
ar
X

iv
:2

20
5.

10
13

3v
1 

 [
cs

.S
E

] 
 2

0 
M

ay
 2

02
2

Survey on Tools and Techniques Detecting

Microservice API Patterns

Alexander Bakhtin

Tampere University

Tampere, Finland

alexander.bakhtin@tuni.fi

Abdullah Al Maruf

Computer Science, Baylor University

Waco, TX, USA

maruf maruf1@baylor.edu

Tomas Cerny

Computer Science, Baylor University

Waco, TX, USA

tomas cerny@baylor.edu

Davide Taibi

Tampere University

Tampere, Finland

davide.taibi@tuni.fi

Abstract—It is well recognized that design patterns improve
system development and maintenance in many aspects. While we
commonly recognize these patterns in monolithic systems, many
patterns emerged for cloud computing, specifically microservices.
Unfortunately, while various patterns have been proposed, avail-
able quality assessment tools often do not recognize many. This
article performs a grey literature review to find and catalog
available tools to detect microservice API patterns (MAP). It
reasons about mechanisms that can be used to detect these pat-
terns. Furthermore, the results indicate gaps and opportunities
for improvements for quality assessment tools. Finally, the reader
is provided with a route map to detection techniques that can be
used to mine MAPs.

Index Terms—Microservice API Patterns, Design Patterns,
Best Practices, Pattern Matching, Static Analysis, Dynamic Anal-
ysis, Pattern Mining Tools

I. INTRODUCTION

Design patterns provide a generalized and reusable solution

to common software design problems. They indicate that a

system uses best practices. Patterns are well-recognized to

improve software quality [1]. One of the reasons behind such

impact is better software comprehension related to software

documentation. Detection of patterns is a complex task [2],

[3]. It can constitute static or dynamic system analysis and

serves the purpose of quality assurance and quality indices of

system design.

With the era of cloud systems, we must assume new patterns

emerge that constitute possibly across multiple self-contained

parts of the overall system. In the current context, cloud

computing is fueled by the microservice architecture [4].

Microservices are small and autonomous services deployed

independently, with a single and clearly defined purpose [5],

[6]. We ask what techniques and state-of-the-art tools can

detect microservice patterns and the current gaps in this

context.

Many challenges need to be taken into account when

detecting patterns in cloud-based systems. For instance, the

cloud-native development best practices [4] suggest separat-

ing microservice codebases to enable decentralized evolution.

However, current static analysis tools operate on a single

codebase [7] only. As a result, we cannot detect patterns

that span across the whole system by concatenating analysis

per codebase. This often leads to an alternative direction -

dynamic analysis. Dynamic analysis tools can operate on the

decentralized perspective [8]. However, the dynamic analysis

does not reveal a comprehensive detail of the system (e.g.,

concerning the actual implementation of the service). Quality

engineers, architects, and developers might need to know

underlying code quality details to improve maintenance and

support system comprehension.

This paper considers a catalog of well-established

Microservice-specific API design Patterns (MAP). It reports

tools that can detect these patterns and mechanisms for the

detection (i.e., static analysis, tracing, log mining). The goal is

to identify current gaps in pattern mining and quality assurance

automation tools.

To approach this, we adopted a Multivocal Literature

Review (MLR) process [9] surveying the systematic gray

literature. The key motivation for conducting an MLR and

therefore including the grey literature is the strong interest of

practitioners on the subject, and grey literature content creates

a foundation for future research.

As a result, this work identifies a list of 46 MAPs and 59

pattern mining tools. Out of the 46 patterns, 34 have been

addressed by found tools. These 34 MAPs can be discovered

by 26 tools out of 59. Most importantly, we identified gaps in

current tools to support MAP pattern identification. We further

provide discussion for the reasons behind such a gap and what

needs to be addressed to overcome the current hurdles.

The remainder of this paper is structured as follows. Sec-

tion II presents the background and related works. Section III

provides detailed information on the gray literature review

process we adopted. Section IV reports the results to our

RQs. Section V discusses implications for practitioners and

researchers. Section VI highlights the threats to validity while

finally, Section VII draws the conclusions.

II. BACKGROUND AND RELATED WORK

One way to determine software quality is to analyze soft-

ware for patterns and to verify that it doesn’t contain anti-

patterns [2], [3] or to calculate quality metrics such as coupling

and cohesion [10]. Different tools have been proposed to

perform automatic quality reviews using static analysis of code

to operate on pattern detection [11]. Pattern mining has been

broadly researched [2], [12], [13] and it is a well-established

domain, at least for monolithic applications.

http://arxiv.org/abs/2205.10133v1


Various microservices patterns have also been identified [4],

[14], [15] for various tasks, such as porting from monoliths

[15], supporting resilience [14], targeting good design prac-

tices [2], [16], among others. Development frameworks apply

these patterns [14] to simplify development.

In this paper, we consider current Microservice API Pat-

terns (MAP further in the text) reported on the API-Pattern

website [3], [17]. The API-Pattern website collects the vast

majority of microservices patterns proposed by its creators in

peer-reviewed literature [3], [18]–[23]. The list of patterns is

provided in Table I while the complete description of each

pattern can be found on the API-pattern website [17]. We

have, however, excluded the pattern “Annotated Parameter

Collection” as it lacked a detailed description.

The major difference between monolith and cloud systems

in regards to pattern mining, however, is the decentralized

codebase, which likely introduces diversity, heterogeneity, and

no obvious connection across codebases. Despite initial code-

base convention efforts, these get easily lost with evolution

and management diversity.

Because of possible diversity across microservices, practi-

tioners often resort to assessing cloud systems through dy-

namic analysis [14], [24]. However, with such direction, we

can recognize endpoints and calls but not internal microservice

details often needed for pattern detection (since many patterns,

including some MAP, have to do with internal implementation

as well, e.g. “Backend Integration”).

When we consider other current analysis approaches [24],

we can notice that static analysis of code or mining software

repositories involves code parsing and conversion to syntax

trees or various graph representations as an intermediate

representation. Then it uses these intermediate representations

to identify patterns. Other approaches consider log analy-

sis. However, these approaches face difficulty with the non-

structured format of log messages. While log clustering can be

used, it is very challenging. For this reason, it is common to

integrate event tracing, which adds logging statements to calls

(i.e., via instrumentation) and collects additional information

in log messages, including the originating microservice or the

correlation ID to determine distributed transactions and related

log messages [25].

Another approach worth mentioning is program slicing

[26], which combines log analysis with code analysis. This

is accomplished by locating logging statements in the code

and identifying logging templates in these statements; these

are then matched with log messages found in logs to these

code locations [27]. For instance, in Lprof [27], the authors

used program slicing to profile distributed systems and op-

timize their performance. They matched log statements with

log messages and performed a data-flow analysis of method

parameters to identify if these parameters change across call

paths. Unchanged parameters identified related log messages

and could be used as a correlation ID similar to event tracing.

Using this, they could recognize distributed transactions and

their frequencies in logs. However, with event tracing (i.e.,

OpenTelemetry [28]), such tasks become much more sim-

plified and commonly adopted by industry (establishing the

correlation ID). Any of these techniques could be used to help

with detecting MAPs.

III. STUDY DESIGN

This section describes the methods adopted to gather and

classify the different tools to detect microservices best prac-

tices.

Since our goal is to map existing tools recommended and

adopted by practitioners, we performed a systematic review of

the grey literature. A review of peer-review literature would be

biased toward academic opinions and would not clearly enable

us to understand what practitioners can find when looking for

such types of tools online.

In order to investigate the aforementioned goal, we formu-

lated our research questions as:

RQ1: Which are the tools available to detect MAPs?

This RQ aims to find tools dedicated to mining-specific pat-

terns described in the previous section. Even though some of

them could be identified using general-purposes testing tools,

the necessity to write tests for the specific patterns makes it

unfeasible for the patterns to be adopted in the industry, while

having a set of ready-made tools that could be incorporated

into the CD/CI pipeline would facilitate the adoption of best

practices and improve code and design quality.

RQ2: Which MAPs can be detected automatically with

tools?

In this RQ, we map the tools identified in RQ1 to the

patterns they detect.

RQ3: Which techniques can be used to detect MAPs?

In this RQ, we aim to understand whether MAPs can be

detected using static or dynamic analysis tools. The possibility

of detecting the pattern from static analysis tools would enable

understanding of the patterns used without running the system.

In contrast, the detection based on the dynamic execution of

the system and the collection of log traces would allow an

understanding of how the system is actually behaving.
A. The Review Process

Grey literature Reviews and Multivocal Literature Reviews

(MLR) proved to be the best choice for the research method

due to the lack of maturity of the subject. MLR includes

both academic and grey literature. However, since we are

aimed at investigating the word of mouth of practitioners, we

will perform a review of the only grey literature. The key

motivation for the inclusion of grey literature is the strong

interest of practitioners in the subject, and grey literature

content creates a foundation for future research.

The process adopted is similar to the MLR, but doesn’t

include the peer-reviewed literature steps.

The process we adopted was based on these steps:
• Selection of keywords and search approach

• Initial search and creation of an initial pool of sources

• Snowballing

• Reading through material

• Application of inclusion / exclusion criteria

• Evaluation of the quality of the grey literature sources

• Creation of the final pool of sources



B. Literature Search Process

Since we are interested in finding tools to detect MAPs

(Table I), we created 53 query search strings. The search

strings were as follows:
• "pattern_name" api pattern detection

tool, where pattern_name was replaced with

every pattern from table I (46 total searches, excluding

“Annotated Parameter Collection” pattern)

• api security analysis tool

• api parameter analysis tool

• api parameter discovery tool

• api documentation analysis tool

• api specification analysis tool

• semantic versioning identification

tool

• microservice api pattern detection

tool
The latter strings were added because the first parametric

search string did not produce many meaningful results, and

at the same time, many patterns can be grouped together, as

represented by other search strings. We understand that not

all groups of patterns are represented by latter search strings,

so partial bias is introduced; however, we could not think of

search strings targeting other groups of patterns and, as stated

before, not using them produced only a handful of results.

We applied the Search strings to the Google Search1 engine,

looking at 10 pages of results per search (excluding ads). The

search was done with Incognito browser mode without logging

into a personal Google account. The decision to use 10 pages

of results was adopted after an informal piloting of the search,

which showed that no relevant results appear on pages 9-10

1www.google.com

TABLE I: The list of Microservice API patterns [17]

Foundation Quality

Frontend integration API Key
Backend integration Rate Limit
Public API Rate Plan
Community API Service Level Agreement
Solution Internal API Error Report
API Description Conditional Request
Responsibility Request Bundle
Processing Resource Wish List
Information Holder Resource Wish Template
Computation Function Embedded Entity
State Creation Operation Structure

Retrieval Operation Atomic Parameter
State Transition Operation Atomic Parameter List
Operational Data Holder Parameter Tree
Master Data Holder Parameter Forest
Reference Data Holder Data Element
Data Transfer Resource Id Element
Link Lookup Resource Link Element
Evolution Metadata Element
Version Identifier Annotated Parameter Collection
Semantic Versioning Context Representation
Two In Production
Aggressive Obsolescence
Experimental Preview
Limited Lifetime Guarantee
Eternal Lifetime Guarantee

of the search and that for some patterns (search strings) only

a few results (2-3 pages, sometimes not enough even for 1

page) are returned.

Search results consisted of blog posts (including blogs with

lists of tools), websites, research papers, Github2 repositories

of tools, and Github repositories of lists of tools. It is good

to note that StackOverflow3 is a popular website for technical

peer questions, and it could be expected to appear in the search

results, but in reality, it did not. It could have been included

in the study separately, but after piloting it, it did not provide

meaningful results, so in this paper, we decided to focus only

on Google Search.

This search was performed between 10th and 21st of

January 2022.

C. Snowballing

We applied a backward snowballing to the retrieved litera-

ture in the following way:

• If the resource extracted from the search is a list of tools

(as opposed to a page of just one tool), such as “Top 10

API security tools in 2021”4, then we checked all of the

referenced tools (and potentially other referenced lists)

• If the resource is a research paper, we checked if the paper

cites other algorithms that fit our criteria and included

them as well

D. Application of inclusion / exclusion criteria

Based on MLR guidelines [9], we defined our inclusion

criteria:

• For pages of tools: the tool description directly contains

one of the MAPs from I

• For research papers: the paper proposes a new algorithm/-

tool to detect a pattern whose description in the abstract

is similar to studied patterns

Moreover, we defined our exclusion criteria as:

• Exclusion criterion 1: Non-English results

• Exclusion criterion 2: Duplicated result

• Exclusion criterion 3: (for papers) The paper proposes a

new algorithm/tool to detect a pattern; however, no source

code for the tool is provided

• Exclusion criterion 4: (for commercial tools) The tool has

no public documentation of functionality available

• Exclusion criterion 5: (for tools) The tool is an all-

purpose security tool claiming to, e.g., “identify over

1000 different vulnerabilities”, i.e., no particular refer-

ence to one of the MAP is given.

• Exclusion criterion 6: (for tools) The tool cannot automat-

ically perform the analysis but requires the programmers

to configure it and adapt a certain workflow first (e.g.,

configure the tool to detect certain words in commit

messages and then use them in work), so that it cannot be

used to retrospectively analyze the history of an existing

project.

2www.github.com
3www.stackoverflow.com
4This is a made-up example



E. Evaluation of the quality and credibility of sources

In order to evaluate the credibility and quality of the selected

grey literature sources and to decide whether to include a

grey literature source or not, we extended and applied the

quality criteria proposed by Garousi et al. [9], considering

the authority of the producer, the methods applied, objectivity,

date, novelty, impact, and outlet control. We adopted the same

evaluation sheet adopted by Peltonen et al. [29].

Two authors assessed each source using the aforementioned

criteria, with a binary or 3-point Likert scale, depending on

the criteria themselves. In case of disagreement, we discussed

the evaluation with the third author, which helped to provide

the final assessment.

We finally calculated the average of the scores and rejected

grey literature sources that scored lower than 0.5 on a scale

that ranges from 0 to 1.

F. Creation of final pool of sources

Originally, 45 different resources were identified as relevant.

After performing snowballing on papers and lists and filtering

all papers and tools through the exclusion criteria, we had a

list of 59 tools.

G. Data Extraction

In order to obtain the list of tools to detect MAPs (RQ1)

we extracted the tool names from the selected sources.

To understand which pattern is detected by the tools (RQ2),

firstly, we read through the tool documentation. There are

two sorts of documents available: a dedicated website and

a README file. Few tools have both. After reading the

documentation, we investigated whether this tool recognizes

any MAP and whether it is possible to obtain information

about those patterns using this tool. We couldn’t locate any

tool that recognizes MAP on its own because these MAPs

are not commonly well-established yet. However, a few tools

disclose data that can be utilized to develop an insight into

MAPs.

We examined each tool by reviewing its documentation to

see if it exposed any information that may be utilized to detect

any MAP. When we locate a tool that can detect a pattern, we

map that tool to that pattern.

Lastly, to understand which technique can be adapted to

detect MAPs (RQ3), We manually analyzed each pattern,

including those not discovered by tools, and mapped each

pattern to the possible technique. For the techniques, we

considered static and dynamic analysis. For static analysis,

we considered plain code analysis, operation with call graphs,

which might require more advanced algorithms, and mining

software repositories which may include additional informa-

tion. For dynamic analysis, we considered application log

analysis considering rich logging in the system code (an ideal

case) and event logs (i.e., received from instrumentation with

correlation ID [14]). We did not consider program slicing.

The first two authors both independently examined and

mapped each pattern to the various techniques using their own

reasoning. After that, the differing viewpoints were resolved

by consulting with each other as well as the other authors.

IV. RESULTS

This section reports the results we obtained following the

research methodology highlighted in Section 4.

As for the tools available to detect MAPs (RQ1), we

identified 59 tools from 45 sources. Tables II and III list the

tools retrieved (Open Source and Commercial, respectively),

together with their URL, license (for Open Source tools),

languages supported for analysis, and date of the last update

(for Open Source tools). As for the Licenses adopted by OSS

projects, the license indicated in their repository is stated, such

as MIT, Apache, etc.; ‘OSS’ refers to tools whose source code

is openly available, but no license is added to the repository;

‘N/A (Free)’ refers to tools that are available for free (e.g., as

a web service), but not in Open Source form, and thus might

be subject to a custom license as well. Different tools can

analyze MAPs from the perspective of different programming

languages. Some tools support several languages. Other tools

scan git commits to perform the analysis, and thus applicable

to any language. While other tools either access the APIs

under analysis using the provided endpoints or analyze API

specifications in OpenAPI format, thus the language of imple-

mentation doesn’t matter. The language reported in Table II

as ‘Any’ refers to tools that parse source code in a language-

agnostic manner and thus apply to any language.

There are 7 Commercial tools and 52 OSS tools to provide

some summary statistics.

When it comes to OSS licenses, 33 of tools (56% of total

tools) are using permissive licenses (Apache, MIT, BSD, etc.),

and 5 more use no license at all, while 7 tools (11%) use

‘copyleft’ licenses (different versions of GPL license).

In terms of languages, 16 tools (27%) are written in Python,

11 tools (19%) are written in JavaScript (some of them in

TypeScript), Java and Go have 6 tools each (10% each); other

represented languages are C++/C#, Kotlin, PHP and shell

scripting (bash).

Supported languages/platforms involve 8 tools analyzing

commits in Git (14%), another 8 tools targeting Python as

the only language (13%), 6 tools (10%) targeting Java, and

another 6 tools (10%) supporting several languages. Also,

19 tools (32%) target REST APIs directly, with 9 analyzing

specifications and 10 using the endpoints dynamically.

Out of 52 OSS tools, 32 have been updated at least

once since January 2021. Furthermore, 19 have been updated

already in 2022.

It should also be noted that some tools are research proto-

types (T2, T16, T18, T21), some grew out of research proto-

types (T48), while many are projects done by hobbyists (T19,

T34, T37 to name a few), so their quality and applicability

to up-to-data languages and frameworks could be limited. The

scope of this paper is simply to identify existence of some

tools to address MAPs and see the pattern coverage, assessing

the actual quality and usefulness of the tools is a different,

much more complicated endeavour.



TABLE II: OSS tools to detect Microservice API Patterns (RQ1)

Language

ID Tool URL License supported Updated

T1 API security tools audit https://apisecurity.io/tools/audit/ N/A (Free) REST API N/A (Active)
T2 apidiff bit.ly/3J0FyZN MIT Java 31.10.2021
T3 Arjun bit.ly/3uFZoWv GPL-3.0 REST API 29.08.2021
T4 Astra bit.ly/3ontBp4 Apache-2.0 REST API 05.04.2019
T5 Brakeman bit.ly/3LbQtSo MIT Ruby 30.01.2022
T6 Coala bit.ly/3AXgKiw AGPL-3.0 Any 11.06.2021
T7 code2flow bit.ly/34w2MYM MIT Many (4) 27.12.2021
T8 git-secret git-secret.io MIT git 01.02.2022
T9 git-semv bit.ly/34yi1jM MIT git 17.06.2021
T10 GitVersion bit.ly/3AVeUi6 MIT git 31.01.2022
T11 go-semrel-gitlab bit.ly/3upDINT MIT git 27.10.2019
T12 GraphQL FBC-CLI bit.ly/333l57q OSS GraphQL 06.06.2018
T13 Hikaku bit.ly/3Hubkhx Apache-2.0 REST-API 19.08.2021
T14 jgitver bit.ly/3glahV5 Apache-2.0 Java 30.03.2021
T15 Kiterunner bit.ly/3J77eML AGPL-3.0 REST API 10.05.2021
T16 LAPD bit.ly/3gl6FlZ N/A (Free) Java 07.09.2013
T17 magento-semver bit.ly/3gnWygi OSL-3.0 N/A 19.01.2022
T18 microservices-antipatterns bit.ly/3GwBwGJ Apache-2.0 Python 17.12.2019
T19 modver bit.ly/32WbY8k MIT Go 16.01.2022
T20 Mondrian bit.ly/3rqHkNZ OSS PHP 16.09.2014
T21 MSA-nose bit.ly/3sgODXF OSS Java 12.04.2021
T22 next-ver bit.ly/3B5EWzq MIT git 09.02.2018
T23 NodeJS scan bit.ly/3uqxHkm GPL-3.0 Node.js 31.01.2022
T24 NoRegrets bit.ly/3JjDAnF Apache-2.0 JavaScript 02.07.2019
T25 OpenAPI diff bit.ly/3oncymY MIT REST API 29.08.2017
T26 OpenAPI spec validator bit.ly/3sogwxc Apache-2.0 REST API 28.01.2022
T27 openapi-lint bit.ly/3oqUJDA BSD-3 REST API 12.08.2020
T28 openapilint bit.ly/3J45Lqs MIT REST API 13.05.2019
T29 oval bit.ly/3J466te MIT REST API 26.09.2018
T30 pact bit.ly/3gp77Q8 MIT REST-API 03.02.2022
T31 paramspider bit.ly/3sf6JZZ GPL-3.0 REST API 12.09.2021
T32 Prometheus prometheus.io Apache-2.0 Many (5) 02.02.2022
T33 prospector bit.ly/3oo4Zg7 GPL-2.0 Python 01.02.2022
T34 Public API changes bit.ly/3gjOKMF Unlicense C# 05.11.2017
T35 pycallgraph bit.ly/3uqyZfc GPL-2.0 Python 28.02.2018
T36 Pyramid OpenAPI3 bit.ly/3uqbZg5 MIT Python 07.12.2021
T37 pyramid-swagger bit.ly/3sfLKqb BSD-3 Python 30.03.2020
T38 Python Semantic Release bit.ly/3oo3uyg MIT Python 31.01.2022
T39 REST API Antip. Inspect. bit.ly/3GkLhrG MIT REST API 31.03.2021
T40 schaapi bit.ly/3J3BcB7 MIT Java 11.02.2019
T41 secret-detection bit.ly/3rqsM0N OSS Any 03.08.2020
T42 semantic-release bit.ly/3usLkPQ MIT git 18.01.2022
T43 semantic-versioning-anal. bit.ly/3HsvgBn MIT .NET 03.11.2021
T44 semver-config bit.ly/3GnLpGN OSS git 26.09.2019
T45 semverbot bit.ly/3GteoZI MPL-2.0 git 03.01.2022
T46 Speccy bit.ly/3uknqGe MIT REST API 02.10.2019
T47 Spectral bit.ly/3gnIeo3 Apache-2.0 REST API 03.02.2022
T48 SpotBugs bit.ly/3glbvQj LGPL-2.1 Java 29.01.2022
T49 Standard Version bit.ly/3uqgx64 ISC Node.js 01.01.2022
T50 Vulture bit.ly/3Gq9hd2 MIT Python 03.01.2022
T51 wFuzz bit.ly/3opt5Hg GPL-2.0 REST API 28.11.2020
T52 Zally bit.ly/34lLHkq MIT REST API 14.01.2022

TABLE III: Commercial tools to detect Microservice API Patterns (RQ1)

ID Tool URL Supported Languages

T53 Acunetix acunetix.com Web
T54 CheckMarx checkmarx.com Many (20)
T55 CodeClimate bit.ly/3GrqB12 Many (11)
T56 Data Theorem API Secure bit.ly/34ASaYM N/A
T57 Dynatrace dynatrace.com Many
T58 SonarQube* bit.ly/3GryR15 Many (29)
T59 Synopsys bit.ly/3uqjhRd REST API

*Dual-licensed, available both as commercial and open source (GPL).



As for the MAPs that can be detected automatically with

tools (RQ2), we found 26 tools that expose information about

the tools. These tools are listed as RQ2 column in Table

IV. Our table shows that found tools detect a subset of all

patterns, and a combination of tools is necessary to address

broader coverage. For example, the pattern ‘API Description’

is detected by 9 tools in the Foundation category, while no

tool targets the other 5 patterns in this category. Two tools,

code2flow, and pycallgraph, which are both based on call

graphs, can identify all of the patterns in the Responsibility

category. Hikaku is a tool that can be used to detect all of the

patterns in the Structure category. All of the patterns in this

category, with the exception of ‘Context representation,’ can

be discovered with four or more tools. There are three patterns

in the quality section that no tool can detect. Rate Plan, Service

Level Agreement, and Wish Template are examples of these

patterns. At least one tool detects the rest of the patterns.

Three patterns are not detected by any tools in the Evolution

category, whereas four patterns are detected by at least three

tools.

The most promising techniques to detect MAPs (RQ3)

stem from the static analysis involving source code analysis

as detailed in Table IV. Most of the tools we found use

static analysis. In particular, the static analysis might need

to determine call graphs to detect certain patterns, and also,

the detection process can use mining software repositories.

Nevertheless, given the API level, dynamic analysis can also

determine a large number of patterns. While application log

analysis is one option, it is a challenging option dependent on

the level of logging. It is more convenient to use event logs

resulting from recent cloud-native frameworks and infrastruc-

ture advancements. All events are centralized and aggregated

by the occurrence time, with correlation ID indicating message

dependencies.

V. DISCUSSION

It is interesting to note that the vast majority of MAPs can be

detected by tools, even if there are no tools that analyze them

all. Foundation patterns are the only group of MAPs where

no tools implemented their detection, except for the ”API

description.” However, few other patterns could be technically

detected, and therefore tools could implement them. Other

pattern categories have rather reasonable coverage by tools.

Regarding RQ1, we found 59 tools available for the detec-

tion task. We listed these tools in Tables II and III. These tables

also divided the tools based on open-source availability. We

further categorized these tools based on patterns they identify

in Table IV. However, not all tools had available information

on which patterns they could detect.

With regards to RQ2, almost no tool identifies the patterns

directly. The extracted results must be post-interpreted by users

to identify these patterns from the provided information. For

example, tools discovering the pattern ’Semantic Versioning

Identifier’ do not simply tell if the project has followed the

SemVer specification5, but instead tell the correct identifier

5www.semver.org

(increment) based on changes in the source, and it is up to

the developer/researcher to compare it to the one actually

used. This is a missing step to better terminology unification,

establishment, and automation in the domain, which some

practitioners could desire. Still, there are notable gaps and

improvement opportunities. Despite 59 tools found, there is

no outstanding tool with respect to the detection coverage

of a number of patterns. Tools must be combined to address

different types of patterns. Table IV outlines identified gaps

that quality assurance tools should fill to provide better quality

measures through integration into a single solution. Some

conventional API testing tools could be used to detect specific

patterns, but we excluded such tools as they need explicit

scripting. As an example, in Postman [30], it is possible to

extract request/response headers from HTTP calls, and from

the headers, users can write tests to see if it contains API Key

or Version information, etc.

Related to RQ3, identified tools are predominantly based

on static code analysis, and more advanced techniques might

be necessary to detect some patterns as depicted by Table IV.

This table also shows that some patterns that could be detected

by the techniques we identified are not yet recognized by the

pool of tools we found, which opens opportunities. Some of

the patterns currently require manual input to be determined.

However, this opens questions about whether other techniques

could be considered to address these patterns. For instance,

“Rate Plan” and “SLA” are about the legal use of the API, and

perhaps organizational policies need to be taken into account.

Still, these policies are not in a machine-readable format,

and there is no guarantee these are enforced; thus, more

advanced mechanisms would need to be considered to allow

combinations of static or dynamic analysis with organizational

policies.

The results of this work can be useful for researchers

that can investigate different techniques for detecting patterns.

This paper’s outcomes could also be useful to practitioners

who can access the list of tools that automatically detect

patterns and eventually integrate them in continuous quality

control models [31]. Finally, results might be beneficial to

tool providers that might extend their solutions to detect

a large number of patterns or integrate them into DevOps

pipelines [32].

VI. THREATS TO VALIDITY

Systematic reviews and surveys often suffer from several

threats to validity. We discuss the threats considering construct,

internal, external, and conclusions validity.

The construct validity is meant to consider the research

questions within the investigated area. Our queries are mo-

tivated by gaps in related works. The search terms combined

established terms and pattern names commonly recognized

in the community and domain of this work. We addressed a

possible threat of omitting relevant research from our review

by experimenting with several other search strings identifying

related work. The analyzed sample considered grey literature

articles to ensure the up-to-date perspective of practitioners.



TABLE IV: Possible Techniques for detecting microservice patterns

RQ2 RQ3

Patterns Detected by tool (ID) Static Dynamic

Analysis Analysis

C
al

l
G

ra
p
h

S
o
u
rc

e
C

o
d
e

R
ep

o
si

to
ry

E
v
en

t
L

o
g

A
p
p
li

ca
ti

o
n

lo
g

Foundation

Frontend integration X X X X

Backend integration X X

Public API

Community API

Solution Internal API

API Description T25, T26, T27, T28, T29, T36, T37, T46, T52 X

Responsibility

Processing resource T7, T35 X X X X

Information holder resource T7, T35 X X X X

Computation function T7, T35 X X X X

State recreation operation T7, T35 X X X X

Retrieval operation T7, T35 X X X X

State transition operation T7, T35 X X X X

Operational Data Holder T7, T35 X X X X

Master data holder T7, T35 X X X X

Reference data holder T7, T35 X X X X

Data transfer resource T7, T35 X X X X

Link Lookup resource T7, T35 X X X X

Structure

Atomic parameter T3, T6, T13, T31, T36, T37 X

Atomic parameter list T3, T6, T13, T31, T36, T37 X

Parameter tree T3, T6, T13, T31, T36, T37 X

Parameter forest T3, T6, T13, T31, T36, T37 X

Data element T6, T13, T31, T36, T37 X

Id element T3, T6, T13, T31, T36, T37 X

Link element T6, T13, T31, T36, T37 X

Metadata element T13, T31, T36, T37 X

Context representation T13 X

Pagination T13, T31, T36, T37 X X X

Quality

API key T13, T36, T37 X X X

Rate limit T36, T37, T53 X X X

Rate plan

Service level agreement

Error report T13, T36, T37 X X X X

Conditional request T13, T36, T37 X X X X

Request bundle T13 X X X X

Wish list T36, T37 X X X X

Wish template X X X X

Embedded entity T13 X X X X

Linked information holder T13 X X X X

Evolution

Version identifier T6, T10, T13, T45 X X X

Semantic versioning T2, T9, T13, T19, T38, T40, T42, T43, T44, T45 X X X

Two in production X X X

Aggresive obsolesense X X X X

Experimental preview X X X

Limited lifetime guarantee T2, T13, T40 X

Eternal lifetime guarantee T2, T13, T40 X

Furthermore, our evidence search was often limited to an

abstract overview of sources, which could miss relevant work.

Internal validity involves methods to study and analyze data

(e.g., the types of bias involved). One potential threat is related

to inclusion and exclusion, a process that includes metadata.

Besides, our bias could affect the filtering. Multiple authors

performed this search, with primary authors assigned to par-

ticular patterns and secondary authors spot-checking. Apart

from the filtering process, we performed tool localization by

name, documentation, and repository identification if available.

Our approach to taxonomy is a result of our discussions of

interpreted results and represents our view on the identified

literature and domain.

External validity is related to knowledge generalization.

This survey interprets and categorizes works we gathered from

established scientific channels and grey literature along with

our experience related to the field. We could have missed

related work on specific patterns or related tools because of

our selection of search strings, part of which target specific

patterns or groups of patterns. However, even with a subset

of identified tools and approaches, we would likely have

identified common techniques applied for pattern mining and



provided an overview of what has been accomplished and

which gaps remain to be addressed.

The conclusions resulting from several brainstorming ses-

sions were independently settled and agreed on by all au-

thors. To address the validity of the conclusions, we involved

multiple authors in this study with diverse backgrounds, all

discussing the outcomes in the context of extracted and

synthesized information.

VII. CONCLUSION

This paper considered microservice API patterns (MAP)

and their recognition by available quality assurance tools.

It provides a practical road map to what tools and open-

source exits to detect these patterns and where the gaps

remain. We have identified 59 tools that address 34 MAPs

out of 46 identified. We did not find a specific tool that

would surpass others, and thus a combination of tools is

necessary to cover a broader spectrum of MAPs. Yet, not

complete coverage exists considering our search results. This

gap represents an opportunity for the community to combine

and integrate efforts to provide better quality assurance tools

needed in this mainstream field. Furthermore, considering that

we identified many open source projects, their integration is a

logical next step to developing a more advanced microservice

infrastructure for quality assurance.

ACKNOWLEDGMENTS

This material was supported by the ADOMS Grant awarded

by the Ulla Tuominen Foundation (Finland), National Science

Foundation under Grant No. 1854049 and a grant from Red

Hat Research https://research.redhat.com.

REFERENCES

[1] F. Wedyan and S. Abufakher, “Impact of design patterns on software
quality: a systematic literature review,” IET Software, vol. 14, no. 1, pp.
1–17, 2020.

[2] D. Taibi, V. Lenarduzzi, and C. Pahl, “Architectural patterns for mi-
croservices: A systematic mapping study,” in Proceedings of the 8th

International Conference on Cloud Computing and Services Science -

Volume 1: CLOSER,, INSTICC. SciTePress, 2018, pp. 221–232.
[3] O. Zimmermann, M. Stocker, D. Lübke, C. Pautasso, and U. Zdun,

“Introduction to microservice api patterns (map),” in International

Conference on Microservices (Microservices 2019), 2019.
[4] A. Wiggins, “The twelve-factor app,” 2017, (Accessed on 10/02/2021).

[Online]. Available: https://12factor.net/

[5] J. Lewis and M. Fowler, “Microservices,”
www.martinfowler.com/articles/microservices.html, Accessed: January
2022, March 2014.

[6] S. Newman, Building Microservices. O’Reilly Media, Inc., 2015.
[7] T. Cerny, J. Svacina, D. Das, V. Bushong, M. Bures, P. Tisnovsky,

K. Frajtak, D. Shin, and J. Huang, “On code analysis opportunities and
challenges for enterprise systems and microservices,” IEEE Access, pp.
1–22, 2020.

[8] J. Soldani, G. Muntoni, D. Neri, and A. Brogi, “The µtosca toolchain:
Mining, analyzing, and refactoring microservice-based architectures,”
Software: Practice and Experience, vol. 51, pp. 1591 – 1621, 2021.

[9] V. Garousi, M. Felderer, and M. V. Mäntylä, “Guidelines for including
grey literature and conducting multivocal literature reviews in software
engineering,” Information and Software Technology, vol. 106, pp. 101 –
121, 2019.

[10] S. Panichella, M. R. Imranur, and D. Taibi, “Structural coupling for
microservices,” in 11th International Conference on Cloud Computing
and Services Science, 04 2021.

[11] I. Pigazzini, F. Arcelli Fontana, V. Lenarduzzi, and D. Taibi, “Towards
microservice smells detection,” in Proceedings of the 3rd International
Conference on Technical Debt, ser. TechDebt ’20, 2020, p. 92–97.

[12] A. K. Dwivedi, A. Tirkey, and S. K. Rath, “Software design pattern
mining using classification-based techniques,” Frontiers of Computer

Science, vol. 12, no. 5, pp. 908–922, 2018.
[13] M. A. de F. Farias, R. Novais, M. C. Júnior, L. P. da Silva Carvalho,

M. Mendonça, and R. O. Spı́nola, “A systematic mapping study on
mining software repositories,” in Proceedings of the 31st Annual ACM
Symposium on Applied Computing, ser. SAC ’16, 2016, p. 1472–1479.

[14] J. Carnell and I. H. Sánchez, Spring microservices in action. Simon
and Schuster, 2021.

[15] A. Balalaie, A. Heydarnoori, P. Jamshidi, D. A. Tamburri, and T. Lynn,
“Microservices migration patterns,” Software: Practice and Experience,
vol. 48, no. 11, pp. 2019–2042, 2018.

[16] D. Taibi, N. El Ioini, P. Claus, and J. R. S. Niederkofler, “Patterns
for serverless functions (function-as-a-service): A multivocal literature
review,” in 10th International Conference on Cloud Computing and

Services Science (CLOSER), 2020, pp. 181–192.
[17] O. Zimmermann, “Microservice api patterns,”

https://www.microservice-api-patterns.org/, accessed: 2022-02-04.
[18] O. Zimmermann, M. Stocker, D. Lübke, C. Pautasso, and U. Zdun,

“Introduction to Microservice API Patterns (MAP),” in Joint Post-
proceedings of the First and Second International Conference on Mi-

croservices (Microservices 2017/2019), 2020, pp. 4:1–4:17.
[19] O. Zimmermann, D. Lübke, U. Zdun, C. Pautasso, and M. Stocker,

“Interface responsibility patterns: Processing resources and operation
responsibilities,” in European Conference on Pattern Languages of

Programs 2020, ser. EuroPLoP ’20, 2020.
[20] O. Zimmermann, C. Pautasso, D. Lübke, U. Zdun, and M. Stocker,

“Data-oriented interface responsibility patterns: Types of information
holder resources,” ser. EuroPLoP ’20, 2020.

[21] D. Lübke, O. Zimmermann, C. Pautasso, U. Zdun, and M. Stocker,
“Interface evolution patterns: Balancing compatibility and extensibility
across service life cycles,” in Proceedings of the 24th European Con-

ference on Pattern Languages of Programs, ser. EuroPLop ’19. New
York, NY, USA: Association for Computing Machinery, 2019.

[22] M. Stocker, O. Zimmermann, D. Lübke, U. Zdun, and C. Pautasso,
“Interface quality patterns – communicating and improving the quality of
microservices apis,” in 23rd European Conference on Pattern Languages

of Programs 2018, July 2018.
[23] O. Zimmermann, M. Stocker, D. Lübke, and U. Zdun, “Interface

representation patterns - crafting and consuming message-based remote
apis,” in 22nd European Conference on Pattern Languages of Programs

(EuroPLoP 2017), July 2017, pp. 1–36.
[24] V. Bushong, A. S. Abdelfattah, A. A. Maruf, D. Das, A. Lehman,

E. Jaroszewski, M. Coffey, T. Cerny, K. Frajtak, P. Tisnovsky, and
M. Bures, “On microservice analysis and architecture evolution: A
systematic mapping study,” Applied Sciences, vol. 11, no. 17, 2021.

[25] D. Taibi and K. Systä, “From monolithic systems to microservices: A
decomposition framework based on process mining,” in Proceedings

of the 9th International Conference on Cloud Computing and Services
Science (CLOSER), INSTICC. SciTePress, 2019, pp. 153–164.

[26] V. Bushong, R. Sanders, J. Curtis, M. Du, T. Cerny, K. Frajtak,
P. Tisnovsky, and D. Shin, “On log analysis and stack trace use to
improve program slicing,” in Information Science and Applications.
Springer Singapore, December 2021, p. (in print).

[27] X. Zhao, Y. Zhang, D. Lion, M. F. Ullah, Y. Luo, D. Yuan, and
M. Stumm, “lprof: A non-intrusive request flow profiler for distributed
systems,” in 11th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 14), Broomfield, CO, 2014, pp. 629–644.
[28] “Open Telemetry,” 2022. [Online]. Available: https://opentelemetry.io
[29] S. Peltonen, L. Mezzalira, and D. Taibi, “Motivations, benefits, and

issues for adopting micro-frontends: A multivocal literature review,”
Information and Software Technology, vol. 136, p. 106571, 2021.

[30] “Postman api platform,” 2022. [Online]. Available:
https://www.postman.com/

[31] V. Lenarduzzi, A. C. Stan, D. Taibi, D. Tosi, and G. Venters, “A dy-
namical quality model to continuously monitor software maintenance,”
in 11th European Conference on Information Systems Management
(ECISM2017), 2017.

[32] D. Taibi, V. Lenarduzzi, and C. Pahl, “Continuous architecting with
microservices and devops: A systematic mapping study,” in Cloud
Computing and Services Science (CLOSER), 2019, pp. 126–151.

https://research.redhat.com
https://12factor.net/
www.martinfowler.com/articles/microservices.html
https://www.microservice-api-patterns.org/
https://opentelemetry.io
https://www.postman.com/

	I Introduction
	II Background and Related Work
	III Study Design
	III-A The Review Process
	III-B Literature Search Process
	III-C Snowballing
	III-D Application of inclusion / exclusion criteria
	III-E Evaluation of the quality and credibility of sources
	III-F Creation of final pool of sources
	III-G Data Extraction

	IV Results
	V Discussion
	VI Threats to Validity
	VII Conclusion
	References

