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Abstract—Partial Differential Equations (PDE) are the heart
of most simulations in many scientific fields, from Fluid
Mechanics to Astrophysics. One the most popular mathe-
matical schemes to solve a PDE is Finite Difference (FD).
In this work we map a PDE-FD algorithm called Reverse
Time Migration to a GPU using CUDA. This seismic imaging
(Geophysics) algorithm is widely used in the oil industry. GPUs
are natural contenders in the aftermath of the clock race, in
particular for High-performance Computing (HPC). Due to
GPU characteristics, the parallelism paradigm shifts from the
classical threads plus SIMD to Single Program Multiple Data
(SPMD). The NVIDIA GTX 280 implementation outperforms
homogeneous CPUs up to 9x (Intel Harpertown E5420) and
up to 14x (IBM PPC 970). These preliminary results confirm
that GPUs are a real option for HPC, from performance to
programmability.

Keywords-GPU, high-performance computing, finite differ-
ences, PDE, seismic imaging, stencil computation

I. INTRODUCTION

The clock race is over, and for the last four years the only
clear trend points to parallel architectures. Within the HPC
community, a myriad of new architectures are presented as
replacements for old hardware. The new architectures rely on
heterogeneous or homogeneous multi-cores, or combinations
of both. Lately, heterogeneous multi-cores (Cell/B.E., GPUs
and FPGAs) are attracting attention, mainly due to their
exceptional performance (e.g. the RoadRunner 1 petaFlops
system), and the potential save in energy consumption.
However, many issues have to be considered and evaluated
before adopting these new architectures, from packaging to
programmability.

In this paper, we analyze some of these issues by porting
an algorithm used in geophysics to a couple of traditional
multi-core architectures and to a GPU based architecture.
The algorithm is called Reverse Time Migration (RTM).
It is a wavefield reconstruction method that helps to de-
lineate subsurface structures and is particularly useful for
oil prospection. Oil companies trust this kind of methods
enough to rely on them for crucial multi-million-dollar
decisions like whether and where to start drilling operations.

Figure 1. A side-by-side comparison between the results of two seismic
imaging techniques, Shot Profile Migration (SPM) and RTM. As we see,
RTM provides higher quality seismic images, with better signal-to-noise
ratio and clearer structure delineation

When it comes to complex geophysic scenarios like
reserves located beneath salt, large velocity contrasts or
steeply dipping formations (as can be observed in Figure 1),
RTM’s imaging quality advantages other methods [1]. Un-
fortunately, its computational cost hinders its adoption. This
fact motivates constant research in architectures/algorithms
that can provide the required computational power.

RTM is composed by several tasks, as we explain in the
following sections. In order to have a realistic use case
we have implemented most of the tasks of the algorithm,
not only the 3D finite difference computation which is
considered by other works ([2], [3]) to calculate the peak
performance of the algorithm. Therefore, having a real-world
application and not only a synthetic kernel, we are able to
evaluate aforementioned issues like programmability or full
program performance.

GPUs have evolved from fixed hardware targeting graph-
ics processing to fully programmable massive parallel ma-
chines. Data parallelism exists in many HPC applications
and, thus, GPUs are an ideal platform to efficiently execute



them. GPUs API used to be graphics oriented and required
a tedious mapping from algorithms to graphics primitives.
With the release of CUDA a general purpose programming
model for GPUs that enables a simple mapping of HPC ap-
plications to current GPUs is provided. We consider that data
parallelism present in many parts of the RTM algorithm can
be easily exploited using the CUDA programming model.
Although, lack of advanced optimization tools hinders the
fully exploitation of the performance.

We present an optimized implementation of the RTM
that is specifically designed to exploit the architectural
characteristics of a GPU: we have parallelized the workload
into loosely coupled threads to exploit the multiple inde-
pendent processing elements, orchestrated the data transfers
to ensure the most efficient memory bandwidth utilization,
employed loop unrolling, and other techniques that return
high performance. We provide a comparison against a refer-
ence HPC platform that employs traditional cache-coherent
cores. To do so, we have developed an equally optimized
implementation of the RTM for IBM JS21 (PowerPC) blades
and SGI Altix blades (Intel Xeon) (detailed in Section IV).

The two main contributions of this work are: having
complete RTM algorithm that uses GPUs and delivers more
performance per watt that the implementation in current
homogeneous architectures, and an analysis on the pro-
grammability of each system that concludes that it is not
an issue for GPGPU.

The remainder of this paper is organized as follows:
Section II introduces the basics of the RTM algorithm and
its main computational kernel. In Section III we introduce
the arguments behind our decision to try the GPGPU way.
Sections IV and Section V present respectively the results
of developing/porting RTM to a traditional multi-core HPC
platforms and to a GPGPU platform (NVIDIA GTX 280
based system). Section VI evaluates and compares the per-
formance achieved by the two solutions. Finally, Section VII
concludes the paper.

II. THE PROBLEM

In this work, we choose as test case a well known
geophysics technique, RTM, which is a classic example of
what we call PDE+FD kind of problems, where a Partial Dif-
ferential Equation (PDE) is solved using a Finite Difference
(FD) scheme [4] (as in [5] for the electromagnetic case). We
have the acoustic wave equation as:

1
ρc2

∂2u

∂t2
(x, t)−∇ ·

( 1
ρ(x)

∇u(x, t)
)

= fs(x, t) (1)

The unknown u represents the pressure, the function c
the wave velocity, ρ the density and fs the source term. We
assume an isotropic, non-elastic medium, where density is
not variable, thus yielding the following expression:

∂2u(x, t)
∂t2

− c2∆u(x, t) = f(x, t) (2)

RTM is based on a two-way acoustic wave PDE. This
implies solving two times the acoustic wave equation (Equa-
tion 2), called forward and backward propagations. The
FD solver kernel (step 3 of Alg. 2) computes the stencil
and the time integration for every iteration of the time
dependent loop. The kernel is the most computational de-
manding segment of the RTM. Furthermore, RTM includes
the following tasks: the source wave introduction (step 6
of forward propagation), the receivers traces introduction
(step 6 of the backward propagation), and the absorbing
boundary conditions (ABC) computation (step 9 for both
ways). Finally, in every step of the backward propagation
the correlation of the forward and backward wavefields is
carried out (step 12 of the backward sweep).

Forward propagation Backward propagation

input: velocity model input: velocity model,
shot location receivers’ traces,

forward wavefields
output: forward wavefields output: image

1: for all time steps do
2: for all main grid do
3: compute wavefield
4: end for
5: for all source location do
6: add source wavelet
7: end for
8: for all ABC area do
9: apply ABC

10: end for
11: for all main grid do
12: store forward wavefield
13: end for
14: end for

1: for all time steps do
2: for all main grid do
3: compute wavefield
4: end for
5: for all receivers location do
6: add receivers data
7: end for
8: for all ABC area do
9: apply ABC

10: end for
11: for all main grid do
12: correlate wavefields,

restored forward and
backward

13: end for
14: end for

Figure 2. The RTM Algorithm

The computational intensive steps in Alg. 2 are: the kernel
(step 3), and the ABC computation (step 9). Step 12 in both,
forward and backward, is mainly intensive in Input/Output
(I/O), but due to the temporal dependency among iterations,
becomes a bottleneck to keep in mind. These tree steps set
the performance bound for RTM. In order of importance,
the kernel and then the I/O are our main concerns.

In terms of performance evaluation, we have only to care
about the efficiency of a single iteration, due to the fact that
all of them are alike. Nevertheless, in real-life executions
of RTM the number of iterations is determined by the
acquisition set up, but generally they are in the order of
ten thousand. Therefore, the parameter that influence perfor-
mance the most is the size of the computational domain (the
grid). Our computational domain is composed by two parts,
an external crust of n points (ABC area) around the main
grid, which is a 3D parallelepiped (nz × nx × ny), where



nz ≈ nx ≈ ny � n. This means that bigger the grid lesser
demanding is the ABC computation, but this also implies
reduced I/O performance, notice that nz ≈ nx ≈ ny ≤ 1000
points are common place.

III. MOTIVATION

Graphics Processing Units (GPUs) are coprocessors de-
signed to speed-up the execution of graphical applications,
such as 3D rendering or video decoding. First GPUs were
non-programmable hardware that executed a limited set
of graphics operations (e.g. OpenGL). However, current
generation of GPUs are designed in a more flexible way,
allowing programmers to actually execute general purpose
code. Programming models such as Compute Unified De-
vice Architecture (CUDA) currently allow to use popular
programming languages, such as C/C++ or FORTRAN, to
write code to be executed by GPUs. Programmable GPUs,
jointly to programmer-friendly programming models, enable
us to use GPUs to perform general purpose computations on
GPUs. The programming model offered by CUDA to im-
plement data parallel computation (see Section V) perfectly
matches the geometry of RTM, allowing a straightforward
mapping of RTM to GPUs.

Most graphics computations exhibit massive amounts of
data-parallelism: multiple instances of the code can be
executed concurrently on different data. Due to the nature
of graphics algorithms, GPUs are embarrassingly parallel
architectures, formed by hundreds of cores (e.g. 240 cores
in the NVIDIA GTX 280) and designed to maximize the in-
struction throughput. This in contrast with traditional general
purpose processors, whose key design goal is to minimize
instruction latency. For instance, the NVIDIA GTX 280 [6]
easily outperforms the Intel Xeon E7450 processor [7]
by 10 times for data-parallel computations. However, the
E7450 achieves a factor of 10 higher performance over the
GTX 280 for sequential control-intensive code. RTM and
many other applications are composed by both data paral-
lel and sequential control-intensive phases. Hence, general
purpose CPUs and GPUs can be coupled together to form
heterogeneous computing systems [8] that efficiently execute
different application phases.

GPUs are world-wide available and have been included
in most desktop, server and high-end computers sold during
the last ten years. The huge amount of GPUs that are sold
all around the world allow GPU vendors to offer relative
small prices when compared to high-performance computing
solutions. GPUs offer a performance per $ figure that it is
about one order of magnitude higher than high-end CPUs.
This allows building small-size and cheap GPU clusters that
offer huge peak performance for massive data parallel codes,
such as RTM.

Programmable GPUs and the CUDA programming model
enabled us to do a full port of the RTM algorithm to
a CUDA-capable GPU in a short period of time. Data

parallel phases of RTM benefit from the impressive peak
performance of GPUs for massively data parallel code
while control-intensive parts can still be executed by high-
performance CPUs.

IV. RTM ON HOMOGENEOUS ARCHITECTURES

To set a fair comparison between the GPGPU-based RTM
implementation and some traditional cache-coherent multi-
core platforms, these platforms have to be based on com-
modity hardware available in an HPC oriented configuration.
Among the platform that satisfy these requirements, we
choose: the IBM BladeCenter JS21 Type 8844 blade and
the SGI Altix XE320. The JS21 blade sports two double-
core PowerPC 970MP processors running at 2.3 GHz, these
cores employ coherent L1 and L2 cache memories. In the
Altix XE320 blade we find two ”Harpertown” processors;
this quad-core Xeon E5460 runs at 2.5 Ghz. These blades
are off-the-shelf products, and they are actively employed in
supercomputers (e.g., MareNostrum [9]). Detailed hardware
specifications are reported in Table I.

We have ported RTM to these homogeneous platform, and
then optimized the implementation to the same degree.

Blade IBM JS21 Type 8844 SGI Altix XE320

Processors PowerPC 970MP Xeon E5460
Sockets x cores 2 × 2 2 × 4
Memory per blade (Gbytes) 8 8
Clock Frequency (GHz) 2.3 2.5
Peak throughput (GFlops/s) 36.8 80.0
SIMD registers (per core) 80 N/A
SIMD width 128 bit 128 bit
Main memory standard DDR2 DDR3
Cache memory

L1 (data + instr) 32Kb + 64Kb 32Kb + 32Kb
L2 1Mb per core 6Mb per pair
L3 N/A 8 Mb

Table I
TECHNICAL SPECIFICATIONS OF THE HOMOGENEOUS SYSTEMS

EMPLOYED IN OUR EXPERIMENTS

As mentioned in Section II , the kernel is the most com-
putational demanding task of the RTM. The computational
weight of the kernel is due to the low number of operations
it performs per each data point [10]. The PDE+FD solver
uses a 8-point (per axis) stencil, depicted in Figure 6(left).
Data are stored in Z-major form (see Figure 4), therefore
accesses across the X and Y axes may be significantly
more expensive in a cache-based architecture. The following
paragraphs will focus on the kernel optimizations: memory
accesses and computation.

Memory access patterns have been shown [11] to be
critical for the performance of the stencil computation, heart
of the RTM kernel. Without optimizations, the accesses in
lines 5, 7 and 8 (Figure 3) cause heavy cache thrashing
because u3, u2, u1 and v are much larger than the L2
cache, and the L2 cache has limited associativity. We tackle



input: dt2, C00, Z1...Z4, X1...X4, Y1...Y4, u2, u1
output: u3

1: for y = 4 ... Y - 4 do
2: for x = 4 ... X - 4 do
3: for z = 4 ... Z - 4 do

4: /* Stencil computation */
5: u3[z,x,y] = C00 · u2[z,x,y] +

Y4 · (u2[z,x,(y-4)] + u2[z,x,(y+4)]) +
...
X4 · (u2[z,(x-4),y] + u2[z,(x+4),y]) +
...
Z4 · (u2[(z-4),x,y] + u2[(z+4),x,y]) +
...
Z1 · (u2[(z-1),x,y] + u2[(z+1),x,y]);

6: /* Integration over time */
7: u3[z,x,y] = v[z,x,y] · v[z,x,y] · u3[z,x,y];
8: u3[z,x,y] = dt2 · u3[z,x,y] + 2 · u2[z,x,y] - u1[z,x,y];

9: end for
10: end for
11: end for

Figure 3. Pseudo-code of the unoptimized PDE+FD solver invoked in
line 3 of RTM (see Figure 2). Z, X, Y are the dimensions of the data set.
Z1...Z4, X1...X4, Y1...Y4 and C00 are spatial discretization parameters,
dt2 is a temporal discretization parameter. Integrating the equation requires
maintaining the wavefield of at least 2 earlier time steps (u2 and u1), while
u3 is the current wave field

that problem with blocking [12], [13]. To apply blocking,
in particular the Rivera strategy, the original 3D space is
divided in slices, where the X axis of the slices has a size
that optimally fits the cache hierarchy. Figure 4 shows this
decomposition.

Figure 4. The blocking strategy we adopt in our homogeneous implemen-
tations.

As the optimization of computation is concerned, we
exploit all the forms of parallelism provided by the archi-
tecture: the thread-level parallelism provided by the multiple
cores, and the data-level parallelism provided by the SIMD
instruction set. We use all the independent threads (4 or
8) per blade with a parallelization strategy that follows the
blocking. Each core processes its assigned set of slices inde-
pendently. Since each core has its own L2 cache, interference
among threads is minimal. Our implementation employs
OpenMP [14], and thanks to careful loop management, we
provide to OpenMP with more opportunities for scheduling,

thus enhancing scalability (Figure 5).
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Figure 5. Our RTM algorithm enjoys a good scalability (up to 4 cores
in both architectures), and better performance (up to 14.6 GFlops). The
Xeon version does not scale linearly up to 8 cores, this is due to memory
associativity problems, solution searching underway

To exploit data-level parallelism, our code uses the
Altivec/VMX SIMD instruction set available in the
PPC970MP. SIMD instructions allow to process 4 single-
precision floating-point operands per cycle (Figure 6). The
processor features a relatively large number SIMD registers
(80), so that loop unrolling is used in conjunction with
SIMDization to extract more performance from the appli-
cation. On the Xeon processor case, we did not exploit ex-
plicitly the SSE instructions, thus we relied on the compiler
flags that automatically take advantage of them.

The ABC task suffer from the same aforementioned



Figure 6. Visual comparison between a scalar (left) and a SIMD stencil
(right) in our RTM computational kernel

problems, further the memory access is even more penalized,
this is because the data to be accessed is barely continuous
in memory. Also, the data reuse is very low, the number of
instructions required to compute the ABC is of the order
of 1/5 of the PDE solver. Fortunately, the mentioned op-
timizations helps to mitigate the ABC computation burden.
Besides, the relative importance of it diminish when the main
computational domain increases.

The RTM algorithm requires huge data sets to be transfer
to/from disk. In fact, for every iteration of the forward prop-
agation a wavefield is stored, the wavefields can easily be
as big as 1Gb. Thus, we face two I/O interrelated problems:
space (disk) and time (transfer). Firstly, the wavefield size is
reduced previous to be stored by means of data compression.
We are able to compress the wavefields from 4x up to 10x,
with minimal data loss. Secondly, this compressed wavefield
is stored in asynchronous fashion, thus the transfer time is
overlapped with the computation time of the rest of the tasks
of the algorithm.

The techniques employed in our RTM implementation on
the homogeneous architectures provide us with an advanced
starting point for our GPGPU port, which is the main subject
of the following section.

V. RTM ON GPGPU
A. NVIDIA’s Tesla architecture

NVIDIA’s Tesla architecture, introduced in the GeForce
G80 GPU family, enables developing high-performance par-
allel applications that take profit of NVIDIA hardware in
the C/C++ language by using the Compute Unified Device
Architecture (CUDA) programming model. Thus, previous
knowledge on graphics programming is not required any-
more.

As shown in Figure 7, a GPU is presented as a set of
streaming multiprocessors, each with its own processors
and shared memory (user-managed cache). The processors
are fully capable of executing integer and single precision
floating point arithmetic, with additional cores used for
double-precision. However, all the stream processors in a
multiprocessor share the fetch, control and memory units.
Therefore each SM may be better conceptualized as a 8-
wide vector processor. All multiprocessors have access to the
global device memory, which is not cached by the hardware.

Figure 7. NVIDIA G200 Architecture

Memory latency is hidden by executing thousands of threads
concurrently. Register and shared memory resources are
partitioned among the currently executing threads. There are
two major differences between CPU and GPU threads. First,
context switching between threads is essentially free state
does not have to be stored/restored because GPU resources
are partitioned. Second, while CPUs execute efficiently when
the number of threads per core is small (often one or two),
GPUs achieve high performance when thousands of threads
execute concurrently.

B. CUDA Programming model

CUDA arranges threads into thread-blocks. All threads
in a thread-block can read and write any shared memory
location assigned to that thread-block. Consequently, threads
within a thread-block can communicate via shared memory,
or use shared memory as a user-managed cache since shared
memory latency is two orders of magnitude lower than that
of global memory. A barrier primitive is provided so that all
threads in a thread-block can synchronize their execution.

C. RTM implementation

We used a simple RTM implementation for homogeneous
CPUs with no optimizations as the base of the port.

All the computation steps both in the forward and back-
ward phase access and modify the same data. Consequently,
a mixed CPU/GPU implementation such as the one in [3]
require continuous memory transfers between the host and
the GPU memories in order to keep the data coherent.
However, as we explain in Section III, GPU’s performance
is hugely penalized by frequent and large memory transfers.
Therefore we have implemented all the aforementioned
steps in GPU kernels that access data which resides in the
GDDRAM. The host code only orchestrates the execution
environment, the kernels’ invocations, and the I/O transfers
to/from disk whenever it is necessary.

1) Program initialization: We use the CUDA driver API
instead of the run-time API because it lets us manage CUDA
contexts thus allowing the use of POSIX threads for doing



things like asynchronous accesses to disk in parallel to the
computation. A unique context is created in order to allow
all host threads to have access to all the data structures that
reside in the GPU.

Some constant values are stored in the constant memory.
We try to maximize the use of the constant memory as it is
cached and leaves more available registers for the compiler
kernel code generation.

The volumes used during the stencil computation are
zeroed in the GPU memory and the velocity model is
transferred from the host memory. The traces gathered by the
receivers are also transfered to the device memory although
this is done at the beginning of the backward phase.

2) Kernel implementation:
3D stencil computation: Global memory is not implic-

itly cached by the hardware. Furthermore, accesses to global
memory are very expensive. Therefore, optimizing global
memory bandwidth usage is a must in order to get good
performance from the GPU. A k-order stencil computation
calculates the value of each point by using the k/2 neighbor
elements in each direction. That is 3k+1 reads per calculated
element. Micikevicius [2] refers to this number as read
redundancy. The same concept is also applied to writes.
The sum of them is called overall redundancy. We used
this metric to analyze global memory accesses and improve
memory bandwidth usage.

For the 3D stencil computation kernel, we use the 2D
sliding window approach proposed in [2], also well known
from [12]. Shared memory is used to store a (n+k)∗(m+k)
tile which holds the elements of the z and x dimensions
of the wavefield. Each thread loads an element into the
shared memory. Moreover, since threads load elements that
are consecutive in memory, they can be coalesced in order
to maximize the global memory bandwidth. Accesses to
neighbor elements for these dimensions are then fetched
from shared memory. The kernel iterates on the y dimension;
thus, each thread computes a column along this dimension.
Neighbor elements for the y dimension are stored in k
registers of each thread which behave like a queue: every
time a tile is done the oldest element is popped out and a
new element is enqueued. Using this approach we obtain a
read redundancy of 3 and a write redundancy of 1 for 16x16
tiles.

ABC: Wave propagates through the simulated medium
and is reflected on the wavefield boundaries. This adds
lots of noise to the final image. In order to avoid this
undesired effect, a wave attenuation is performed. We have
implemented a different kernel for each face of the 3D
wavefield as they require different memory access patterns.
The approach is the same as the one used for the stencil com-
putation: there is a front of threads that traverses the points
that belong to the ABC area and update them accordingly.
In this case, the dimension which is traversed depends on
the face that is being computed.

Shot insertion: This computation is very simple and
can be run in the host. However, since the wavefields
reside in the GPU memory, additional memory transfers
must be performed in order to keep the data coherent.
Thus, we have implemented a simple kernel that implements
this functionality in the GPU and does not block the next
computation steps.

Receivers’ data insertion: The backwards phase of the
RTM algorithm requires exciting the medium with the data
previously gathered by the receivers. The algorithm is the
one used for the shot insertion so the code has been reused.
Furthermore, there can be up to thousands of receivers. Thus,
we take profit of the GPU parallelism and calculate all of
them in parallel.

3) I/O issues: During the backward phase, a correlation
between the forward and backward wavefields must be
performed every n time steps (where n < 10 for an accurate
result). That implies that the forward wavefields for these
time steps have to be accessible in the backward phase. Since
that information takes hundreds of gigabytes of memory, it
must be stored in an external storage system like a hard
drive during the forward phase. In the case of GPUs an
additional transfer between the GDDR and the host memory
is necessary, as the data cannot be directly transferred to
an external device (only possible with peer DMA, which is
not supported in current GPUs). In order to minimize the
performance impact of this data transfer, two measures have
been adopted:
• Data compression: data is compressed in the GPU

memory before being transferred to the host memory
and the to disk. We achieve a 8x size reduction at
the expense of a new computational kernel that takes
1/10th of the stencil computation time.

• Asynchronous I/O (A/IO): we use librt to program
asynchronous transfers to external devices. This allows
overlapping the transfer and the next computation steps.

Figure 8. Using a dedicated thread for disk I/O can be overlapped with
the computation of the next timestep



Withal, some issues are detected in this implementation.
First, the transfer from the GDDRAM to the host memory
is still performed synchronously (thus blocking the next
computation step). Second, the Linux asynchronous API
shows a random behavior across executions, with calls that
immediately return (thus achieving a perfect overlapping
with computation) and calls that block for an amount of
time similar to 20 to 30 computational steps. The solution
is to have a dedicated thread to perform the I/O transfers
asynchronously (from the computation thread’s perspective).
This way, computation can continue without waiting for the
memory transfer from the GDDRAM to the host memory
and the synchronous API (which shows a much more con-
sistent behavior) can be used to transfer data to the external
storage system (Figure 8). In the backward phase the forward
wavefields are read, transferred and decompressed in the
same manner.

4) Memory usage:
Forward: The 3D stencil computation and the boundary

conditions steps only need the current wavefield volume.
However, the velocity model and the two previous wavefields
are also required for the time integration. Additionally a fifth
volume is necessary to store the image illumination. The size
of a wavefield volume depends on the dimensions of the
field and need an additional ghost area in each dimension
to calculate the 3D stencil (Equation 3). The velocity model
and the illumination volume, on the other hand, do not need
the ghost area (Equation 4).

v(z, x, y, s) = (z+ 2 ∗ s) ∗ (x+ 2 ∗ s) + (y+ 2 ∗ s) ∗ 4 (3)

v′(z, x, y) = z ∗ x ∗ y ∗ 4 (4)

The compression buffer used for the correlation step must
be also taken into account (Equation 5).

c(z, x, y, s) =
v(z, x, t, s)

8
(5)

f(z, x, y, s) = 3 ∗ v(z, x, y, s) + 2 ∗ v′(z, x, y) + c(z, x, y, s)
(6)

Backward: The three wavefields and the velocity model
are needed again to solve the Partial Differential Equation.
The illumination volume is replaced by another one used to
perform the correlation that contains the wavefields previ-
ously stored in disk during the forward phase. Additionally,
the information of the receivers (Equation 7) is also stored
in the GDDRAM.

rcv(t) = (9 + t) ∗ 4 (7)

g(z, x, y, s, r, t) = f(z, x, y, s) + r ∗ rcv(t) (8)
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different wavefield (cubic) dimensions. Numbers computed for a number
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Summary: RTM requires a huge amount of data in
order to work with the wavefield dimensions used in real-
world problems. As we can see in Figure 9 that the forward
and backward phases a similar amount of memory as the
size needed to store the data from the receivers depends on
the number of simulated timesteps and not on the wavefield
size. We also see that even the latest NVIDIA HPC devices
cannot handle shots of sizes greater than 1000x1000x1000.
In this paper, we use wavefields that fit entirely in the GPU
GDDRAM to test our implementation. An implementation
that uses multiple GPU devices and/or uses other techniques
to compute full-sized problems is left as future work.

VI. PERFORMANCE EVALUATION

In this section we provide incremental performance re-
sults, from kernel to a complete RTM execution. For sake
of clarity, we discuss separately three distinguishable bench-
marks: kernel, I/O and RTM as a whole. The experiments
setup is common for all selected architectures, this in terms
of number of steps, computational domain sizes and number
of experiments repetitions. The latter is particular important
to avoid spurious operating system events.

A. Kernel Benchmarking

The following results are focused on the performance of
the computation of the PDE solver (basically stencil and time
integration), and ABC computation. This section reported
execution times do not include: I/O time and initialization
delays.



As can be observed in Tables II and III, the GPU based
version of the RTM kernel outperform the homogeneous
versions, up to 14x against the PowerPC, and up to 9x
against the Xeon.

PowerPC Xeon GTX 280
Algorithm Time Time Time GPU gain per

[s] [s] [s] iteration

kernel 0.228 0.146 0.016 14.3, 9.0
kernel + ABC 0.301 0.183 0.026 11.6, 7.1

Table II
PERFORMANCE RESULTS FOR THE RTM KERNEL IMPLEMENTATIONS,

IN TERMS OF ITERATION ELAPSED TIME. EXPERIMENTS WERE CARRIED
OUT FOR A 3523 DATA SET

PowerPC Xeon GTX 280
Algorithm Perform. Perform. Perform. GPU

[GFlops] [GFlops] [GFlops] gain

kernel 8.01 12.53 113.35 14.1, 9.0
kernel + ABC 6.02 10.17 69.39 11.6, 7.1

Table III
PERFORMANCE RESULTS FOR THE RTM KERNEL IMPLEMENTATIONS,

IN TERMS OF ARITHMETIC THROUGHPUT PER SECONDS. SAME
EXPERIMENTAL SETUP OF TABLE II

From Tables II and III, it is also possible to deduce that
the ABC computation, in average, punishes the performance
in 20% for the homogeneous versions, but up to 40% to the
GPU version. The reason behind this is the cost of moving
not fully continuous pieces of data between the memory of
host to the GPU, and the fact that even when the data is in the
GPU memory the computation of those ABC areas impede
a full parallel treatment thread-wise. The results expose the
two main limiting factors for most algorithms mapping to
GPU, and in particular for our case, the bandwidth utilization
and the efficient exploitation of GPU parallelism.

B. I/O Benchmarking

As initially mentioned in Section II, the RTM implemen-
tations demand huge amount of I/O effort, this is mainly
because wavefields are stored for every iteration of the for-
ward sweep, then restored in every iteration of the backward
sweep, this mechanism enables the correlation task that at
the end produces the final image. In Figure 10 we can
observed the performance of the implementations with the
I/O mechanism active. As it is expected, the performance of
the RTM versions is greatly affected (top figure), just to keep
in mind, the elapsed time for the same experiment without
I/O is for the homogeneous architecture versions around 60
seconds, and for the GPU is 12 seconds.

Fortunately, as mentioned in Section V-C3, and thanks to
numerical properties of the mathematical scheme, a trade-
off is exposed, where wavefield store frecuency is traded
for quality of the resulting seismic image. This allows to
store fewer number of wavefields with minimal loss of image
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Figure 10. The experimental setup correspond to a data set size of
3523, 300 forward iterations, and kernel + ABC computations. Top graph
shows the complete set of experimental results. Bottom graph shows a
detailed section of the former, where we can observe the behavior of the
implementations in the 5–10 skipped iterations range, the most widely used.

quality, but this also means that the stores are separated by a
fixed number of iterations. Regarding the geophysical model,
the number of skipped iterations range between 5 and 10.
As our experiments (Figure 10) show, the deployment of
this trade-off shows a substantial performance improvement,
in particular when is accompanied by the utilization of



AI/O. For instance, elapsed time gains when the skipped
iteration is set to 5 are: 2.2x for Xeon, 2.6x for PowerPC
and 4.6x for GPU. In the GPU case is particular important
due to strong relation between bandwidth (host – device)
and overall performance.

Results (Figure 11) show a good load balance among the
threads, in particular for these traces of the PowerPC version
of RTM. The top trace graph shows multiple iterations of
the algorithm (forward and backward sweeps). The detailed
trace graph (bottom Figure 11) shows the initialization of
the AI/O, and the rest of I/O is completely overlapped with
computation. As mentioned in Sections IV,V-C3, along the
AI/O deployment, we introduce a compression algorithm,
which for itself reduces up 10% the execution time.

C. Complete RTM Benchmarking

We have also run the complete RTM kernel in order to
fully compare the three platforms to take into account the re-
maining computation and the I/O transfers needed to perform
the correlation in the backwards phase. The GPU version
needs an additional transfer from the GDDRAM to the host
memory to be able to write the data to the disk. Thus,
its performance loss is greater than that for homogeneous
processors. However, as we can see in Table IV, it is still
7.5× faster than the PPC version and 6.7× faster than the
Harpertown version. It is Important to remark that the global
performance follows Amdahl’s law, but not all RTM taks
scale alike, this partially explains the performance loss from
just the kernel experiments to the complete RTM executions.

PowerPC Xeon GTX 280
Experiments Time Time Time GPU gain

[s] [s] [s]

F500B700S10 326.95 253.58 40.05 8.16, 6.33
F1400B2500S10 998.51 886.55 131.97 7.57, 6.72

Table IV
PERFORMANCE RESULTS FOR THE RTM IMPLEMENTATIONS RUNNING

COMPLETE EXECUTIONS OF THE ALGORITHM. EXPERIMENT
F500B700S10, STANDS FOR 500 FORWARD ITERATIONS, 700

BACKWARD ITERATIONS AND THE CORRELATION DISTANCE IS 10
ITERATIONS. EXPERIMENT F1400B2500S10, STANDS FOR 1400

FORWARD ITERATIONS, 2500 BACKWARD ITERATIONS AND THE SAME
CORRELATION DISTANCE. THE DATA SET SIZE USED IN THE

EXPERIMENTS IS 3523

Finally, we provide a comparative table that relates com-
putational performance with energy consumption. This is an
important issue when a platform is assessed for HPC.

In Table V can be observed that the GPU implemen-
tation features an energy efficiency corresponding to 0.36
GFlops/W, which is 12× higher than the JS21 and 3× than
the Altix.

VII. CONCLUSIONS

We have presented an optimized software design, based
on the CUDA GPGPU programming model, for the RTM

Platform Avg. Arithmetic Energy
Power Throughput Efficiency
[W] [GFlops] [GFlops/W]

JS21 257 8.01 0.03
Altix 120 12.53 0.10

GPU system 236 + 75 113.35 0.36

Table V
COMPARISON BETWEEN A JS21, ALTIX AND GPU SYSTEMS IN TERMS
OF POWER EFFICIENCY. THE GPU SYSTEM (GPU + HOST) FEATURING
A NVIDIA GTX 280 SHOWS SIGNIFICANTLY BETTER VALUE, UP TO

0.36 GFLOPS/W

seismic imaging algorithm. Our implementation shows, run-
ning on a NVIDIA GTX280 card, up to a 14.1× speedup
when compared against a reference traditional multi-core
platforms based on a PowerPC 970MP and Xeon proces-
sors. Furthermore, our implementation features an energy
efficiency corresponding to 0.36 GFlops/W, which is up to
12× higher than the reference.

Our implementation shows that running RTM on GPUs is
a viable solution for everyday use in industrial-size deploy-
ments. Moreover, it proves that the GPU inherently parallel
architecture has the potential to be the leading architecture in
the scientific computing in terms of performance and energy-
efficiency.

Future developments will focus on further optimizations,
support for bigger problem sizes, and developing a system-
scale parallelization to support multiple NVIDIA devices
which exploits efficiently the intra/inter-blade interconnect.
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