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Abstract

During the past decades, many methods have been devel-
oped for the creation of Knowledge-Based Systems (KBS).
For these methods, probabilistic networks have shown to be
an important tool to work with probability-measured uncer-
tainty. However, quality of probabilistic networks depends
on a correct knowledge acquisition and modelation.
KAMET1is a model-based methodology designed to

manage knowledge acquisition from multiple knowl-
edge sources [1] that leads to a graphical model that
represents causal relations. Up to now, all inference meth-
ods developed for these models are rule-based, and
therefore eliminate most of the probabilistic informa-
tion.
We present a way to combine the benefits of Bayesian

networks and KAMET, and reduce their problems. To
achieve this, we show a transformation that generates di-
rected acyclic graphs, the basic structure of Bayesian net-
works [2], and conditional probability tables, from KAMET
models. Thus, inference methods for probabilistic net-
works may be used in KAMET models.

1. Introduction

Probabilistic networks have shown to be an important
tool for Knowledge-Based Systems (KBS) that include,
within their knowledge, probabilistic-measured uncertainty,
and relational information about the domain. In particular, if
the network model may be represented by a directed acyclic
graph (DAG), and includes discrete variables, the use of
Bayesian networks is specially adequate. Several methods
have been developed to carry out efficiently exact inferences
in some particular cases of probabilistic networks (which
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include Bayesian networks); even more, if some error is tol-
erated, there are in the literature many methods of approx-
imate inference that reduce considerably the machine time
needed to solve the problem [7]. In the last years, proba-
bilistic networks have shown to have very important aplica-
tions, far beyond the theoric ground (see, for example, [5]).
The quality of the probabilistic models depends strongly

on the correctness of the causality and independence rep-
resentations. Unfortunately, there has been little progress
in the creation of methodologies that create correct prob-
abilistic models. The problem of creating such a represen-
tation is equivalent to acquire and represent expert knowl-
edge in an appropriate way. KAMET (Knowledge Acquisi-
tion Methodology) is a methodology based on models de-
signed to manage knowledge acquisition, mainly for diag-
nosis, from multiple knowledge sources. As a result of this
methodology, one obtains a probabilistic model that repre-
sents causal relations between the possible symptoms and
problems, with an inaccuracy associated to each relation.
An issue that has followed KAMET right from the be-

ginning is to find the way to formalize those models, so
that they allow to recognize appropriate causes to the prob-
lems given at the time. In this article, two methods for trans-
forming KAMET models into Bayesian networks are pro-
posed. The reason for presenting two transformations in-
stead of just one is that each has benefits, one in the model
representation and other in the size of the Bayesian net-
work obtained. These transformations look different at first
sight, however, it can be shown that the marginal distribu-
tions over the common nodes in both transformations will
be identical. Thus, exact inference methods will yield to the
same results. To make more clear these transformations and
their definitions, we will use a simple KAMET model that
represents an electric diagnosis system, shown in figure 1.
This model will be explained in section 2, after a brief

description of the KAMET CML.

1 KAMET is a project that is being carried out in collaboration with the
SWI Group at Amsterdam University and Universidad Politécnica de
Madrid.



Figure 1. a KAMET model representing a sim-
ple electric diagnosis system.

In general, a method developed for KBS will work bet-
ter if more information about the domain is available. The
transformations in this article are no exception for this rule:
the calculations of the conditional probabilities associated
to each node in the Bayesian network will need, some-
times, additional information that is not given by a KAMET
model. We won’t be able to get this information, because
the methodology followed to construct the model ensures
that every piece of available information will be present in
it. One may use the prior probability of a node to approxi-
mate the unknown conditional probabilities.
A benefit obtained by a transformation to a Bayesian net-

work is that one can include learning methods (like case-
based learning, or regression methods) to improve the qual-
ity of the inference process, or to change the uncertainty as-
sociated to each node if the conditions change (under the as-
sumption that the causality and independence relations re-
main unchanged).
In order to keep the additional benefit obtained by

KAMET, making symbolic distinctions between the ele-
ments in which the diagnosis is based, nodes represent-
ing symptoms will be diamond shaped, and those re-
lated with problems will have the shape of a square,
as shown in figure 2, even when the Bayesian net-

Figure 2. the symbols of the nodes in the
Bayesian networks used in the transforma-
tions. (a) shows a symptom and (b) a prob-
lem.

works will make no difference between them. We will
give these nodes the same name they had in the origi-

nal KAMET model, except for the symptoms, for which
we will add a “S” to prevent confusions. For a better un-
derstanding of these transformations, we will first suppose
that each of the nodes of a KAMET model represents ex-
clusively a binary variable; this means that a given symp-
tom or problem appears or not. Later, we will generalize
the process to use nodes that may take any (finite) num-
ber of different values.
We will suppose that the reader is familiar with the

concept of Bayesian networks, and with its propagation
methods. The next section provides a brief introduction to
KAMET and its Conceptual Modeling Language (CML),
which will be necessary for a correct understanding of the
transformations. In sections 3 and 4, we present the two
transformations followed by a generalization to models with
non-binary nodes and some examples.

2. KAMET CML

As we said before, KAMET is a model-based methodol-
ogy designed to manage knowledge acquisition (KA) from
multiple knowledge sources. The method provides a strong
mechanism with which to achieve KA in an incremental
fashion, and in a cooperative environment. The models are
used to apply the methodology, as means of communica-
tion between human experts and knowledge engineers, as
tools in reasoning strategies, and for the structuring and de-
scription of knowledge, independently of its implementa-
tion.
KAMET consists of four stages: the strategic planning of

the project, construction of the initial model, construction of
the feedback model, and construction of the final model.
The models represent knowledge and reasoning of dif-

ferent knowledge sources in a specific knowledge domain.
KAMET uses models, because they lead to well struc-
tured and maintainable knowledge bases. This methodol-
ogy seeks to be general, although it is mainly directed to-
ward diagnosis problems.
Knowledge acquisition requires strong modeling meth-

ods, which should provide a rich vocabulary in which the
expertise can be expressed in an appropriated way. These
methods, for example, should be able to work with log-
ics such as probabilistic [3],[4] or paraconsistent [6] log-
ics. Knowledge and reasoning should be modeled in such
a way that models can be exploited in a very flexible fash-
ion.
The KAMET CML has three levels of abstraction. The

first one corresponds to structural constructors and struc-
tural components. The structural constructors are used pri-
marily to highlight the problem itself. These are: problem,
which expresses an alteration, disorder or abnormality, clas-
sification, alterations disordes or abnormalities that can be
considered as a classification problem and, thus, may be



represented within a table, and subdivision of alterations,
disorders or abnormalities (figure 3).

Figure 3. structural constructors.

The structural components are used to establish the char-
acteristics and possible solutions of the problem (figure
4).They have the following meaning:

Figure 4. structural components.

• Symptom is a manifestation or sign related to an alter-
ation, disorder or abnormality.

• The antecedent expresses the previous circumstances
that can be used to judge something that might hap-
pen.

• A solution expresses the possible solution to a disor-
der, alteration or abnormality. It is always related to
structural constructors.

• Time expresses the duration of structural components
and structural constructors.

• A value expresses the characteristics of syptoms, an-
tecedents or groups.

• Inaccurate expresses the uncertainty or lack of preci-
sion of an intermediate or terminal node.

• The process expresses the sequence of actions or series
of operations required to obtain a result.

• A formula expresses the calculations that must be com-
pelled in order to determine the alteration, disorder or
abnormality.

• Examination expresses a recommendation or necessity
of making studies to determine an alteration, disorder
or abnormality.

The second level of abstraction corresponds to nodes
and composition rules. Models are represented by digraphs,
with nodes as their vertices and composition rules as arcs.
Structural constructors and structural components form the
nodes, which are divided in three kinds: initial, intermediate
and terminal. Composition rules permit the adequate com-
bination of structural constructors and components (figure
5):

Figure 5. composition rules.

• Division expresses that an alteration, disorder or ab-
normality is subdivided in

• The implication expresses connection from an origin
toward a complication.

• Action expresses that something must be completed (a
formula or an examination).

• Union expresses connection between subdivisions.
The third level of abstraction corresponds to the global

model, which should represent the knowledge acquired
from multiple knowledge sources. It must have at least one
initial node and one terminal node. In order to facilitate
the construction and interpretation of the models, structural
constructors and components may be named using a numer-
ical or linguistic label.
Another element related to the models is the indicator,

represented by a square (figure 6), located in the upper right-
hand corner of the group or the structural component value
being referred to. An indicator is named in three different
ways: the notations n, n+, and n,m (withm > n) are used
to express the exact, minimum, and minimum and maxi-
mum number of elements that must be present, respectively.
A group is a set of linked elements that have times and/or

values in common, or are related among them through an in-
dicator; a group may be an element of another group (fig-
ure 7).A chain is the link of two or more groups, symptoms
and/or antecedents. In the graphical representation, the or-
der of the link is irrelevant.



Figure 6. indicators. (a) indicator n; (b) indi-
cator n+; (C) indicator n,m.

Figure 7. groups. (a) group; (b) group with in-
dicator; (c) recursive group.

An initial node represents a symptom, antecedent, group
or chain, and does not have input flows. An intermediate
node represents a structural constructor or any of the struc-
tural components: study, process, formula, or inaccuracy.
Finally, a terminal node represents a structural constructor;
it has at least one input flow, and their output flows are used
only to determine possible solutions. The initial and inter-
mediate nodes can be grouped together, without losing their
properties or functions, into molecular nodes, by means of
conjunctions or disjunctions (figure 8). These nodes will, in

Figure 8. molecular nodes. (a) conjunction
and (b) disjunction.

turn, act as nodes in their own right.
For example, the model in figure 1 expresses that the

problem P1 can occur due to two different situations. In the
first one, the model expresses that if symptoms 1 and 2 are
known to be true, then we can deduce that problem P1 is
true with probability 0.7. In the second one, the model ex-
presses that if symptoms 1 and 5 are observed then we can
conclude that the problem is P1 with probability 0.6. On the
other hand, we can deduce that the problem P3 is true with
probability 0.4 if symptoms 1 and 4 are known to be true.
Finally, we can reach a conclusion that the problem is P2
with probability 0.9 if problems P1 and P3 and the symp-
tom 3 are observed.

The prior probabilities of the nodes have no symbolic
representation in KAMET, but they may still be known; in
that case, they are stored in a table. For a more complete de-
scription of KAMET, see [1].

3. Transformation with AND nodes

An essential part of KAMET models are their molecu-
lar nodes, representing the conjunction and the disjunction.
The first transformation proposed uses the AND connec-
tor2, creating a new type of node which does not represent
symptoms nor problems; this will be called an AND node,
and its representation will be by a triangle, as shown on fig-
ure 9. These nodes will have an upper case letter as a name.
Note that we won’t create a new node for disjunctions be-
cause, in general, this would lead to the loss of information
on the conditional probabilities of the new OR node given
each of its parents.

Figure 9. an AND node called T.

The Bayesian network is constructed generating a node
for each component in the KAMET model. An AND node
is then generated for each conjunction, and a directed edge
from each component in it to the AND node is created. The
conditional probability table is the trivial one, given by

P (AND|N1 = n1, . . . , Nk = nk) =
kY
i=1

ni

where Nj , j = 1, . . . , k are the parents of the AND node;
thus, the AND node has a value of 1 if and only if each of
its parents has a value of 13. To finish the transformation,
a directed edge is created from the AND node to the node
pointed by the implication.
If there exist OR connectors, directed edges are created

from those components joined by a connector of this kind
to the node pointed by the corresponding implication.
After applying this transformation to the model in figure

1, the Bayesian network with AND nodes obtained is that
shown in figure 10.
We now need to generate the conditional probability ta-

bles. The first case is when a node N has only one parent.

2 We will use interchangeably the phrases “AND connector” with “con-
junction molecular node”; and “OR connector” with “disjunction
molecular node”.

3 We use the convention that 1means that the node has a value of TRUE
(it is observed), and 0 means that it’s FALSE.



Figure 10. transformation of the KAMET
model shown before using AND nodes.

We then know the conditional probability of the node given
that we observed that its parent appeared P (N |pa (N)).
However, the model has no information over the conditional
probability given that its parent is observed not to appear; in
this case, we may fill the table with the prior unconditional
probability of N , if we don’t have more information about
the node.
The other case is when N has more than one parent.

By construction, the parents of N must form a disjunctive
molecular node. The probability table will have the value of
the uncertainty associated to one of the parents if and only
if that parent has a value of true and none of the others. For
the other cases (none or more than one of the parents has a
value of true), the prior probability of nodeN may be used.
In some cases it’s possible to make other kinds of approxi-
mations; for example, if two of the parents are known to be
mutually exclusive, then putting a value of 0 to the proba-
bility of the node given both parents is useful in the prop-
agation stage. On the other side, it is common to suppose
that if more symptoms are known to be present, the proba-
bility of a problem should be higher; thus, one may insert
values higher to those given to each parent individually.
For the example we are working with, let the problems

have prior probabilities given by

P (P1) = 0.25

P (P2) = 0.1

P (P3) = 0.2

and suppose that we have additional information that sug-
gests that if we find symptoms S1, S2, and S5, the prob-
ability of occurrence of problem P1 is 0.1 higher than the

one given when only symptoms S1 and S2 are present. We
will also suppose that all the symptoms have a prior prob-
ability of 0.5. The conditional probability tables associated
to the nodes in figure 10 are shown below. We omit the ta-
bles of the AND nodes.4

P1 ¬P1
A,B 0.8 0.2
A,¬B 0.7 0.3
¬A,B 0.6 0.4
¬A,¬B 0.25 0.75

P3 ¬P3
C 0.4 0.6
¬C 0.2 0.8

P2 ¬P2
D 0.9 0.1
¬D 0.1 0.9

This transformation has the advantage that maintains the
representation given by the original KAMET model, with
a structure of the same kind; therefore, the relationship be-
tween both models is clear. However, it tends to add many
nodes, and the resulting graph will be very large and will
form many cliques during the moralization process; thus,
the propagation and inference methods may become very
slow.

4. Direct transformation

The direct transformation eliminates the problem of gen-
erating models that are too big, because it doesn’t create
new nodes, using those that appear in the original model.
This transformation can be performed directly, in stead of
making many different steps as in the other transformation.
The first step is to generate the nodes that will be in the

graph, one for each symptom or problem, and assign them
a name (as in the past section). Each node will have as par-
ents all the nodes that incide over it in the original model,
without paying attention to the connectors that unites them.
In the example we are following, the result of the transfor-
mation is given by figure 11.
After that, the conditional probability tables of each node

given its parents are calculated using the information con-
tained in the connectors of the original model. If there are
components united by an AND connector, then the corre-
sponding probability will be given only if all of them (and
only them) occur.

4 The symbol ¬A means that the node A didn’t appear (has a value of
false).



Figure 11. the direct transformation of the
KAMET model of electric diagnosis.

Using the same information as in the other transforma-
tion, we obtain de following probability tables.

P1 ¬P1
S1,S2,S5 0.8 0.2
S1,S2,¬S5 0.7 0.3
S1,¬S2,S5 0.6 0.4
otherwise 0.25 0.75

P3 ¬P3
S1,S4 0.4 0.6
o.w. 0.2 0.8

P2 ¬P2
P1,P3,S3 0.9 0.1
otherwise 0.1 0.9

The prior probability of occurrence of the problems is
used in many cells of the table because we don’t know what
happens when we do not observe all the elements united by
an AND connector. Here one may guess that the inference
in both models will produce different outcomes; for exam-
ple, if the conditional probability of the problem P1 given
the symptom combination ¬S1,S2,S3 was known(and was
different to 0.25), the conditional probability table will be
different. However, if that probability was known, it will be
represented in the original model, and the transformation
using AND nodes will include it in its representation.
A problem of the direct transformation is that, although

it is pretty natural, produces a loss of the graphical informa-
tion contained in the KAMET models. When AND nodes
are used, it is easy to find out the relationship between the
parents of a given node, so that one is able to know which
symptoms should appear together in order to be able to say
something about the problem; in the direct transformation,
when we omit the use of this kind of nodes, the graphical
model obtained shows a relation of the same kind between
all the parents of a node, even when in the original model
that is not true. This problem may be partially solved with
the observation of the conditional probability tables. How-

ever, a clear graphical representation is fundamental in big
problems, where an inspection of all the probability tables
is impossible.
So, each transformation has its advantages and disadvan-

tages compared to the other; the choice of one or the other
depends on the kind of representation wanted with it, and
on the size of the original model.

5. Equivalence

We won’t show a complete proof of the equivalence of
the Bayesian networks obtained by both transformations.
Instead, we will give a motivation for this afirmation, in or-
der to make it more clear.
First, by definition, an AND node will have a value

of “true” if and only if all of its parents have the same
value. Also, if an AND node performs as a separator in the
Bayesian network of the first transformation, then in the di-
rectly formed Bayesian network, the set of its parents will
perform as a separator too; this is also true backwards. Thus,
if any of the transformation-based Bayesian networks satis-
fies a Markov property, then the other one will also satisfy
the same; so, both networks may use the inference meth-
ods.
Also, the prior marginal probability of every node, ex-

cept of course theAND nodes, is the same in both networks,
so if one adds information of the appearance of a symp-
tom or a problem, the marginal probabilities after propaga-
tion of the information will still be the same in both mod-
els. If the information we receive corresponds to the obser-
vation of an AND node, then it is equivalent to the observa-
tion of all of its parents, thus we may include this informa-
tion in the model formed by the direct transformation.

6. Generalization

Up to now, we have supposed that all the nodes in the
original KAMET model represent binary variables. Never-
theless the same transformations may be generalized to use
variables which may take a finite number of different val-
ues, shown by the structural constructor value, even if it
comes with an indicator. The generalization may not always
be used, though, as we’ll see next.
This generalization is made the natural way: the graph-

ical representation of the transformations will be the same,
and the difference will appear only in the tables of con-
ditional probability, where all the possible combination of
values of each of the parent nodes will appear. Within this
table, one must be able to represent the probability of the
problem given that an antecedent is not present; for that, we
must add another value (typically ‘0’) to represent the ab-
sence of all other values. Thus, if a node has k values, then
the probability table of a node given this lone parent will



have 2k+1 entries for each possible value of the son; thus,
models in which nodes have many values may become in-
tractable for the size of its tables. However, depending on
the indicator associated to the values, many of the combi-
nations may not be present, reducing the size of the condi-
tional probability table.
One important feature of this generalization is that it

is independent of the arguments given in the past section
for the equivalence. This means that even if the network
come from the generalized transformation, these will still
be equivalent; so there is no problem in using any of the
transformations.
Notice that a node with multiple values may be seen as

a conjunctive molecular node in which each of its atomic
nodes represents a subset of the values it may take. With
that in mind, the process of filling in the conditional prob-
ability tables when multiple-valued nodes are involved has
no difference with filling the probability tables in sons of
conjunctive molecular nodes. This reasoning may be use-
ful in order to find a way to reduce the size of conditional
probability tables in nodes with a large number of values.

7. Conclusions

We have shown two ways to obtain a Bayesian net-
work from a KAMET model. With these transformations,
we have solved one of KAMET´s problems, the lack of in-
ference methods, taking advantage of the well studied infer-
ence methods developed for Bayesian networks. By means
of these transformations, one is able not only to use infer-
ence methods in KAMET models, but also to apply any
Bayesian network-based methodology that may be devel-
oped. We didn’t present a proof for the equivalence, up to
inference methods, of these transformations, but it is easy
to show it, because the marginal densities are equal in both
models.

Current research in KAMET focuses on developing a
new generalization for nodes that have many values, or in-
ference methods that perform efficiently in Bayesian net-
works that come from this generalization, such that infer-
ence problems may be solved in a reasonable time. Re-
search also focuses on implementing these transformations
in order to be able to obtain Bayesian networks from graph-
ical representations of the knowledge acquired by KAMET,
and to implement some inference methods (exact and ap-
proximate) as Problem Solving Methods.
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