
Parallel Generation of Inverted Files
for Distributed Text Collections

Berthier A. Ribeiro-Neto1 João Paulo Kitajima1 Gonzalo Navarro2�
Cláudio R. G. Sant’Ana1 Nivio Ziviani11Computer Science Department

Federal University of Minas Gerais
Belo Horizonte-MG, Brazilfberthier,kitajima,cau,niviog@dcc.ufmg.br

2 Computer Science Department
University of Chile

Santiago, Chile
gnavarro@dcc.uchile.cl

Abstract

We present a scalable algorithm for the parallel compu-
tation of inverted files for large text collections. The algo-
rithm takes into account an environment of a high band-
width network of workstations with a shared-nothing mem-
ory organization. The text collection is assumed to be evenly
distributed among the disks of the various workstations.
Compression is used to save space in main memory (where
inverted lists are kept) and to save time when data have to be
moved across the network. The algorithm average running
cost isO(t=p) wheret is the size of the whole text collec-
tion andp is the number of available processors. We imple-
mented our algorithm and drew experimental results. In a
100 Mbits/s switched Ethernet network with 4 PentiumPro
200 megahertz, 128 megabytes RAM on each processor, we
were able to invert 2 gigabytes of TREC documents in 15
minutes. Further, we also proposed an analytical model for
the algorithm execution time.

1. Introduction

The potential large size of a full text collection demands
specialized indexing techniques for efficient information re-
trieval (IR). Different index types for text retrieval exist in
the literature and have been implemented under different
scenarios [4]. Some examples are suffix arrays, inverted
files, and signature files. Each of them has strong and weak
points. However,inverted fileshave been traditionally the
most popular indexing technique used along the years.

Inverted files are useful because, although the size of the
index is proportional to the size of the text, their searching
strategy is based mostly on the vocabulary (i.e., the set of�Supported in part by Fondef (Chile) project 96-1064.

distinct words in the text) which usually fits in main mem-
ory1. Inverted files are simple to update and perform well
when the pattern to be searched for is formed by conjunc-
tions and disjunctions of simple words which are probably
the most common type of query in information retrieval sys-
tems. For instance, inverted files are widely used to index
the World Wide Web (which we refer to by Web simply).

The best possible sequential algorithm for generating in-
verted files requires computing time proportional to the text
size (since it has to read the whole text at the very least) and
might require expensive hardware if fast inversion of large
texts is demanded. Since current text collections keep grow-
ing both in number and in size, faster indexing algorithms
are highly desirable and an alternative is the use of parallel
hardware for generating the index.

In this paper we investigate a new scalable algorithm
for the distributed parallel generation of large inverted files
in the context of a high bandwidth network of worksta-
tions. We present the algorithm, analyze its performance,
and draw experimental results. A network of workstations
provides computing power comparable to that of a typical
parallel machine but is more cost effective [1].

Our algorithm assumes that the documents in the text
collection are evenly distributed among the processors of
the network. The algorithm operates by inverting the local
text collections in parallel, computing a global vocabulary,
and then exchanging inverted lists among the processors to
generate a global inverted file for the whole text collection.
The Golomb compression strategy [10] is used to save space
in main memory (where inverted files are kept) and to save
time when data have to be moved across the network. Using
a 100 Mbits/s switched Ethernet network with 4 PentiumPro
200 megahertz, we are able to invert 2 gigabytes of TREC
documents in 15 minutes. We also developed an analytical

1In a text of sizet it is reasonable to expect a vocabulary of size pro-
portional to

pt [7].

model for the execution time of our parallel program which
is fairly accurate. Using this model, we show that the algo-
rithm average running cost isO(t=p), wheret is the size of
the whole input text collection andp is the number of pro-
cessors in the network. Besides this low running time with
a practical collection, our algorithm scales up well. Due
to the high parallelism of computation and communication
and to smart algorithms for data exchange, performance is
improved.

The paper is organized as follows. We first discuss re-
lated work. Following, we present the organization of our
distributed text collection. We then discuss the motivation
for generating global inverted files from the point of view of
query processing. The discussion proceeds with a presen-
tation of our parallel algorithm and its associated analytical
model, followed by our results and conclusions.

2. Related Work

The size of a non-compressed inverted file ranges from
30% to 100% of the text size, depending on the implementa-
tion. This implies that, for a very large text, the correspond-
ing inverted file has to be stored in disk. Thus, sequential al-
gorithms for generating large inverted files try to minimize
disk accesses. To cope with this reality, many approaches
have been proposed [6].

One typical technique to minimize disk accesses is to re-
duce the size of the lists by modifying thegranularityof the
pointers. That is, instead of pointing to every document in
which a wordw occurs, the list may point only toblocks
in which that word occurs. Typically, a block may contain
many documents specially with collections of many small
documents. This technique reduces the space requirements
not only because there are less blocks than documents (and
hence the pointers can be smaller) but also because all the
occurrences of a word in a block are represented once in the
inverted list. Using such indices, we need to search sequen-
tially inside blocks if the exact document in the text collec-
tion is requested (which is the case with the most common
queries). An example of application of this technique is
Glimpse [9].

The main problem with reducing the granularity of the
pointers is that the index cannot be reduced too much (by in-
creasing the block size) without degrading the performance.
This is because it is expensive to search large blocks sequen-
tially for the exact position of a given word. Therefore, the
approach does not work well for texts above 200 megabytes
in size [3].

Another thread of research is compressing the inverted
file as done in [10]. The key idea is to always compress any
portion of the inverted file which has to be stored in disk.
This reduces the amount of disk space consumed and thus,
the number of disk accesses. Fast index generation is re-

ported (e.g., indexing 2 gigabytes of text in 4 hours) with
low space consumption (the size of the compressed index is
only 10% of the text size). The main reason for such per-
formance is the reduction of the time spent reading/writing
data from/to the disk. In our work, we also compress in-
verted files as in [10].

Parallelization and use of remote primary memory (in-
stead of local disk) also offer a possibility to speed up the
generation of indexing structures. Mergesort-based paral-
lel algorithms to generate suffix arrays have been studied
in [8]. Recently, a new quicksort-based distributed algo-
rithm for generating suffix arrays has been proposed [11].

The work discussed in this paper uses parallelization to
generate a distributed inverted file.

3. Distributed Text Collection

In this section we describe the distributed text collection
which operates in our network of workstations.

3.1. Distribution of the Text Collection

For clarity, we focus our attention on identifying the
main tradeoffs involved with the distributed generation of
inverted files and consider only the case in which the doc-
uments in the collection are evenly distributed across the
network. Despite the fact that we consider only the case of
a homogeneous distribution of documents, our parallel al-
gorithm for generating inverted files can be directly applied
to the case of a non-homogeneous distribution.

Let p be the number of machines in the network andt the
size (in bytes) of the whole collection. Define,b = tp (1)

Then, considering that the documents are evenly dis-
tributed across the network, each machine holds (in its local
disk) a subcollection whose size (in bytes) is roughly given
by b.
3.2. Distribution of the Inverted File

An inverted fileis an indexing structure composed of:
(a) a list of all distinct words in the text which is usually
referred to as thevocabularyand (b) for each wordw in
the vocabulary, aninverted listof documents in which the
word w occurs. Additionally, the vocabulary is sorted in
lexicographical order.

With large texts, some restrictions are imposed on the in-
verted file to keep it smaller [6]. Examples of these restric-
tions are: (a) filtering of text characters and separators, and
(b) use of a controlled vocabulary in which not all words in

the text are indexed (such asstop words– e.g., articles and
prepositions).

In our distributed text collection, each machine holds
a subcollection whose size (in bytes) is roughlyb. This
implies that, for each subcollection, the corresponding in-
verted file has sizeO(b). Thus, forp machines, the size of
the index for the whole collection is given byp � Ki � b
whereKi is a proportionality constant. There are two fun-
damental basic organizations for this index.

The first organization for the index is to have each ma-
chine with its own local inverted file [14, 18]. In thislocal
index organization, generating and maintaining the indexes
are simple because everything can be done locally without
interaction among the machines.

The second possibility is to have a global inverted file
for the whole collection. To the best of our knowledge,
this is the approach taken by most search engines in the
Web. These engines maintain a global library (composed of
copies of Web documents) for which a global index is pe-
riodically recomputed. This global index is normally main-
tained in a single, large, central machine. Here, we consider
the situation in which this global index is distributed among
networked machines [14, 18]. This is called aglobal index
organization.

There are many possibilities to distribute the index (for
instance, the distribution might be based on a criteria of load
balancing). For simplicity, we consider that the global index
should be distributed among the machines in lexicographi-
cal order such that each machine holds roughly an equal
portion of the whole index. According to this strategy, ma-
chine 1 might end up holding the global inverted lists for
all the keywords which start with the letters A, B, or C, ma-
chine 2 might end up holding the global inverted list for all
the keywords which start with the letters D, E, F, or G, and
so on. The important issue is that each machine holds a por-
tion of the global index of size proportional to the size of the
local document collection (b).
4. The Querying Issue

One might wonder whether it is worth worrying about
the generation of a global inverted file when local inverted
files (which are easier to generate and maintain) can be used
for distributed query processing.

Consider that there is acentral brokermachine to which
all the queries are first directed. This broker inserts the
query requests in a queue and process them from there. Fur-
ther, consider that there are always enough queries to fill a
minimum size query processing queue (as expected in the
Web).

In the local index organization, the broker takes a query
out of the queue and sends this query to all the machines
in the network. Each machine then processes the whole

query locally and obtains the set of documents related to
that query. Besides, it is also necessary to rank the answer
set which can be done, for instance, with the vector space
model [15]. After ranking, each machine selects a certain
number of documents from the top of the ranking and re-
turns these to the broker as the local answer set. The cen-
tral broker them collects ther sorted local answer sets and
combines them (through a merging sort procedure) into a
global (and final) ranked set of documents. By selecting
a set of documents from the top of the ranking, each ma-
chine reduces the amount of data which has to be sent (to
the broker) through the network. However, such reduction
in network traffic must not affect the precision of the global
answer set. This can be assured through the adoption of a
simple cutting strategy as discussed in [12, 13, 14].

Since the indexes are local to each machine in the local
index organization, global information on the occurrence of
keywords in the collection is missing. Without this infor-
mation, the estimates for theinverse document frequency
(idf) weights (associated to each term by the vector space
model [15]) are slack and, as a result, the generated global
ranking suffers from a drop in precision figures [14].

To avoid this, it is necessary to provide each machine in
the local index organization with access to global informa-
tion on keyword distribution. Thus, we notice that, even
with a local index organization, computation of global in-
formation is unavoidable. This is our first reason for the
need to compute (at least in part) a global indexing struc-
ture.

In the global index organization, the central broker takes
a query out of the queue and first determines which ma-
chines hold inverted lists relative to the query terms. Notice
that, in this case, not all machines might be involved. The
situation here is quite distinct from that with the local index
organization [14].

Let us briefly discuss the querying performance for those
two organizations. For that, consider again the 50 TREC
queries numbered from 101 to 150 and the documents in
the disk 1 of the TREC collection [5]. Figure 1, obtained
from [14], compares the 50 queries total processing time
for the global index (GI) and the local index (LI) organiza-
tions at a network speed of 80 Mbits/s. As it can be seen, the
global index organization consistently outperforms the local
index organization at this network speed. Further, the rela-
tive improvement in performance increases with the number
of machines, the network bandwidth, and the disks transfer
rate [14]. Thus, our second reason for the need to gener-
ate global inverted files is that a global index organization
outperforms a local index organization in an environment of
high bandwidth networks.

Response time (s)Number
of

machines
LI GI

GI as
percentage
of LI (%)

2 21.26 19.64 92.37
4 17.13 11.13 64.98
8 14.58 8.86 60.78
16 13.11 7.50 57.23
32 12.23 7.00 57.21
64 11.78 6.93 58.83

Figure 1. Global (GI) versus local (LI) index:
estimated total time for 50 TREC queries.

5. Parallel Algorithm For Generating Inverted
Files

In this Section we describe and analyze our parallel al-
gorithm for the distributed generation of large inverted files.
For the purpose of explaining the algorithm, the processors
are numbered arbitrarily, from 0 top� 1.

The algorithm proceeds in three phases:� Phase 1:Local Inverted Files.In this phase, each pro-
cessor builds an inverted file for its local text.� Phase 2:Global Vocabulary.In this phase, the global
vocabulary and the portion of the global inverted file
to be held by each processor are determined.� Phase 3:Global Distributed Inverted File. In this
phase, portions of the local inverted files (as deter-
mined in phase 2) are exchanged to generate the global
inverted file.

In the following, we discuss and analyze each of these
phases in detail.

5.1. Phase 1: Local Inverted Files

In this first phase, each processor reads itsb bytes of text
from the local disk and builds the corresponding inverted
file. This needs no communication among processors which
work in parallel. The main steps in this phase are as fol-
lows. In step S1, data are read from disk into a buffer in
main memory. In step S2, the data in the buffer (in SGML
- Standard Generalized Markup Language) are processed
by a lexical analysis task (which identifies and marks the
words) and by a filtering task (which cuts out stop words).
Following, the words are inserted into a hash table whose

entries point to the inverted lists for each word. The ele-
ments in the inverted list for a wordw are pairs (d,f) whered is a document in which the wordw occurs andf is the
frequency of occurrence. After all the local collection has
been processed, the inverted file is consolidated. The in-
verted lists are compressed, but the local vocabulary is kept
uncompressed and unsorted in the hash table. There is no
need to sort it in this moment because, in phase 2, new en-
tries are added to the hash table (which avoids duplication
of data structures). Everything, but the text input, is done in
main memory.

The cost of the algorithm for phase 1 is given roughly
by: t1 = b� ts1 + (S1)b� ts2 (S2) (2)

whereb: size (in bytes) of local text collectionts1: average time (in seconds, disk) per byte (S1)ts2: average time (in seconds, cpu) per byte (S2)ts1 andts2 can be derived experimentally.
Notice that our analytical model is based on a linearity

assumption and thus, is fairly simple. This linearity as-
sumption is clearly valid for disk accesses whenever the
number of seeks is small. Also, the linearity assumption
is acceptable for step S2 because we use a hash table with
constant access cost per entry (the hash table presents low
occupancy and the Golomb compression algorithm has con-
stant cost per byte [10]).

5.2. Phase 2: Global Vocabulary

Once phase 1 is concluded, each processor knows the
local vocabulary and the sizes of the inverted lists (relative
to the local text collection) for each word. The processors
then engage in a vocabulary merging process to determine
the global vocabulary and the size of the inverted lists (in
the global text) for each word.

The sizev in English words of the vocabulary (for a text
of sizet) can be computed asv = Kt� = O(t�) (3)

where0 < � < 1 andK is a constant [7].
In step S3, the processors are coupled pairwise. The odd

numbered processors transfer all their vocabulary informa-
tion to the even numbered processors which merge the vo-
cabularies and update the sizes of the inverted lists. This
pairing process is then applied recursively until the proces-
sor with number 0 is left with all the global vocabulary. This
is the only significative step of phase 2.

Recalling that a text of sizeb has a vocabulary of sizev
given byKb� English words we can write that the cost for
phase 2 is given roughly by:t2 = KP(log2 p)�1i=0 Sw(2ib)� � (ts3 + ts4) (S3)

(4)
whereSw: average size in bytes of English wordsts3: average time (in seconds, network) per byte

(S3)ts4: average time (in seconds, cpu) per byte (S3)p: the number of processors

The factor2i in step S3 accounts for the factor that, at
the ith step, the text size is roughly2ib. ts3 is the effec-
tive communication time andts4 is the time spent inserting
words into the hash.Sw is used to convert vocabulary size
from number of English words to number of bytes.

From [2], we take thatK = 4:8, � = 0:56, andSw = 6.
The first two values were obtained considering only the disk
1 of the TREC collection [5] but should suffice.

5.3. Phase 3: Global Distributed Inverted File

The first part of phase 3 (step S4) takes place only in
processor 0 and corresponds to a global vocabulary sorting
and the computation of the lexicographical boundaries ofp
equal-sized stripes of the global inverted file – one for each
processor. This striping information is broadcasted to all
processors with negligible cost. After this broadcast, each
processor knows the stripe of the global inverted file which
will be held by any other processor. Therefore, each proces-
sor knows to which node it has to transfer each portion of its
local inverted file. Once every processor knows which part
of its local inverted file must be transferred to which proces-
sor, an exchange sequence is planned. Since each processor
needs to talk to all others, we can adopt a clever step-by-step
all-to-all communication procedure devised in [17]. Each
time two processors are paired together, they exchange lo-
cal inverted files relative to the stripes determined in phase
2.

Looking more carefully at the last steps of phase 3, each
machine receives from processor 0 information concerning
the final partition of the global inverted file. Each processor
then sorts its local vocabulary (step S5). A binary search,
with negligible cost, is then performed in order to identify
the stripes that should be exported. In step S6, stripes are
exchanged with the current peer processor. Communication
parallelism is exploited at maximum. The final local in-
verted file can be left in primary memory or written to disk.

Notice that, once two processors are paired together, they
exchange compressed stripes of inverted files in both direc-
tions sequentially. Thus, each processor needs to be paired

with each other only once. If the network is based on, for
example, a switch, pairs of processors exchange data inde-
pendently one from each other withno network contention.

The total number of pairing rounds in the all-to-all com-
munication is equal top� 1 (cf. [17]). The cost of phase 3
is then given byt3 = Kq � vg log vg � ts5 + (S4)Kq � vl log vl � ts5 + (S5)(p� 1)Kc � 2(Kib)p � (ts6 + ts7) (S6) (5)

wherevl: size (in English words) of the local vocabularyvg : size (in English words) of the global vocabu-
laryKq: proportionality constant for quicksortingKc: compression factor which accounts for the
reduction in size due to compressionKi: ratio between the inverted list size and the
corresponding text sizets5: average time (in seconds, cpu) per English
word (S4 e S5)ts6: average time (in seconds, network) per byte
(S6)ts7: average time (in seconds, cpu) per byte (S6)

The factorKc accounts for the reduction in space due to
the fact that we move compressed inverted lists. The factor
2 which multipliesKibp accounts for the fact that each pair-
ing involves a bidirectional communication. At each pair-
ing, the amount of unidirectional communication is approx-
imately equal toKc Kibp . The upper limit of the number of
transferred bytes in the whole step S6 (in the perfect homo-
geneous case and for a given processor) is2KcKib.
5.4. Average Total Cost

Let I stand for computation internal costs andC for
communication (or network) costs (and considering that the
cost of disk I/O is comparable to the cost of transferring
data across the network). The total cost order for our paral-
lel algorithm is given byO(b)I +O(b)C + (Phase 1)O(t�)I+O(t�)C + (Phase 2)O(t� log t�)I+O(b)C (Phase 3)

By observing thatb >> t� for common English texts
(see Section 6), we conclude that the average cost of our
algorithm is expected to beO(b)I+O(b)C = O(tp)I+O(tp)C (6)

Such result shows that, for common English texts, our
parallel algorithm is expected to scale up nicely. In fact, for
a given text of sizet, increasing the degree of parallelism
in our network by a factor� (i.e., increasing the number of
workstations to� � p), without violating the condition thatb >> t� , leads to an expected reduction in the execution
time of our algorithm by a factor of1=�. This is becauseb is
also reduced by a factor of1=�. Further, if one doubles the
size of the text and also doubles the number of processors
available, the overall average cost of our algorithm is ex-
pected to remain constant becauseb remains constant. Our
experiments below corroborate this observation. The only
step that tends to be not scalable is phase 2 where paral-
lelism decreases as the number of parallel processor pairs is
gradually reduced. However the total communication time
is O(t�), that is, in the order of the global vocabulary size,
which becomes stable for larger input text collections.

6. Experimental and Analytical Results

In this section, we present experimental and analytical
results for our algorithm.

6.1. Experimental Environment

All of our experiments were done on a network of 4 Pen-
tiumPro 200 megahertz interconnected by a 100 Mbits/s
switched Ethernet. Each processor has 128 megabytes of
RAM. The disks used are Samsung IDE disks, with nomi-
nal transfer rates in the order of 50 Mbits/s. At the software
level, communication is handled by PVM [16], a message
passing library on top of TCP/IP. The text collection we
used was composed of documents extracted from disks 1, 2,
and 3 of the TREC collection [5]. All five sub-collections in
those disks (i.e., AP, DOE, FR, WSJ, and ZIFF) were used.

Since the number of machines is small, we first use our
experiments to validate the analytical model. Then, we use
the analytical model to study the behavior of the algorithm
for larger collections and larger networks.

6.2. Validating Assumptions

We have two basic assumptions which need corrobora-
tion: (1) that the amount of data exchanged during each
pairing at phase 3 of our algorithm can be approximated byKc(Kib)p and (2) thatb >> t�.

In order to validate the first assumption, we executed
our algorithm for different text sizes and different number
of PVM virtual processors (not physical processors – one
physical processor can support more than one virtual pro-
cessor) and measured the number of bytes transferred in
phase 3. We notice that each processorj (in the horizontal
axis of Figure 2) receives roughly the same number of bytes

from each other processor, that is,Kc(Kib)p , according to the
notation of Section 5. If we considerKc = 0:25 (measured
experimentally in this work),Ki = 0:6 [2], p = 8, andb = 5128 = 64 megabytes, the estimated block size is 1.20
megabytes (cf. Figure 2).

 0.0e+00

 2.0e+05

 4.0e+05

 6.0e+05

 8.0e+05

 1.0e+06

 1.2e+06

 1.4e+06

1 2 3 4 5 6 7 8

N
u

m
b

er
 o

f
ex

ch
an

g
ed

 b
y

te
s

j (receiveing processor)

(Kc Ki b)/p

Figure 2. Data exchanged among p proces-
sors in phase 3 (p=8), t=512 megabytes.

Regarding the second assumption, Table 1 showst� andbi, i = 2; 4; 8; 16, for a portion of the WSJ collection. The
data confirm that the assumption is realistic.

File WSJt� 4,172.62b2 82,238,869.50b4 41,119,370.75b8 20,559,655.38b16 10,279,782.19

Table 1. Validating assumption: b >> t�.

6.3. Experimental Results

We generated inverted files for subsets of documents of
the TREC collection using 1, 2, and 4 machines. The mea-
sured execution times for different sizes of the subsets (t)
are presented in Figure 3. We observe that, for this space
of experiments, for a given processor, the variation of the
execution time is linear, except for small input collections
(less than 32 megabytes), where communication becomes a
bottleneck.

We also plotted the variation of the execution time vary-
ing the number of processors (p), but keeping constant the
local text size (b) (cf. Figure 4). This means that,for differ-
ent processorsin the graph and the sameb, the input collec-
tion size ispb. The curves are quite coincident, as expected.
The differences are due to the communication overhead (ab-
sent whenp = 1 and of increasing importance for largerp).

0

100

200

300

400

500

600

700

800

900

0 500 1000 1500 2000 2500

E
x

ec
u

ti
o

n
 t

im
e

in
 s

ec
o

n
d

s

Size of input collection in megabytes

4 processors

2 processors

1 processor

Figure 3. Execution time, in seconds, of the
parallel generation of inverted files versus
size t, in megabytes, of the input collection.

0

100

200

300

400

500

600

700

800

900

3 4 5 6 7 8 9 10 11 12

E
x

ec
u

ti
o

n
 t

im
e

in
 s

ec
o

n
d

s

Log2 (b) in megabytes

1 processor inverting
1/2 gigabyte

2 processors inverting
1 gigabyte

4 processors inverting
2 gigabytes

Figure 4. Execution time versus local text size
b for different number of processors p.

In Figure 5, we plot the memory utilization per proces-
sor, considering differentb. The size of the compressed in-
verted list in main memory (the largest data structure dur-
ing the execution) corresponds roughly to 15% ofb. This
matches with aKc of 0.25 and aKi of 0.6, presented in the
Subsection 6.4.

In Figures 6 and 7, we remark that the percentages of
execution times of each phase (when compared to the sum
of the execution times of each phase) tend to become stable
when increasingb. For large collection local blocks, in this
scenario,phase 1tend to dominate. Also, for larger num-
ber of processors, communication becomes more and more
representative. Considering our limited experimental envi-
ronment, only the analytical model can tell us what happens
when we have more processors available.

6.4. Analytical Results

In Figures 8 and 9, we compare the measured execution
times with those calculated by the analytical model devel-
oped in Section 5. The following constants are used (cf.
Section 5 for notation).

given a text sizet, the vocabulary size is4:8t0:56 [2] English words

0

10

20

30

40

50

60

70

0 100 200 300 400 500

R
A

M
 u

sa
g

e
in

 m
eg

ab
y

te
s

p
er

 p
ro

c.

Local text size (b) in megabytes

Figure 5. Primary memory utilization per pro-
cessor versus b.

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400 450 500 550

P
er

ce
n

ta
g

e
o

f
to

ta
l

ex
ec

.
ti

m
e

in
 %

Local text size (b) in megabytes

Total execution time = 100%

Phase 1

Phase 3

Phase 2

Figure 6. Percentage of the total execution
time versus local collection block size (b) for
p=4.ts1 values3:1�10�7 s/byte (or a IDE disk band-

width of 3.2 megabytes/s)ts2 values7:7� 10�7 s/bytets3 = ts6 values1:18 � 10�7 s/byte (network
bandwidth of around 65 Mbits/s)ts4 values1:56� 10�6 s/bytets7 values2:5� 10�7 s/bytets5�Kq values5:43� 10�7 s/wordKc values 0.25Ki values 0.6Sw = 10 in S3 (6 bytes plus 4 control bytes)

We verify that the model estimates are close of the mea-
sured data, even taking into account that some model pa-
rameters are computed analytically (e.g., the vocabulary
size). Other model constants likeKc andKi are reason-
able values, but they can vary, depending on the input text
type and size. Therefore, the analytical model should be
used carefully. The two tables below present some figures
derived from the model. In the first table, we varyp keepingt in 32 gigabytes. In the second table, we also varyp, but
we keepb in 512 megabytes.

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400 450 500 550

P
er

ce
n

ta
g

e
o

f
to

ta
l

ex
ec

.
ti

m
e

in
 %

Local text size (b) in megabytes

Total execution time = 100%

Phase 1

Phase 3
Phase 2

Figure 7. Percentage of the total execution
time versus local collection block size (b) for
p=2.

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400 450 500 550

E
x

ec
u

ti
o

n
 t

im
e

in
 s

ec
o

n
d

s

Local text size (b) in megabytes

Phase 1

Phase 3

Phase 2

Figure 8. Comparison between measured
data and outputs of analytical model for p=4.

p b RAM use estimated exec perc.
(GB) (GB) time (min) phase 1 (%)

2 16 2.4 327.02 94.56
4 8 1.2 168.77 91.61
8 4 0.6 86.74 89.12
16 2 0.3 45.03 85.84
32 1 0.15 24.02 80.47
64 0.5 0.075 13.48 71.67

p t estimated perc.
(gigabytes) exec time (min) phase 1 (%)

2 1 10.42 92.76
4 2 10.87 88.92
8 4 11.29 85.59
16 8 11.80 81.91
32 16 12.49 77.38
64 32 13.48 71.67

In the first table, increasing the number of processors
from 2 to 32, the speedup in execution time is 24, that is
75% of the ideal (32). With largerp, communication in-
creases and phase 1 becomes less important. However, due
to the scalability of the algorithm, this reduction is not lin-
ear withp. In the second table, keeping the same localb,

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400 450 500 550

E
x

ec
u

ti
o

n
 t

im
e

in
 s

ec
o

n
d

s

Local text size (b) in megabytes

Phase 1

Phase 3
Phase 2

Figure 9. Comparison between measured
data and outputs of analytical model for p=2.

estimated execution time increase (fromp = 2 to p = 64)
is around 30%. As in the first table, the percentage of phase
1 decreases, due to the more communication overhead for
largerp.

7. Conclusions

In this paper we investigated a new scalable algorithm
for the distributed parallel generation of large inverted files
in the context of a high bandwidth network of workstations.
The algorithm cost isO(tp) wheret is the input collection
size andp is the number of processors. We designed, im-
plemented, and evaluated our parallel algorithm using real
text data and a fast network. An example of the power of
the proposed algorithm is the inversion of 2 gigabytes in 15
minutes.

Our experiments confirm that: (1) our analytical model is
appropriate and provides accurate performance predictions
and (2) the cost of our algorithm varies linearly with the size
of the local text.

The good performance of our algorithm is due to two
main reasons. First, it works solely on main memory which
is used to store the whole inverted file (the only I/O opera-
tions are the reading of the initial text and the writing of the
final inverted lists). Second, it is parallel. Clearly, this im-
plies that large memory and many workstations should be
available in order to invert larger collections. While this is
not the case in an individual basis, the scenario is quite dif-
ferent with the emergence of high bandwidth networks of
cheapworkstations. With such networks, computing power
and large memory should be highly available.

We intend to proceed our study in two basic directions.
First, we would like to modify our algorithm to also operate
in disk. This would allow inverting text collections whose
size far exceeds the space available in main memory. Sec-
ond, we plan to run our algorithm in an IBM SP with 32
nodes in order to evaluate our algorithm in larger parallel
systems.

References

[1] T. Anderson, D. Culler, and D. Patterson. A case
for NOW (network of workstations). IEEE Micro,
15(1):54–64, February 1995.

[2] M.D. Araújo, G. Navarro, and N. Ziviani. Large text
searching allowing errors. In Ricardo Baeza-Yates,
editor, IV South American Workshop on String Pro-
cessing - WSP97 - International Informatics Series,
volume 8, pages 2–20, Valparaı́so, Chile, November
1997. Carleton University Press.

[3] R. Baeza-Yates and G. Navarro. Block-addressing in-
dices for approximate text retrieval. In F. Golshani
and K. Makki, editors,Proceedings of the Sixth ACM
International Conference on Information and Knowl-
edge Management (CIKM’97), pages 1–8, Las Vegas,
USA, 1997.

[4] W. Frakes and R. Baeza-Yates, editors.Information
Retrieval – Data Structures & Algorithms. Prentice
Hall, 1992.

[5] D. Harman. Overview of the third text retrieval con-
ference. InProceedings of the Third Text Retrieval
Conference - TREC-3, Gaithersburg, Maryland, 1995.
National Institute of Standards and Technology. NIST
Special Publication 500-225.

[6] D. Harman, E. Fox, R. Baeza-Yates, and W. Lee. In-
verted files. In W.B. Frakes and R. Baeza-Yates, ed-
itors, Information Retrieval: Data Structures and Al-
gorithms, chapter 3. Prentice Hall, 1992.

[7] J. Heaps.Information Retrieval - Computational and
Theoretical Aspects. Academic Press, NY, 1978.

[8] J. P. Kitajima, M. D. Resende, B. Ribeiro-Neto, and
N. Ziviani. Distributed parallel generation of in-
dices for very large text databases. In A. Goscin-
ski, M. Hobbs, and W. Zhou, editors,Proceedings
of the 1997 3rd International Conference on Algo-
rithms and Architectures for Parallel Processing –
ICA3PP, pages 745–752, Melbourne, Australia, De-
cember 1997. World Scientific.

[9] U. Manber and S. Wu.GLIMPSE: A tool to search
through entire file systems. Technical Report 93-34,
Dept. of Computer Science, Univ, of Arizona, October
1993.

[10] A. Moffat and T.A.H. Bell. In situ generation of com-
pressed inverted files.Journal of the American Society
for Information Science, 46(7):537–550, 1995.

[11] G. Navarro, J. P. Kitajima, B. Ribeiro-Neto, and N. Zi-
viani. Distributed generation of suffix arrays. In
A. Apostolico and J. Hein, editors,Lecture Notes
in Computer Science, volume 1264, pages 102–115,
Aarhus, Denmark, June 1997. Springer. Proceedings
of the 8th Annual Symposium on Combinatorial Pat-
tern Matching (CPM).

[12] National Institute of Standards and Technology. Pro-
ceedings of the text retrieval conference (TREC),
November 1992.

[13] M. Persin. Document filtering for fast ranking. In
Proc. of the 17th ACM SIGIR Conference, pages 339–
348. Springer Verlag, July 1994.

[14] B. Ribeiro-Neto and R. Barbosa. Query performance
for tightly coupled distributed digital libraries. ACM
Digital Libraries Conference, 1998.

[15] G. Salton and M.J. McGill.Introduction to Modern
Information Retrieval. McGraw-Hill Book Co., New
York, 1983.

[16] V. S. Sunderam, G. A. Geist, J. Dongarra, and
R. Manchek. The PVM concurrent computing system:
evolution, experiences, and trends.Parallel Comput-
ing, 20(4):531–546, April 1994.

[17] T.B. Tabe, J.P. Hardwick, and Q.F. Stout. Statisti-
cal analysis of communication time on the IBM SP2.
Computing Science and Statistics, 27:347–351, 1995.

[18] A. Tomasic and H. Garcia-Molina. Performance of in-
verted indices in shared-nothing distributed text doc-
ument information retrieval systems. InProceedings
of the International Conference on Parallel and Dis-
tributed Information Systems, 1993.

