximize the extrinsic reward of the provider.

3https://www.energous.com/

Figure 1. Wireless Energy Sharing Scenario

We focus on composing energy service requests to maxi-
mize the reward of the energy provider. We assume a single
energy provider may share their energy with multiple energy
consumers within a specific time interval. The composition
of energy service requests includes selecting the optimal
requests that maximize the provider’s reward. The reward
of every energy request is calculated using an incentive
model. Note that, we assume a static environment where the
provider and consumers do not move during the composi-
tion. To the best of our knowledge, there is no algorithm
that addresses the problem of resistance in providers for
participation while composing energy service requests [13].
The main contributions of this paper are:

• A Spatio-temporal selection of energy service requests.
• A scheduling inspired incentive-driven composition of

energy service requests.
• A novel incentive model considering consumers’ EaaS

requests and providers’ QoS that increases providers’
participation.

II. SYSTEM MODEL AND DEFINITION

We propose a formal model of our incentive-based energy
service requests composition. We consider the scenario of
energy sharing in a microcell during a particular time
interval T. We use the following definitions to formulate
the problem.
Definition 1: Energy-as-a-Service (EaaS). We adopt the
definition of EaaS in [5]. An EaaS is defined as a tuple of
{EID, EOwnerID, F,Q}, where:

• EID is a unique energy service identifier
• EOwnerID is a unique owner identifier
• F is the function of sharing energy by an IoT device owner
EOwnerID via an IoT device d

• Q is a tuple {PEC , PLoc, PST , PET } where each attribute
donates a QoS property of ES as following:
– PEC is the energy capacity the provider can share
– PLoc is the location of the provider < x, y >
– PST is the start time of the provider stay in the

microcell
– PET is the end time of the provider stay in the microcell



Figure 2. Example of Energy Requests and Service

Definition 2: Energy Service Request
(ER). An ER request is a tuple of
{ERID, EROwnerID, CBL, CRE , CST , CET , CLoc} where:

• ERID is a unique energy service request identifier
• COwnerID is a unique consumer (owner) identifier
• CBL is the consumer’s battery level at the time of sending

the request
• CRE is the amount of requested energy by the consumer
• CST is the start time of the consumer’s stay in the

microcell
• CET is the end time of the consumer’s stay in the

microcell
• CLoc is the location of the consumer

Definition 3: Incentive. The energy service provider re-
ceives an incentive reward R by giving energy. Each incen-
tive is earned as stored credit points. The incentive reward
will be computed using an incentive model.
Definition 4: Incentive-based energy service requests
composition problem. We assume in a microcell, there
exists an energy service EaaS and a set of n energy requests
ER = {ER1, ER2, ...., ERn} as shown in Figure 2. The
EaaS will be advertised by a provider P . The EaaS will be
represented using the aforementioned Definition 1. The en-
ergy requests are sent by consumers C. Each energy request
(ER) is described using the aforementioned Definition 2. We
formulate the composition of energy service requests into
a service composition problem. Composing energy service
requests need to consider the spatio-temporal features of
the service and requests. Composing energy requests for
a provider’s EaaS requires the composition of energy
requests ERi ∈ ER where [CSTi

, CETi
] ⊂ [PST , PET ],∑

CREi
≥ PEC and the provider reward =

∑
R is the

maximum. We use the following assumptions and definitions
to formulate the problem.

• The IoT devices are equipped with wireless energy trans-
mitters and receivers.

• The composition considers the scenario of a single
provider and multiple consumers.

• The provider has fixed energy size during the composition.
• The provider and consumers may have different time

windows but consumers’ time window must fall within
the provider time window Tc ∈ Tp.
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Figure 3. Charging time based on the capacity of lithium-ion batteries
[15]

• The provider and consumers have fixed locations < x, y >
for the whole duration of the energy service.

• The provider can transfer energy to any consumer within
their range (15 feet using Energous).

• The provider transfers energy to one consumer at a time.
• There is no energy waste while sharing.

III. INCENTIVE MODEL

We define the incentive model to compute the reward
R. The incentive model considers the attributes of the
consumers and provider that may influence the resistance
of the provider to give energy. The below attributes will be
used to compute the reward.
Attributes of Consumers’ Context :
• Battery level (CBL): The battery level affects the charging

speed as shown in Figure 3. A high charging speed encour-
ages providers to give energy. The reward increases if the
charging speed decreases. The charging speed is affected
by the battery level of the consumer. If the battery level is
less than 80% then the charging speed is high compared
to battery level between 80% and 99% [15]. Additionally,
consumers with low battery levels will be at risk of
shutting down. The reward of giving energy to a consumer
with a low battery should be more compared to a high
battery level. We define the reward of the battery level
(RewardBL) as follow: if CBL < 20% or CBL > 80%
then RewardBL = 1 otherwise RewardBL = 0.5.

• Requested Energy (CRE): The amount of requested energy
is considered in determining the reward. We only compute
the reward of requested energy, if the provider can afford
it. The reward of the Requested Energy (RewardRE) is
defined as follows: if PEC >= CRE then RewardRE =
CRE/PEC

• Stay-Time: If a consumer is staying for a short time then
they will be in a rush to get the requested energy. For
example, if two consumers have the same energy request
and similar attributes but differ in the availability time.
The priority will be given for the one who is available for
a shorter time. Therefore, the shorter the stay time of a
consumer the higher the reward. We defined the reward of
stay time as RewardST = |Ctime−Ptime|/Ptime , where
Ptime represents the total minutes of the provider time and
Ctime represents the total minutes of the consumer time.
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Figure 4. The time period preferences for users to share energy.
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Figure 5. The average of the importance the incentive attributes based on
preferences of users to share energy.

Attributes of Providers’ Context
• Time of Provision: The time of providing energy influences

the willingness of the providers. For example, the provider
may be motivated to give the energy at the start of his stay
more than at the end. This may occur due to having plenty
of energy in the morning compared to the end of the day .
We categorize the time of provision into four time periods
TP that is TP1 = [09 : 00AM − 11 : 00AM ], TP2 =
[11 : 00AM − 01 : 00PM ], TP3 = [01 : 00PM − 03 :
00PM ], TP4 = [03 : 00PM − 05 : 00PM ].
We use the crowdsourcing platform Amazon Mechanical
Turk (MTurk) to compute the preferences of users in
the time of provision4. The use of MTurk is appropriate
as incentives are human centric. Moreover, MTurk was
used by other works as a platform to validate incentive
models [16].We designed a questionnaire that consists of
set of scenarios. Each scenario starts by describing the
energy sharing environment. We adopt an energy sharing
environment where users can share energy among them
through wireless technologies. MTurK workers are asked
to consider themselves as energy service providers. We
asked MTurk workers to select their preferred time period
to accept energy requests from 09:00 AM to 05:00 PM.
Figure 4 represents the users’ time period preference for
sharing energy. The x-axis represents the defined time
periods. The y-axis shows the percentage of users who

4https://www.mturk.com/

selected a certain time period. For example, the figure
shows that 73.2% of participants preferred the time period
from 09:00 Am to 11:00 Am. We normalized the time
preference statistics to compute the reward of the Time
of Provision (RewardTP ) as follow: We compute the
resistance rate of each time period by subtracting the
participation rate from 100, i. e. the resistance rate of
TP1 = 100% - 73.2% = 26.8% . Then we normalized
the resistance rate as the weight of the reward for TP1.
The normalization is computed by dividing the resistance
rate of TP1 by the total of resistance rates of all TPs.
We followed the same steps to calculate the reward of the
Time of Provision (RewardTP ) which were as follow:if
TPi ∈ TP1 then RewardTP = 0.18 if TPi ∈ TP2 then
RewardTP = 0.23 if TPi ∈ TP3 then RewardTP = 0.26
if TPi ∈ TP4 then RewardTP = 0.21

Energy Request Total Reward: The total reward of an
energy service request (RewardER) is the summation of
all the rewards as follows:

RewardER =
∑
i∈n

wi ×Rewardi (1)

Where n = {BL,RE, ST, TP}and w is the weight of
each reward. w is computed using MTurk as previously
indicated. We asked users to scale the importance of each
attribute when they accept energy requests. The scale value
is between 0% and 100%, 0% indicates an unimportant
attribute while 100% indicates a highly important attribute.
Figure 5 represents the average of the importance of each at-
tribute. Then, we normalized the importance of the attributes
to define the weight of each of them. We computed the
normalization by dividing the importance of an attribute over
the total of the importance of all the attributes. Therefore,
the weight of each reward w is {0.27, 0.28, 0.23, 0.22} in
the same order of set n.

Provider Total Reward: The total reward of the
provider is the summation of the total reward of the selected
energy service requests as follows:

ProviderReward =

m∑
j=1

RewardERj (2)

Where m is the number of selected energy requests ER
that will receive the energy from the provider. The energy
requests will be selected using our composition framework.

IV. COMPOSITION FRAMEWORK FOR ENERGY SERVICE
REQUESTS

The framework of composing energy service requests
will involve two phases: the selection of energy service
requests and the composition of energy service requests (See
Figure 6). The first phase consists of selecting the energy
service requests that are composable with the energy service.
Then calculating the reward for each of the selected energy
service requests using the incentive model. The second phase



Figure 6. The composition framework for energy requests.

is composing the energy service requests that maximize
the reward for the provider. Our composition algorithm is
inspired by Priority-based scheduling algorithms [17].

A. Selection of Energy Service Requests

The selection phase aims to select all the energy requests
that are composable with the energy service of the provider.
The selection phase consists of two stages: Spatio-temporal
selection of energy requests and rewards computation for the
selected energy requests (See Figure 6). The first stage aims
to select nearby energy service requests that can be served by
the provider. The selection is accomplished using the spatial
and temporal features of EaaS. Spatial composability service
is required to allow the wireless energy transfer to occur
between the consumers and the provider. An energy request
is composable temporally if its duration falls within the time
window of the energy provider. The last step in the first stage
is to check if the requested energy can be provided by the
EaaS. The second stage focuses on computing the reward
for each selected energy service request. We compute the
reward using the incentive model discussed in Section III.

Phase 1 in Algorithm 1 describes the selection phase
of energy service requests (Line 1-7). For every energy
service request, the algorithm checks if the time window
of the energy service request falls in the time interval of
the energy service (Line 1-2). Line 3 calculates the distance
between the energy request and the energy service. Line
4 checks if the distance between the energy request and
energy service is below the maximum needed distance to
transfer energy (15 feet using Energous). Line 5 checks if
the energy service capacity is enough to provide the amount
of requested energy. Line 6 calculates the reward value of the
energy request using the previously defined incentive model
(Section III). Line 7 adds the energy request with its reward
value to the set of nearby energy service requests.

B. Incentive-based Composition of Energy Service Requests.

The composition of the energy service requests phase aims
to compose the energy requests that incentivize the provider
to share their energy. This is accomplished by selecting
energy requests that maximize the reward of the provider.
Phase 2 of Algorithm 1 describes the composition of energy
service requests (Line 8-18). Line 8 sorts the nearby energy
requests in ascending order based on the start time then in
descending order based on the reward. Lines 12-14 check for

Algorithm 1 Incentive-Based Composition of Energy Ser-
vice Requests
Input: EaaS,ER
Output: ERcomposition, Reward

Phase 1: Selection of Energy Service Requests
1: for ERi ∈ ER do
2: if C.ST ≥ PST and C.ET ≤ PET then
3: distance =

√
(Cloc.x − Ploc.x)2 + (Cloc.y − Ploc.y)2

4: if distance ≤MaxEnergyDistance then
5: if CRE ≤ PEC then
6: ERi.Reward = Calculate Reward(eri)
7: NearbyER.add(ERi, ERi.Reward)

Phase 2: Composition of Energy Service Requests
8: NearbyERsorted = sort(NearbyER, startingtime :

ascending,Reward : descending)
9: Reward = 0

10: ProviderST = PST

11: ProviderEC = PEC

12: for eri ∈ NearbyERsorted do
13: if C.ST ≥ ProviderST then
14: Reward = Reward+ eri.Reward

15: ProviderST = C.ET

16: ProviderEC = CRE

17: ERcomposition.add(eri)

18: return ERcomposition, Reward

each request if the available energy of the provider can serve
the requested energy, then it sums up the ER’s reward as part
of the provider’s reward using equation (2). Line 15 updates
the available energy of the provider by subtracting the energy
request CRE from the Provider energy PEC . Line 16 updates
the time of the provider so that no energy requests overlap as
the provider can only share energy with one consumer. Line
17 adds the request to the set of composed energy request.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

We conduct two sets of experiments to test the proposed
composition framework and incentive model. The first set
of experiments evaluates the performance of the proposed
Incentive-Based composition algorithm. We describe the ex-
ecution time and energy utilization of the proposed composi-
tion against other approaches.The second set of experiments
evaluate the relevance of the incentive model’s attributes on
users’ resistance to share energy. Moreover, the experiments
show the effect of using rewards on increasing participation
in sharing energy.

A. Evaluation of the Composition Framework

We evaluate the performance of the proposed Incentive-
Based composition algorithm (IB) against the Brute Force
approach (BF) and the First Come First Served (FCFS).
We then conduct two sets of experiments to evaluate the
execution time and energy utilization of each algorithm.

The dataset used in the experiments of this section is pub-
lished by IBM for a coffee shop chain with three branches
in New York city5. The dataset consists of transaction
records of customers purchases in each coffee shop for

5https://ibm.co/2O7IvxJ



Table I
EXPERIMENTS VARIABLES

Variables Value
Total Energy Requests for coffee shop 1 in April 16830
Energy Services 2000
Duration of Services 10 - 200 minutes
Duration of Energy Requests 5 - 30 minutes
Provided Energy 50 - 100 %
Requested Energy 1 - 100 %
Battery Level 1 - 80%

2.3

3.3

4.3

5.3

6.3

7.3

8.3

0 50 100 150

To
ta

l R
ew

ar
d

Provider Average Time (Min)

FCFS IB BF

Figure 7. The average of Total reward for the Incentive-Based (IB), Brute
Force (BF), and First Come First Served (FCFS) approaches.

April. We took from each record the transaction date, time,
location, and coffee shop ID. We ran the experiments on
the data of one of the branches. The dataset of each coffee
shop consists of 16500 transaction records on average in
the whole month. The number of transaction records each
day is 560 on average in each coffee shop. We used the
records as energy service requests and randomly generated
the battery level and requested energy CRE for each request
CBL between 1% to 100%. We then generated 2000 energy
service advertisements with random energy capacity PEC ,
location PLoc, and time PST,ET . Table I summarizes the
experimental variables.

In the first experiment, we compare the average total
reward of the proposed Incentive-Based composition al-
gorithms (IB) against the Brute Force approach (BF) and
First Come First Served (FCFS) [17]. We consider the
Brute Force approach as the baseline. For the Brute Force
approach, we retrieve all the possible compositions of the
energy service requests. Then, we select the composition
that has the maximum total reward. In the case of FCFS,
the approach selects the energy requests based on their start
time regardless of their reward value [17]. Fig. 7 presents
the average total reward for each algorithm. The x-axis in
Fig. 7 represents the average of the provider’s staying time.
The proposed algorithm (IB) performs better than the FCFS
in terms of total reward. Our proposed algorithm maximizes
on average the rewards by 22% compared to the FCFS as
it considers the reward value of each energy request. The
Brute Force (BF) as a baseline gives the best result but the
proposed algorithm gives close results and the BF comes
with a cost of higher execution time as shown in Fig. 8.

In the second experiment, we compare the average of the
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remaining energy of the providers after composition using
the proposed Incentive-Based composition algorithms (IB)
against the Brute Force approach (BF) and the First Come
First Served (FCFS). The experiment test which approach
has better energy utilization. Fig. 9 shows the average
remaining energy of the providers for each algorithm. The
x-axis in figure 9 represents the average of the provider’s
staying time. The graph shows the proposed algorithm (IB)
performs better than the FCFS in terms of utilizing the
energy of the provider. Our proposed algorithm minimizes
on average the remaining energy by 31% as it considers
the reward value of each energy request. As previously
mentioned, the reward value takes into consideration the size
of the energy request. Additionally, the Brute Force (BF) as
a baseline gives the best result but BF comes with a higher
execution time as shown in Fig. 8.
B. Evaluation of the Incentive Model

We present a set of experiments to evaluate the effec-
tiveness of the incentive model. As indicated in section III,
We use MTurk to validate the impact of the attributes on the
participation of users in sharing energy. Moreover, MTurk is
used to show the effect of using rewards on increasing partic-
ipation in sharing energy. We designed a questionnaire that
consists of a set of scenarios. These scenarios are presented
to MTurk workers to test each attribute such as energy re-
quest size and time of provision. Each scenario starts by de-



scribing the energy sharing environment. We adopt an energy
sharing environment where users can share energy among
them through wireless means. MTurK workers are asked to
consider themselves as energy service providers. Moreover,
workers are asked to accept or reject requests by varying the
attributes to measure the resistance of each attribute.

All the described experiments in this subsection were
designed with the following structure: Given a certain sce-
nario, if a worker rejects a request, then we ask them if
an extra reward would make them accept that request. If a
worker still rejects the request we ask them if the amount
of reward would change their decision. A total of 175000
questionnaires were answered by workers on MTurk. All the
experiments in this subsection compare the participation rate
of users in sharing energy without an incentive (No reward),
with an incentive (Reward) and with deciding the amount of
incentive (Amount of reward).

In the first experiment, we asked Mturk workers to accept
or reject energy requests with different energy request size.
The energy request size varied from 10% to 90% of the
provider battery by increasing 10% for each question. Figure
10 presents the participation rate of users in sharing energy
with different requests. The x-axis represents the energy
requests’ size. The y-axis shows the percentage of users who
accepted the energy request. The figure reflects the effect
of the energy request size attribute on the willingness to
share energy. Additionally, the figure shows that providing a
reward increases the participation of users in sharing energy.

In the second experiment, we asked Mturk workers to
accept or reject energy requests with different charging
times. The charging time is used to test the effect of the
battery level attribute. As previously indicated, the battery
level affects the speed of charging and therefore it affects the
time to charge a device. The energy request charging time
varied between 5 to ≥60 minutes. Figure 11 presents the
participation rate of users in sharing energy with different
requests. The x-axis represents the energy requests charging
time. The y-axis shows the percentage of users who accepted
the energy request. The figure reflects the effect of the
charging time on sharing energy. Additionally, the figure
shows that giving a reward increased the participation of
users in sharing energy.

In the third experiment, we asked Mturk workers to
assume they are in a coffee shop and willing to share energy.
Additionally, we asked them to select their preferred time
period to share energy. If a time period was not selected,
we ask them if an extra reward would make them accept
the rejected time period. If a worker still rejects the request
we ask them if the amount of reward would make them
change their mind. Figure 11 presents the participation rate
of users in sharing energy with different requests. The x-axis
represents the time period to provide energy for a request.
The y-axis shows the percentage of users who accepted
the energy request. The figure shows that giving a reward
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without a reward.
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Figure 11. The participation rate of users in sharing energy with and
without a reward.
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Figure 12. The participation rate of users in sharing energy with and
without a reward.

increased the participation of users in sharing energy.
VI. RELATED WORK

There are recent studies on energy sharing among mobile
devices [13]. Energy Sharing was used for several objectives
including optimal energy usage, balancing energy distribu-
tion and energy sharing for content delivery [13]. Optimal
energy usage aims to reduce charging from outlets by cha-
grining from other devices’ energy [18]. Balancing energy
distribution was achieved in a mobile network by exchanging
energy between devices [19] or by constructing a star net-
work structure [20]. Energy sharing is also used in content
delivery where nodes pass by massages to a destination node
[21]. The massage is transferred with energy to motivate
the nodes to carry the content to the destination node. Most
of the existing research assumed that mobile devices are



motivated to give energy [13]. composing energy services re-
quests while considering incentives is yet to be address [13].

Several studies used incentives to engage users in crowd-
sourcing and crowdsensing tasks [22] [14]. There are a
variety of incentive approaches including auction-based,
reputation-based, services as incentives, social incentives,
and gamification. An auction-based system is a platform
where a user (auctioneer) post a task on the system then
other users(bidders) bid to complete the task [23]. The
system then will select a user (called winner) from the
bidders based on the object of the task requester. Reputation-
based incentives are used to enhance the quality of the
completed task or service [23]. Ratings of the users based
on their completed tasks motivate them to provide better
quality. Services were used as incentives to motivate users
to provide services in order to get them [24]. This means the
user may act as a provider or a consumer. Social incentives
leverage social networks and events among users to pro-
mote global cooperation [25]. Gamification turn tasks into
playable games to attract and motivate users to provide their
services. To the best of our knowledge, there is no previous
work done on incentivizing users to provide wireless energy
sharing [13]. This paper hence, the first attempt to select
and compose energy services based on an incentive model.

VII. CONCLUSION

We proposed an Incentive-based energy service requests
composition framework. A new incentive model was de-
signed that considers the attributes that affect the willingness
of the provision of energy. An incentive-driven composition
of Energy Service requests was proposed. The approach
selects the energy service requests that maximize the reward
of the provider in order to overcome the resistance of pro-
vision. The efficiency of the proposed approach was tested
against Brute Force (BF) and First Come First Served(FCFS)
approaches. Experimental results showed that the proposed
composition outperforms the FCFS approach in maximizing
the reward and outperforms the BF approach in execution
time while providing very similar rewards for the provider.
Future direction is to improve the framework to accommo-
date different incentive preferences.
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