
Use of Backpropagation and Differential Evolution
algorithms to training MLPs

Luiz Carlos Camargo, Hegler Correa Tissot, Aurora Trinidad Ramirez Pozo
Departamento de Informática (INF)

Universidade Federal do Paraná (UFPR)
Curitiba, Paraná, Brasil

{lccamargo, hctissot, aurora}@inf.ufpr.br

Abstract. Artificial Neural Networks (ANNs) are often used

(trained) to find a general solution in problems where a pattern

needs to be extracted, such as data classification. Feedforward

(FFNN) is one of the ANN architectures and multilayer

perceptron (MLP) is a type of FFNN. Based on gradient

descent, backpropagation (BP) is one of the most used

algorithms for MLP training. Evolutionary algorithms can be

also used to train MLPs, including Differential Evolution (DE)

algorithm. In this paper, BP and DE are used to train MLPs

and they are both compared in four different approaches: (a)

backpropagation, (b) DE with fixed parameter values, (c) DE

with adaptive parameter values and (d) a hybrid alternative

using both DE+BP algorithms.

Artificial Neural Network; Multilayer Perceptron;

Backpropagation (BP) algorithm; Differential Evolution (DE)

algorithm.

I. INTRODUCTION

Artificial Neural Networks (ANNs) are often used to
detect trends that are too complex to be perceived by
humans. ANNs are specially used to find a general solution
to in problems where a pattern needs to be extracted, such as
data classification. The main difficulty to apply ANN in
some domain problem is to train the ANN to learn and
predict. ANN provides different ways to solve many
nonlinear problems that are hard to solve by conventional
techniques. Good solutions for these problems can be found,
but they depend on the training strategy adopted. Many
algorithms are applied for the minimization and
improvement of ANN learning. Theses algorithms can be
classified into local minimization and global minimization.
Local minimization algorithms, such gradient descent, are
fast, but converge for local minima. On the other hand,
global minimization algorithms use heuristic strategies to
escape local minima [1].

Evolutionary algorithms [2] can help to avoid the
problem of convergence to local minima and exploit global
minimization techniques. Some evolutionary algorithms
which can use such global strategy on ANN training are: the
differential evolution (DE) algorithm [3], [5]; particle swarm
optimization (PSO) algorithm [6]; ant colony optimization
(ACO) algorithm [11]; and artificial bee colony (ABC)
optimization [12].

Regardless of the algorithm used to train ANN, attention
to weight values initialization and adjustment is fundamental
for convergence and to avoid overfitting, a problem that
usually happens in training patterns [I]. Specialized learning
algorithms are used to adjust the weight values [5], and one
of the most popular is error backpropagation (BP) [13], [14].
BP, based on gradient method, is efficient to train ANNs to
solve hard problems. However, this algorithm is sensitive on
local minima and requires a learning coefficient adjustment.
When the chosen learning coefficient is too small or too
high, it causes oscillations on the algorithm. Therefore,
satisfactory results require a huge number of iterations [5].

As an alternative, evolutionary algorithms can be applied
to search the weight of a FFNN escaping from local minima
[3], [9].

Regarding the use of other evolutionary algorithms, the
use of differential evolution (DE) algorithm was motivated
by the chance of verifying and validating some DE inherent
characteristics, such as its ability to reach a global minima of
objective function, quick convergence, and a small number
of parameters to be set up still with the possibility to adapt
some of these parameters during the execution.

This paper describes and compares the results obtained in
ANN training with different algorithms, datasets and
parameters. To support this experiment, two algorithms in
four different approaches were used: (a) backpropagation
algorithm, (b) DE algorithm with fixed parameter values, (c)
DE algorithm with adaptive parameter values and (d) a
hybrid alternative using both algorithms.

This article is organized as follows: Section II is a brief
presentation of feedforward neural network (FFNN) and
multilayer perceptron (MLP); in Section III, Differential
Evolution algorithm and its pseudocode are explained;
Section IV describes Backpropagation algorithm in ANN
training process; Section V, some related work, in Section
VI, experiment description and results are shown; in Section
VII concludes the paper.

II. FEEDFORWARD NEURAL NETWORKS (FFNN)

A Feedforward Neural Network (FFNN) is formed by
interconnecting process units known as neuron (or nodes),
and has the natural tendency to store experiential knowledge
and to make it available for use [4]. Thus, they can exhibit
basic characteristics of human behaviour such as: learning,
association and generalization.

Basically, there are two kinds of FFNN: single-layer
perceptron (SLP), and multilayer perceptron (MLP). The
SLP networks consist of a single layer of output nodes,
which are fed directly by input layer via a set of weights.
MLP networks consist of multiple layers: an input layer, one
or more hidden layers and an output layer. Each layer has
nodes and each node is fully weighted interconnected to all
nodes in the subsequent layer. The MLP transforms inputs to
outputs through of nonlinear function as:

(1)

where f() is the activation function of the oth output neuron,
xh is the output of hth hidden layer neuron and wh,o is the
interconnection between hth hidden layer neuron and oth
output layer neuron. H is the hidden layer size. Normally, the
sigmoid function is most used as the activation function; it is
given as follows [15]:

The activation function is applied in the hth hidden layer

node. In the same way, it is also applied in the oth output
layer node. Based on the differences between calculated
output and the target value an error is defined as follows
[15]:

where N is the number of patterns in data set, L is the

number of output nodes, is the desired output value in
the oth output neuron for the sth sample in data set, is
the calculated output value in the oth output neuron for the
sth sample in data set. The aim is to reduce the error E by
adjusting interconnections (weights) between layers. Input
and hidden layers can be set with an additional node called
bias. Bias is a neuron in which its activation function is
permanently set to 1. Just like other neurons, the bias is also
weighted connected to the neurons in the subsequent layer.
In Fig.1, a MLP model used in this paper is shown.

Figure 1. MLP Model

According to Fig.1, bias receives a value equals to 1; wh
are weights for all connections between input layer and the
hidden layer; wo are weights for all connections between
hidden layer and the output layer; xo is the sigmoid function
used as activation function for hidden and output layers;
finally, E is a function that computes MLP error, comparing
output layer result with target values.

III. DIFFERENTIAL EVOLUTION (DE) ALGORITHM

Developed in 1997 by Kenneth Price and Rainer Storm
[5], DE algorithm has been successfully applied for solving
complex problems in engineering, reaching very close
optimum solutions. DE can determine the size of mutation
largely based on the current variance in the population,
because it has mechanisms for adaptive mutation. For each
member i a new child is generate by picking three
individuals from the population and performing some vector
additions and subtractions among them. The idea is to mutate
away from one of the three individuals () by adding a vector
to it. This vector is created from the difference between the
other two individuals () – (). If the population is spread out
() and (), are likely to be far from one another and this
mutation vector is large, else it is small. If the population is
spread throughout the space, mutations will be much bigger
than when the algorithm has later converged on fit regions of
the space. The child is then crossed over with [2].

DE is described as a stochastic parallel search method,
which utilizes concepts borrowed from the broad class of
evolutionary algorithms (EAs) [6]. DE, like other EAs, is
easily parallelized due to the fact that each member of the
population is evaluated individually [6]. DE is good and
effective in nonlinear constraint optimization and is also
useful for multimodal problems optimization [7]. The
advantages over traditional genetic algorithm are: easy to
use; efficient memory utilization, lower computational
complexity and lower computational effort [7].

Moreover, DE meets fully the requirements [2] [7]:
a) Capacity to handle non-differentiable, nonlinear and

multimodal cost functions;
b) Parallelizability to cover computation intensive cost

functions;
c) Few control variables to manage the minimization,

which are robust and easy to choose;
d) Compatible convergence to the global minimum.

The Figure 2 shows a typical implementation of DE,

which represents a population as a vector and not a
collection. DE always uses vector representations for
individuals.

(2)

(3)

Figure 2. DE Algorithm, adapted from [2]

According to pseudocode, after creating initial population
(P), element fitness must be calculated (line 10) and
compared one to others to choose the best element in the
population (lines 13-14). For each element in population a
child d is created combining three other elements randomly
chosen (lines 17-20). Crossover is applied between child and
its parent and one of the result elements Pi is chosen (line
21). Chosen elements are then compared to its parents and
can replace them when children fitness is better than their
parents (lines 11-12). F is the mutation rate parameter and
scales the values added to the particular decision variables b
and c (line 20). CR represents the crossover rate, used to
combine weights between each parent and its child (line 21).
F ϵ [0, 1] and CR ϵ [0,1] are determined by the user.

Therefore, the DE algorithm prevents the solution
downside at a local extreme of the optimization function. In
the DE algorithm the selection operator is efficient and fast,
because it uses only two individuals (line 21) [5].
Application of DE for training of ANNs has been used in
efficient manner with or without adaptive parameters (F and
CR) [3], [9], [16], [17]. However, parameters tuning is a
problem on ANN training, since F and CR can get fixed
values or values from an adaptive function. User must decide
over the manner of carrying the parameters F and CR.
Besides defining parameters F and CR for mutation and
crossover, DE also uses a tournament selection where the
child vector competes against of its parent.

Figure 3 shows the typical behaviour of training
evolution with global search methods (DE): (a) shows the
improvement of both training and validation fitness in one of
the selected best MLPs; (b) and (c) show how training and
validation fitness evolutes in a 50-sized MLP population
along 500 generations.

(a) MLP training (blue) and validation (red) fitness evolution.

(b) Training fitness evolution of MLP population.

(c) Validation fitness evolution of MLP population

Figure 3. Typical MLP training process with global search method

IV. BACKPROGAGATION (BP)

In supervised learning, training is performed by
presenting a large set of examples, called the training set, to
the network. Each example consists of a set of inputs
presented to the input layer and the respective set of desired
outputs presented to the output layer. Although training an
ANN can be time-consuming, once this stage is successful
completed, the input-output mapping is evaluated almost
instantaneously. However, care must be taken to use an
adequate training set, representative of the sampling space.
In many cases this is not feasible, and the sampling space
must be restricted to a specific sub-domain. This means that
ANNs are best applied to specific well and defined problems
[18].

When using a MLP to solve a problem, the first activity
is to train the MLP. Training depends on a strategic to
choose initial weights and usually applies gradient learning
algorithms to adapt weight values. Among these algorithms,

1: F ←←←← mutation rate

2: CR ←←←← crossover rate

3: P ←←←← {} (Empty population of length popsize)

4: Q ←←←← {} (Empty population of length popsize)

5: for i from 1 to popsize do

6: Pi ←←←← new random individual

7: Best ←←←← {}

8: repeat

9: for each individual Pi ∈∈∈∈ P do

10: AssessFitness(Pi)

11: if Q ≠ {} and Fitness(Qi) < Fitness(Pi)

then

12: Pi ←←←← Qi

13: if Best={} or Fitness(Pi) <

 Fitness(Best) then

14: Best ←←←← Pi

15: Q ←←←← P

16: for each individual Qi ∈∈∈∈ Q do

17: a ←←←← Copy (Qrand1) (Qrand1 ≠ Qi)

18: b ←←←← Copy (Qrand2) (Qrand2 ≠ Qi,a)

19: c ←←←← Copy (Qrand3) (Qrand3 ≠ Qi,a,b)

20: d ←←←← a + F (b – c)

21: Pi ←←←← one child from

 Crossover(d,Copy(Qi))(CR)

22: until Best is the ideal solution or timeout

23: return Best

error backpropagation (BP) method is one of the most used.
In BP, the weight adjustment starts in the output nodes,
where the measure of the error is available, and proceeds
backpropagating this error through the previous layers.

Proposed in 1986 by Rumelhart, Hinton and Willian, the
error backpropagation method [10] is a learning procedure
for multilayered feedforward neural networks. Basically the
learning procedure is ruled in vectors, which are mapped as a
set of inputs to a set of outputs. The mapping is specified by
giving the desired activation state of output values for each
presented state of input values.

 Learning is carried out by iteratively adjusting the
weights in the network so as to minimize the differences
between the actual output state vector of the network and the
target state vector. The network is initialized with random
weights. During the learning process, an input vector is
presented to the network and is propagated forward to
determine the output signal. Next the output vector is
compared with the target vector resulting in an error signal,
which is backpropagated through the network in order to
adjust weights. This process is repeated until the network
responds for each input vector with an output vector that is
sufficiently close to the desired one [13], [10]. In such
process the activation of outputs is usually carried out by
sigmoid function.

BP is a method based in gradient descent, that means BP
does not assure to find a global minimum and can get stuck
on local minima, where it will stay indefinitely. However BP
is popular and widely used on ANN training.

Figure 4 shows the typical behaviour of training
evolution with local search methods (BP): (a) shows Best the
improvement of both training and validation fitness I one of
the selected best MLPs – overfitting can be observed after
cycle 180; (b) and (c) show how training and validation
fitness evolutes in a 50-sized MLP population along 500
training cycles. Differences of local and global searches
applied in MLP training can be clearly observed when
comparing Figure 3 and Figure 4.

(a) MLP training (blue) and validation (red) fitness evolution

(b) Training fitness evolution of MLP population

(c) Validation fitness evolution of MLP population

Figure 4. Typical MLP training process with local search method

V. RELATED WORK

The use of evaluative algorithms has excelled to problem
solving that requires space of global search optimization in
several types problems. Theses algorithms have also been
used to train ANNs, for example, DE algorithm. In 2003
Ihonen at al. [3] found in their experiments that the features
of DE facilitate the training artificial neural networks, mainly
because of the convergence of the solution is faster and more
flexible maintenance of tuning parameters.

Slonik and Baiko [5] used the DE in training the FF
neural network for the classification problem parity p. The
results were compared with results of BP algorithm and with
two more approach results: EA-NNT method [5] and LM
Leven-Marquart algorithm [21]. However, in this
comparison, DE proved a good alternative, primarily for data
classification. In an attempt to increase the use of DE in
ANNs FF training, Slonik [9] combined the selection of the
adaptive parameters with the multiple vector technique and
comparing the results obtained to the results of the three
approaches:BP, EA-NTT and LM, the results were
satisfactory from DE, but the memory consumption was very
high in comparison to other approaches.

Yang et al. [26] have used DE and BP for the prediction
of surface roughness in turning operations. The results
obtained from the DE-based ANN model were compared
with the BP-based ANN. The error percentage is very close
in both cases, but the convergence speed using DE is higher
than using BP.

Donate et al. [27] have evaluated different methods to
evolve neural networks architectures in timeseries
forecasting, comparing differential evolution (DE) and

genetic algorithms. DE reached better after 200 generations
due to the larger variation in population leads to more varied
search over solution space.

Recently the research of Kawan and Mansor [23] applied
the Evolutionary Algorithms: Cuckoo Search (CS) [24], PSO
and Guaranteed Convergence PSO [25] (CGPSO is a variant
of PSO) in an experiment for the problem of training the
MLP with objective of minimizing the quadratic error. As in
this paper, Kawan and Mansor also used the dataset of UCI
machine learning repository in their experiments. The result
showed that CS had the advantage upon PSO and GCPSO.

VI. DESCRIPTION OF EXPERIMENTS

In this experiment, five different databases were used for
MLP training. With the objective of comparing results
obtained from different MLP training approaches:
backpropagation (BP), two variations of DE algorithm, and
also a hybrid combination of such algorithms were used.

A. Databases and MLP Configurations

The databases used for MLP training in this experiment
are as follow1 [19]: Cancer (Breast Cancer Wisconsin
Original Data Set), Diabetes (Pima Indians Diabetes Data
Set), Glass (Glass Identification Data Set), Heart (Statlog
Heart Data Set).

Each database was divided in 3 groups of instances, each
one corresponding to training set, validation set, and testing
set. These groups were set up with different sizes depending
on the database as shown in Table I.

This in division was established a proportion of 50% to
training dataset 25% to validation dataset and 25% to testing
dataset, except to diabetes database in which the division was
33% to three instances.

TABLE I. TRAINING, VALIDATION AND TESTING SET INSTANCES

Database
Number of Instances

Training Validation Testing

Cancer 347 176 176
Diabetes 256 256 256

Glass 128 43 43
Heart 134 68 68
Iris 74 38 38

In the whole experiment some configurations were used

by default. For all approaches, the MLPs were initialized
with random weights between [-1, +1]. A hidden layer with
different size was defined for each database. Cancer and
heart databases used MLPs with 5 nodes in hidden layer.
Diabetes, glass, and iris databases used MLPs with 10 nodes
in hidden layer. Hidden and output nodes were connected to
a bias with value 1. Connections between bias and all nodes
were also weighted with random values between [-1, +1].

B. Training Approaches

Each database was used on the training process of a MLP
population. We used 2 different population sizes (50 and

 1 http://archive.ics.uci.edu/ml/datasets.html

200), and for each population size, MLPs were trained with 4
different approaches, using 2 different algorithms:

• BP: backpropagation algorithm was used in each
MLP and the best MLP element in the population
was selected, considering the training cycle with best
pair of training and validation fitness.

• DE with fixed parameters: as recommended in
literature [22], the values of parameters F = 0.8 and
CR = 0.5 were chosen.

• DE with adaptive parameters: F and CR were
recalculated after each generation – 6 techniques
were tested to select the method we consider more
appropriate, and these techniques are described in
session C.

• Hybrid DE+BP: DE with adaptive parameters was
combined to BP, with the objective to join
characteristics found in each one of these algorithms,
i.e., the DE global search refined by the BP local
search after each DE generation evolution. Fig. 3,
shows part of DE algorithm (extract from Fig. 3)
with a hybrid variation using backpropagation to
local search over each global search improvement
caught by DE. A BP call was added (lines 12a and
12b) every time a child Pi is generated and replaces
its parent Qi in the population. Backpropagation runs
up to maximum of 10 cycles and stops when Pi gets
fitness improvement comparing to original Pi fitness
generated by DE crossover

8: …

9: for each individual Pi ∈∈∈∈ P do

10: AssessFitness(Pi)

11: if Q ≠ {} and Fitness(Qi) <

 Fitness(Pi) then

12: Pi ←←←← Qi

12a: else

12b: BackPragation(Pi);

13: if Best={} or Fitness(Pi) <

 Fitness(Best) then

14: Best ←←←← Pi

15: Q ←←←← P

16: …

Figure 5. Partial hybrid DE algorithm with backpropagation

The evolution of each MLP element in the population is
based only on the training fitness, but to select the best MLP
to be used on the final testing phase, not only the training
fitness was considered, but also the validation fitness. To be
replaced for a new best MLP, the candidate MLP must have
training and validation fitness both better than the
corresponding ones in current best. Fig. 4, shows the MLP
evolution of training fitness (blue) and validation fitness
(red) along the maximum of 500 generations. Generation 187
was green lighted because it presented the best combination
of training and validation fitness. Even better training fitness
can be observed on next generations, there is no validation
fitness improvement.

Figure 6. Best MLP Training Evolution

C. Adaptive Parameters Techniques for DE

As part of this experiment, we needed to select a method
for dynamically changing F and CR parameters along the
training process, We tested 6 different combinations of
techniques, all with a population of 50 MLPs and using heart
database. Partial results were compared and analyzed, and
finally we chose the technique considered more appropriate
to run as DE with adaptive parameters approach.

In a global adaptive adjustment of F and CR, these
parameters are recalculated after each generation [9]. The A
factor is used to identify the level of improvement each
generation has in best partial fitness. [9] suggests A to be
calculated as the ratio between the current generation (i) best
fitness and the best fitness got in the previous generation (i-
1), and then compute a new F and CR based on A and a
random number chosen from 0 and 1. The new calculated
values of F and CR are then applied for all MLP elements in
population in the next generation.

Other techniques to adapt F and CR parameter were
evaluated: a) adaptive element, where F and CR are
computed for each element in the population; b) element
adaptive with reduction factor, where a reduction factor of
0.5 is applied to A (A = A * 0.5) for each generation in that
no improvement is reached on best fitness; c) global adaptive
using best, where the best MLP in population is forced to be
used in the linear combination; d) global adaptive using
multiple vectors, where a vector of “n” candidates is
randomly generated to choose one candidate to crossover (a
vector of size 5 was used to test this approach) [9]; and e)
element adaptive using best and reduction factor, that
combines two of the techniques mentioned previously.

To compare the results of these 6 different techniques
that calculate adaptive F and CR parameters, training and
validation sets of heart database were used to measure not
only the fitness, but also other parameters as: best training
fitness, best validation fitness, generation which best fitness

is found, scores of right answers using best MLP found with
the validation set of instances, and cover rate considering a
trust rate in the answers.

The approach “global adaptive with best and multiple
vectors” had the best score in evaluation, but it shows an
overload in CPU usage. Therefore, we decided to choose the
second best approach, which is the one using only global
adaptive parameters.

D. Comparing BP and DE approaches

BP, DE with fixed parameters, DE with adaptive
parameters and a hybrid approach combining DE and BP
were executed for each selected database, with populations
of 50 and 200 individuals. The results were compared with
different criteria as follow:

• Best Fitness Generation: tendency to reach the best

fitness between the approaches BP, DE and BP+DE.
• CPU Usage: According to the training stop criterion

previously defined, each population training
execution could reach from 200 to 500 cycles or
generations. CPU usage is a criterion that shows
differences between how fast approaches can reach
desired results the bests;

• Best Fitness: selection of best MLP considered both
training and validation fitness as a criteria, as
explained before (Fig. 6). Best fitness is the
combination of training fitness and validation fitness
obtained from the MLP chosen as best MLP during
the training process;

• Testing Best MLPs: best MLPs were executed over
testing group of instances for each database set. To
demonstrate results obtained, some concepts used to
calculate each MLP score: a) Trust Rate: responses
obtained from MLP output layer nodes are given by
float numbers between 0 and 1; desired answers are
registered on databases as exactly 0 or 1 values for
each instance class; de trust rate determines the
degree of confidence that MLP output values should
be considered as valid response to a positive
classification; in the table below, trust rate used was
70%, which means only responses greater or equal to
0.7 were considered; b) Cover Rate: for some
specific instances, MLP output values can be less
than Trust Rate; in these cases, such instances are
not covered by trust in their responses; Cover Rate
means the number of instances which answers match
Trust Rate over the total of instances considered in
the MLP test; and c) Score: even when MLP outputs
an answer that matches Trust Rate, it does not
necessarily means the answer is right; MLP could
classify an instance as if it belongs to Class1 with
99% of confidence when actually instance belongs to
Class2; score measures the number of right answers
given by the MLP comparing to desired answers
registered on database, only based instances that
match Rebiality Rate.

(4)

(5)

(6)

(a) Population size = 50

(b) Population size = 200

(b) Population size = 200

(a) Training Fitness for Population size = 50

(b) Training Fitness for Population size = 200

E. Results

According with Best Fitness Generation criteria, the
Table II shows DE tends to take more time than BP to reach
the best fitness (considering the generation number). When
BP is combined with DE in the hybrid alternative, there is a
tendency that the best fitness is reached before than in the
solutions using only DE.

TABLE II. BEST FITNESS GENERATION

Because of backpropagation is not exactly an evolution

algorithm, we used a group of independent MLPs and
selected the best MLP from this group after the training
processes finishes. The number of MLPs being trained with
BP was the same of population size used with DE. The
maximum of 500 cycles for BP and 500 generations for DE
were defined as timeout in the training process. However,
when 200 cycles or generations are reached with no
improvement on best, the training process also finishes.

According to the CPU usage criteria, Table III shows that
BP is faster than DE approaches for all selected databases.

TABLE III. CPU USAGE

Approach
CPU Usage (minutes)

Cancer Diabetes Glass Heart Iris

BP 33 41 36 34 25

DE fixed 56 216 131 97 40

DE adaptive 81 174 168 78 151

DE + BP 58 47 38 64 35

 (a) Population size = 50

Data presented in Table III were obtained after one
execution of each algorithm and variation. Next, we chose 3
databases (glass, heart and iris) to be executed 10 times with
BP and DE+BP approaches and with a population size of 50.
Table IV shows the average and standard deviation of CPU
usage. Values are similar to the ones obtained previously
with only one execution, and confirm that BP is relative
faster than approaches using DE.

TABLE IV. AVERAGE AND STANDARD DEVIATION CPU USAGE

According to the best fitness criteria obtained from the

best MLP chosen along the population training process for
each database, each population size and each algorithm
approach, results can be compared in Table V. Best training
and validation fitness for each database was bold
highlighted.

TABLE V. BEST TRAINING VALIDATION FITNESS (FROM BEST MLP)

Approach
CPU Usage (minutes)

Cancer Diabetes Glass Heart Iris

BP 53 76 65 59 26

DE fixed 184 343 196 185 82

DE adaptive 236 365 139 293 36

DE + BP 174 165 116 187 37

Databases
Best Fitness Generation

BP DE DE+BP

Cancer 63 307 92

Diabetes 31 113 103

Glass 59 49 155

Heart 288 95 225

Iris 152 184 101

Databases

Best Fitness Generation

BP DE DE+BP

Cancer 276 134 26

Diabetes 3 453 320

Glass 7 282 130

Heart 231 184 53

Iris 53 480 122

Approach
CPU Usage (minutes) Standard Deviation

Glass Heart Iris Glass Heart Iris

BP 36 35 13 3,52 2,59 1,14

DE + BP 55 76 17 3,35 2,09 1,14

Algorithm
Training Fitness

Cancer Diabetes Glass Heart Iris

BP 0.003 0.110 0.057 0.018 0.015

DE fixed 0.047 0.169 0.370 0.091 0.140

DE adaptive 0.022 0.166 0.372 0.097 0.100

DE + BP 0.021 0.141 0.176 0.032 0.013

Algorithm
Training Fitness

Cancer Diabetes Glass Heart Iris

BP 0.004 0.110 0.071 0.018 0.015

DE fixed 0.028 0.195 0.367 0.053 0.159

DE adaptive 0.026 0.146 0.297 0.081 0.033

DE + BP 0.020 0.125 0.166 0.049 0.014

(a) Population size = 50

(d) Validation Fitness for Population size = 200

(c) Validation Fitness for Population size = 50

(a) Population size = 50

(b) Population size = 200

BP algorithm reached the best values for training fitness
except for iris database, even considering two different
population sizes, and BP also reached most of best validation
fitness.

Considering test phase of best MLPs, Table VI shows
Scores and Cover Rates obtained from a Trust Rate of 70%.
These measures were calculated after one execution training
for each database, each population size of 50 and 200, and
each algorithm used.

TABLE VI. COMPARATIVE OF SCORES (TRUST RATE = 70%)

On the results shown in Table VI, we can observe that
DE+BP seems to be a little more efficient than using only
BP, but in the statistical results presented in Table VII both
algorithms are equivalent considering scores and BP has a
small advantage compare to DE+BP considering the cover
rate.

Data presented in Table VI were calculated based in only
one execution of each algorithm for each database. To
confirm data obtained we chose 3 databases (glass, heart and
iris) to be executed 10 times with BP and DE+BP
approaches and with a population size of 50. Table VII
shows the average of scores and cover rated calculated from
10 executions.

TABLE VII. AVERAGE SCORES AND COVER RATES

Algorithm
BP DE+BP

Score Cover Score Cover

Glass 71.4 72.0 71.3 65.5
Heart 82.5 92.6 82.2 83.6
Iris 94.74 100 94.75 99.2

Identify the statistic significance between the values that

compose the median score and cover obtained from the
Glass, Heart and Iris bases (Table VII), the statistical method
Kruskal-Wallis was used by way of the R-Commander tool
[20]. Only the values of the average score for the Heart base
presented statistic significance of 0.01341, in other words, p-
value=0.01341.

VII. CONCLUSION

Based on results contained in the Tables II-VII, we can
observe that DE tends to take more time than BP to reach the
best fitness. DE improves the time spent to reach the best
fitness when combined with BP. We can also observed that
the training execution with the BP algorithm takes less time
consuming than DE algorithm. This makes sense since the
DE algorithm needs to create more MLPs instances to
perform a linear combination. Considering training and
validation the fitness, despite the apparent advantage
presented by BP algorithm relative to DE algorithm,
statistical test showed that both algorithms are equivalent to
measured scores, although the BP is better to cover desired
confidence tests. The DE algorithm provides the advantage
of global research and may also be combined with others
algorithms in hybrid solutions for best results. Nevertheless,
this BP algorithm experiment was more efficient to cover the
cases used in test based on the confidence parameter used.
Future work is suggested for testing other hybrid variations
to combine global and local search algorithms and adjust the
parameters used in attempting to find more efficient
solutions for the classification of this data and others.

REFERENCES

[1] Y. Shang and W. W. Benjamin, “Global Optimization for Neural
Network Training”, IEEE Computer, Vol. 29, no.3, pp. 45-54, March
1996.

[2] S. Luke, “Essentials of Metaheuristics”, Department of Computer
Science, George Mason University, Online Version 1.1, January,
2011.

Algorithm
Validation Fitness

Cancer Diabetes Glass Heart Iris

BP 0.024 0.194 0.246 0.094 0.018

DE fixed 0.024 0.204 0.403 0.116 0.117

DE adaptive 0.022 0.177 0.319 0.114 0.034

DE + BP 0.025 0.174 0.262 0.106 0.021

Algorithm
Validation Fitness

Cancer Diabetes Glass Heart Iris

BP 0.021 0.194 0.213 0.094 0.018

DE fixed 0.052 0.195 0.366 0.116 0.126

DE adaptive 0.019 0.181 0.371 0.125 0.093

DE + BP 0.023 0.176 0.253 0.095 0.017

Algorithm
Heart Iris

Score Cover Score Cover

BP 80.3 97.0 94.7 100
DE fixed 67.1 100 96.5 76.3

DE adaptive 83.3 97.0 94.5 97.3
DE + BP 84.1 92.6 94.7 100

Algorithm
Cancer Diabetes Glass

Score Cover Score Cover Score Cover

BP 95.9 99.4 70.2 86.0 81.3 81.6
DE fixed 93.1 100 50.0 4.6 84.6 43.3

DE adaptive 95.2 97.1 100 16.2 89.8 57.8
DE + BP 97.6 98.2 77.2 51.1 86.1 62.1

Algorithm
Cancer Diabetes Glass

Score Cover Score Cover Score Cover

BP 96.5 98.8 81.3 81.6 81.2 74.4
DE fixed 94.1 97.7 83.2 53.5 42.8 16.2

DE adaptive 94.7 97.7 88.8 52.7 75.0 18.6
DE + BP 98.2 95.4 85.8 69.1 62.8 81.4

Algorithm
Heart Iris

Score Cover Score Cover

BP 80.3 97.0 94.7 100
DE fixed 79.7 100 100 50.0

DE adaptive 82.3 100 100 81.5
DE + BP 83.0 95.5 94.7 100

[3] K. Ilonen, Joni-Krisitan and J. Lampinen, “Differential Evolution
Training Algorithm for Feed-Forwar Neural Networks”, Neural
Processing Letters, Kluwer Academic Publishers, Vol.17, No.1 pp
93-105, March 2003

[4] S. S. Haykin, “Redes neurais: principios e prática”, 2ª.ed. Porto
Alegre, RS Bookman, 2001.

[5] A. Slowik and M. Bialko, “Training of Artificial Neural Networks
Using Differential Evolution Algorithm”, IEEE, HIS, pp. 60-65,
Krakow, Poland, May, 2008.

[6] J. Kennedy and R. Eberhart, “Particle Swarm Optimization, Neural
Networks”, IEEE International Conference, Vol. 4, pp. 1942-1948,
1995.

[7] R. Storn and K. Price “Differential Evolution - A simple and Efficient
Heuristic for Global Optimization over Continuous Spaces”, Journal
of Global Optimization, Vol. 11, pp 341-359, Netherlands, 1997.

[8] D. Karaboga and S. Ökdem “A simple and global optimization
algorithm for engineering problems: Diferential Evolution
Algorithm”, Turk J Elec Engin, Vol.12 No.1. 2004.

[9] A. Slowik, “Applications of an Adaptive Differential Evolution
Algorithm With Multiple Trial Vectors to Artificial Neural Network
Training”, IEEE Transactions on Industrial Electronics, Vol. 58, no.8,
pp. 3160-3167 August, 2011.

[10] D. E. Rumelhart, G. E. Hinton and R. J. Williams, “Learning
representations by back-propagating errors”, Nature, Vol. 323 pp
533- 536, October 1986.

[11] C. Blum and K. Socha, “Training feed-forward neural networks with
ant colony optimization: An application to pattern classification”,
HIS`05, Fifth Intern. Confer. on Hybrid Intelligent Systems, IEEE
Computer Society Washington, USA, pp., 233-238, 2005.

[12] D. Karaboga, B. Akay and C. Ozturk, “Artificial Bee Colony (ABC)
Optmization Algorithm for Training Feed-Forward Neural
Networks”, Modeling Decision for Artificial Intelligence, Springer
Berlin/Heidelberg, Vol. 4617, pp. 318-329, 2007.

[13] A. V. Ooyen and B. Nienhuis, Improving the Convergence of the
Backpropagation Algorithm, Neural Networks, vol.5, pp. 465-471,
Pergamon Press, 1992.

[14] D. C. Plaut, S. J. Nowlan and G. E. Hinton, “Experiments on
Learning by Back Propagation”, Carnegie-Mellon University,
Pittsburgh, PA 15213, Technical Report CMU-CS86,126, June 1986.

[15] I. Yilmaz and O. Kaynar, “Multipe regression, ANN (RBF, MLP) and
ANFIS models for prediction of swell potential of clayey soils”,
Expert Systems with Applications, Elsiver Vol.38, pp 5958-5966,
2011.

[16] N. G. Pavlidis, D. K. Tasoulis, V. P. Plagianakos and M. N.Vrahatis ,
“Spiking neural network training using evolutionary algorithms”,
IEEE, Neural Networks, Vol. 4 pp. 2190-2194 Aug., 2005.

[17] H. M. Abdul-Kaner, “Neural Networks Training Basead on
Differentisl Evolution Algorithm compared Other Architectures for
Weather”, I JCSNS International Journal of Computer Science and
Network Security, Vol.9, No.3, pp 92-99, Mar. 2009.

[18] A. Gaspar-Cunha and A. Vieira, “A Multi-Objective Evolutionary
Algorithm Using Neural Networks to Approximate Fitness
Evaluations”, International Journal of Computers, Systems and
Signals, Vol.6, No. 1, pp 18-36, 2005.

[19] A. Frankand and A. Assuncion, “UCI Machine Learning Repository”
http://archive.ics.uci.edu/ml, Irvine, CA: University of California,
School of Information and Computer Science, 2010.

[20] R-Project, “The R Project for Statistical Computing”, www.r-
project.org, June 2012.

[21] D.W Marquardt, “An algorithm for least-squares estimation of
nonlinear parameters”, Journal of the Society for Industrial and
Applied Mathematics, Philadelphia, v. 11, n. 2, p. 431–441, 1963.

[22] J. Tvrd´ık, “Adaptive Differential Evolution: Application to
Nonlinear Regression”. Proceedings of the International
Multiconference on Computer Science and Information Technology
pp. 193–202, 2007.

[23] A. Al. Kawam and N. Mansour, “Metaheuristic Optimization
Algorithms for Traininh Artificial Neural Networks” International
Journal od Computer and Information Tecnology – ISSN: 2279-0764
vol.1, pp. 156-161, November 2012,

[24] XS Yang, S. Deb. “Cuckoo search via Lévy flights”. Proc. of World
Congress on Nature & Biologically Inspired Computing. 2009. pp
210-214.

[25] F. Van den Bergh and A. P. Engelbrecht, “A new locally convergent
particle swarm optimizer”, Proc. IEEE Conference on Systems, Man
and Cybernetics (Hammamet Tunisia), Vol. 3, 6-9 Oct, 2002.

[26] S. H. Yang, U. Natarajan, M. Sekar and S. Palani, “Prediction of
surface roughness in turning operations by computer vision using
neural network trained by differential evolution algorithm” Spring-
Verlag, London, pp.965-971 Apr, 2010.

[27] J. P. Donate, X li, G. G. Sanchez and A. S. de Miguek “Time series
forecasting by evolving artificial neural networks with genetic
algorithms, differential evolution and estimation of distribution
algorithm”, Springer Verlag, London, Neural Comput & Applic, Sep
2011.

