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Abstract. Artificial Neural Networks (ANNs) are often used 

(trained) to find a general solution in problems where a pattern 

needs to be extracted, such as data classification. Feedforward 

(FFNN) is one of the ANN architectures and multilayer 

perceptron (MLP) is a type of FFNN. Based on gradient 

descent, backpropagation (BP) is one of the most used 

algorithms for MLP training. Evolutionary algorithms can be 

also used to train MLPs, including Differential Evolution (DE) 

algorithm. In this paper, BP and DE are used to train MLPs 

and they are both compared in four different approaches: (a) 

backpropagation, (b) DE with fixed parameter values, (c) DE 

with adaptive parameter values and (d) a hybrid alternative 

using both DE+BP algorithms. 

Artificial Neural Network; Multilayer Perceptron; 

Backpropagation (BP) algorithm; Differential  Evolution (DE) 

algorithm. 

I.  INTRODUCTION 

Artificial Neural Networks (ANNs) are often used to 
detect trends that are too complex to be perceived by 
humans. ANNs are specially used to find a general solution 
to in problems where a pattern needs to be extracted, such as 
data classification. The main difficulty to apply ANN in 
some domain problem is to train the ANN to learn and 
predict. ANN provides different ways to solve many 
nonlinear problems that are hard to solve by conventional 
techniques. Good solutions for these problems can be found, 
but they depend on the training strategy adopted. Many 
algorithms are applied for the minimization and 
improvement of ANN learning. Theses algorithms can be 
classified into local minimization and global minimization. 
Local minimization algorithms, such gradient descent, are 
fast, but converge for local minima. On the other hand, 
global minimization algorithms use heuristic strategies to 
escape local minima [1]. 

Evolutionary algorithms [2] can help to avoid the 
problem of convergence to local minima and exploit global 
minimization techniques. Some evolutionary algorithms 
which can use such global strategy on ANN training are: the 
differential evolution (DE) algorithm [3], [5]; particle swarm 
optimization (PSO) algorithm [6]; ant colony optimization 
(ACO) algorithm [11]; and artificial bee colony (ABC) 
optimization [12]. 

Regardless of the algorithm used to train ANN, attention 
to weight values initialization and adjustment is fundamental 
for convergence and to avoid overfitting, a problem that 
usually happens in training patterns [I]. Specialized learning 
algorithms are used to adjust the weight values [5], and one 
of the most popular is error backpropagation (BP) [13], [14]. 
BP, based on gradient method, is efficient to train ANNs to 
solve hard problems. However, this algorithm is sensitive on 
local minima and requires a learning coefficient adjustment. 
When the chosen learning coefficient is too small or too 
high, it causes oscillations on the algorithm. Therefore, 
satisfactory results require a huge number of iterations [5]. 

As an alternative, evolutionary algorithms can be applied 
to search the weight of a FFNN escaping from local minima 
[3], [9].   

Regarding the use of other evolutionary algorithms, the 
use of differential evolution (DE) algorithm was motivated 
by the chance of verifying and validating some DE inherent 
characteristics, such as its ability to reach a global minima of 
objective function, quick convergence, and a small number 
of parameters to be set up still with the possibility to adapt 
some of these parameters during the execution. 

This paper describes and compares the results obtained in 
ANN training with different algorithms, datasets and 
parameters. To support this experiment, two algorithms in 
four different approaches were used: (a) backpropagation 
algorithm, (b) DE algorithm with fixed parameter values, (c) 
DE algorithm with adaptive parameter values and (d) a 
hybrid alternative using both algorithms. 

This article is organized as follows: Section II is a brief 
presentation of feedforward neural network (FFNN) and 
multilayer perceptron (MLP); in Section III, Differential 
Evolution algorithm and its pseudocode are explained; 
Section IV describes Backpropagation algorithm in ANN 
training process; Section V, some related work, in Section 
VI, experiment description and results are shown; in Section 
VII concludes the paper. 

II. FEEDFORWARD NEURAL NETWORKS (FFNN) 

A Feedforward Neural Network (FFNN) is formed by 
interconnecting process units known as neuron (or nodes), 
and has the natural tendency to store experiential knowledge 
and to make it available for use [4]. Thus, they can exhibit 
basic characteristics of human behaviour such as: learning, 
association and generalization.  



Basically, there are two kinds of FFNN: single-layer 
perceptron (SLP), and multilayer perceptron (MLP). The 
SLP networks consist of a single layer of output nodes, 
which are fed directly by input layer via a set of weights. 
MLP networks consist of multiple layers: an input layer, one 
or more hidden layers and an output layer. Each layer has 
nodes and each node is fully weighted interconnected to all 
nodes in the subsequent layer. The MLP transforms inputs to 
outputs through of nonlinear function as:  

    

(1) 

 
where f() is the activation function of the oth output neuron, 
xh is the output of hth hidden layer neuron and wh,o is the 
interconnection between hth hidden layer neuron and oth 
output layer neuron. H is the hidden layer size. Normally, the 
sigmoid function is most used as the activation function; it is 
given as follows [15]: 

 
The activation function is applied in the hth hidden layer 

node. In the same way, it is also applied in the oth output 
layer node. Based on the differences between calculated 
output and the target value an error is defined as follows 
[15]: 

 
where N is the number of patterns in data set, L is the 

number of output nodes,  is the desired output value in 
the oth output neuron for the sth sample in data set,  is 
the calculated output value in the oth output neuron for the 
sth sample in data set. The aim is to reduce the error E by 
adjusting interconnections (weights) between layers. Input 
and hidden layers can be set with an additional node called 
bias. Bias is a neuron in which its activation function is 
permanently set to 1. Just like other neurons, the bias is also 
weighted connected to the neurons in the subsequent layer. 
In Fig.1, a MLP model used in this paper is shown. 

Figure 1.   MLP Model 

According to Fig.1, bias receives a value equals to 1; wh 
are weights for all connections between input layer and the 
hidden layer; wo are weights for all connections between 
hidden layer and the output layer; xo is the sigmoid function 
used as activation function for hidden and output layers; 
finally, E is a function that computes MLP error, comparing 
output layer result with target values.  

III. DIFFERENTIAL EVOLUTION (DE) ALGORITHM 

Developed in 1997 by Kenneth Price and Rainer Storm 
[5], DE algorithm has been successfully applied for solving 
complex problems in engineering, reaching very close 
optimum solutions. DE can determine the size of mutation 
largely based on the current variance in the population, 
because it has mechanisms for adaptive mutation. For each 
member i a new child is generate by picking three 
individuals from the population and performing some vector 
additions and subtractions among them. The idea is to mutate 
away from one of the three individuals ( ) by adding a vector 
to it. This vector is created from the difference between the 
other two individuals ( ) – ( ). If the population is spread out 
( ) and ( ), are likely to be far from one another and this 
mutation vector is large, else it is small. If the population is 
spread throughout the space, mutations will be much bigger 
than when the algorithm has later converged on fit regions of 
the space. The child is then crossed over with  [2].  

DE is described as a stochastic parallel search method, 
which utilizes concepts borrowed from the broad class of 
evolutionary algorithms (EAs) [6]. DE, like other EAs, is 
easily parallelized due to the fact that each member of the 
population is evaluated individually [6]. DE is good and 
effective in nonlinear constraint optimization and is also 
useful for multimodal problems optimization [7]. The 
advantages over traditional genetic algorithm are: easy to 
use; efficient memory utilization, lower computational 
complexity and lower computational effort [7].  

Moreover, DE meets fully the requirements [2] [7]: 
a) Capacity to handle non-differentiable, nonlinear and 

multimodal cost functions; 
b) Parallelizability to cover computation intensive cost 

functions; 
c) Few control variables to manage the minimization, 

which are robust and easy to choose; 
d) Compatible convergence to the global minimum.  
  
The Figure 2 shows a typical implementation of DE, 

which represents a population as a vector and not a 
collection. DE always uses vector representations for 
individuals.  

 

    

(2) 

    

(3) 



Figure 2.  DE Algorithm, adapted from [2] 

According to pseudocode, after creating initial population 
(P), element fitness must be calculated (line 10) and 
compared one to others to choose the best element in the 
population (lines 13-14). For each element in population a 
child d is created combining three other elements randomly 
chosen (lines 17-20). Crossover is applied between child and 
its parent and one of the result elements Pi is chosen (line 
21). Chosen elements are then compared to its parents and 
can replace them when children fitness is better than their 
parents (lines 11-12). F is the mutation rate parameter and 
scales the values added to the particular decision variables b 
and c (line 20). CR represents the crossover rate, used to 
combine weights between each parent and its child (line 21). 
F ϵ [0, 1] and CR ϵ [0,1] are determined by the user. 

Therefore, the DE algorithm prevents the solution 
downside at a local extreme of the optimization function. In 
the DE algorithm the selection operator is efficient and fast, 
because it uses only two individuals (line 21) [5]. 
Application of DE for training of ANNs has been used in 
efficient manner with or without adaptive parameters (F and 
CR) [3], [9], [16], [17]. However, parameters tuning is a 
problem on ANN training, since F and CR can get fixed 
values or values from an adaptive function. User must decide 
over the manner of carrying the parameters F and CR. 
Besides defining parameters F and CR for mutation and 
crossover, DE also uses a tournament selection where the 
child vector competes against of its parent.  

Figure 3 shows the typical behaviour of training 
evolution with global search methods (DE): (a) shows the 
improvement of both training and validation fitness in one of 
the selected best MLPs; (b) and (c) show how training and 
validation fitness evolutes in a 50-sized MLP population 
along 500 generations. 

 

 
(a) MLP training (blue) and validation (red) fitness evolution. 

 

 
(b) Training fitness evolution of MLP population. 

 

 
(c) Validation fitness evolution of MLP population 

 

Figure 3.  Typical MLP training process with global search method 

IV. BACKPROGAGATION (BP) 

In supervised learning, training is performed by 
presenting a large set of examples, called the training set, to 
the network. Each example consists of a set of inputs 
presented to the input layer and the respective set of desired 
outputs presented to the output layer. Although training an 
ANN can be time-consuming, once this stage is successful 
completed, the input-output mapping is evaluated almost 
instantaneously. However, care must be taken to use an 
adequate training set, representative of the sampling space. 
In many cases this is not feasible, and the sampling space 
must be restricted to a specific sub-domain. This means that 
ANNs are best applied to specific well and defined problems 
[18]. 

When using a MLP to solve a problem, the first activity 
is to train the MLP. Training depends on a strategic to 
choose initial weights and usually applies gradient learning 
algorithms to adapt weight values. Among these algorithms, 

1: F ←←←← mutation rate 

2: CR ←←←← crossover rate 

3: P ←←←← {} (Empty population of length popsize) 

4: Q ←←←← {} (Empty population of length popsize) 

5: for i from 1 to popsize do 

6:    Pi ←←←← new random individual 

7: Best ←←←← {} 

8: repeat 

9:    for each individual Pi ∈∈∈∈ P do 

10:       AssessFitness(Pi) 

11:       if Q ≠ {} and Fitness(Qi) < Fitness(Pi) 

then 

12:          Pi ←←←← Qi 

13:       if Best={} or Fitness(Pi) <   

             Fitness(Best) then 

14:          Best ←←←← Pi 

15:    Q ←←←← P 

16:    for each individual Qi ∈∈∈∈ Q do  

17:       a ←←←← Copy (Qrand1) (Qrand1 ≠ Qi) 

18:       b ←←←← Copy (Qrand2) (Qrand2 ≠ Qi,a) 

19:       c ←←←← Copy (Qrand3) (Qrand3 ≠ Qi,a,b) 

20:       d ←←←← a + F (b – c) 

21:    Pi ←←←← one child from   

             Crossover(d,Copy(Qi))(CR) 

22: until Best is the ideal solution or timeout 

23: return Best 



error backpropagation (BP) method is one of the most used. 
In BP, the weight adjustment starts in the output nodes, 
where the measure of the error is available, and proceeds 
backpropagating this error through the previous layers.  

Proposed in 1986 by Rumelhart, Hinton and Willian, the 
error backpropagation method [10] is a learning procedure 
for multilayered feedforward neural networks. Basically the 
learning procedure is ruled in vectors, which are mapped as a 
set of inputs to a set of outputs. The mapping is specified by 
giving the desired activation state of output values for each 
presented state of input values.  

 Learning is carried out by iteratively adjusting the 
weights in the network so as to minimize the differences 
between the actual output state vector of the network and the 
target state vector. The network is initialized with random 
weights. During the learning process, an input vector is 
presented to the network and is propagated forward to 
determine the output signal. Next the output vector is 
compared with the target vector resulting in an error signal, 
which is backpropagated through the network in order to 
adjust weights. This process is repeated until the network 
responds for each input vector with an output vector that is 
sufficiently close to the desired one [13], [10]. In such 
process the activation of outputs is usually carried out by 
sigmoid function. 

BP is a method based in gradient descent, that means BP 
does not assure to find a global minimum and can get stuck 
on local minima, where it will stay indefinitely. However BP 
is popular and widely used on ANN training. 

Figure 4 shows the typical behaviour of training 
evolution with local search methods (BP): (a) shows Best the 
improvement of both training and validation fitness I one of 
the selected best MLPs – overfitting can be observed after 
cycle 180; (b) and (c) show how training and validation 
fitness evolutes in a 50-sized MLP population along 500 
training cycles. Differences of local and global searches 
applied in MLP training can be clearly observed when 
comparing Figure 3 and Figure 4. 

 

 
(a) MLP training (blue) and validation (red) fitness evolution 

 

 
(b) Training fitness evolution of MLP population 

 

 
(c) Validation fitness evolution of MLP population 

 

Figure 4.  Typical MLP training process with local search method 

V. RELATED WORK 

The use of evaluative algorithms has excelled to problem 
solving that requires space of global search optimization in 
several types problems. Theses algorithms have also been 
used to train ANNs, for example, DE algorithm. In 2003 
Ihonen at al. [3] found in their experiments that the features 
of DE facilitate the training artificial neural networks, mainly 
because of the convergence of the solution is faster and more 
flexible maintenance of tuning parameters. 

Slonik and Baiko [5] used the DE in training the FF 
neural network for the classification problem parity p. The 
results were compared with results of BP algorithm and with 
two more approach results: EA-NNT method [5] and LM 
Leven-Marquart algorithm [21]. However, in this 
comparison, DE proved a good alternative, primarily for data 
classification. In an attempt to increase the use of DE in 
ANNs FF training, Slonik [9] combined the selection of the 
adaptive parameters with the multiple vector technique and 
comparing the results obtained to the results of the three 
approaches:BP, EA-NTT and LM, the results were 
satisfactory from DE, but the memory consumption was very 
high in comparison to other approaches.   

Yang et al. [26] have used DE and BP for the prediction 
of surface roughness in turning operations. The results 
obtained from the DE-based ANN model were compared 
with the BP-based ANN. The error percentage is very close 
in both cases, but the convergence speed using DE is higher 
than using BP. 

Donate et al. [27] have evaluated different methods to 
evolve neural networks architectures in timeseries 
forecasting, comparing differential evolution (DE) and 



genetic algorithms. DE reached better after 200 generations 
due to the larger variation in population leads to more varied 
search over solution space. 

Recently the research of Kawan and Mansor [23] applied 
the Evolutionary Algorithms: Cuckoo Search (CS) [24], PSO 
and Guaranteed Convergence PSO [25] (CGPSO is a variant 
of PSO) in an experiment for the problem of training the 
MLP with objective of minimizing the quadratic error. As in 
this paper, Kawan and Mansor also used the dataset of UCI 
machine learning repository in their experiments. The result 
showed that CS had the advantage upon PSO and GCPSO.      

VI. DESCRIPTION OF EXPERIMENTS 

In this experiment, five different databases were used for 
MLP training. With the objective of comparing results 
obtained from different MLP training approaches: 
backpropagation (BP), two variations of DE algorithm, and 
also a hybrid combination of such algorithms were used.  

A. Databases and MLP Configurations 

The databases used for MLP training in this experiment 
are as follow1 [19]: Cancer (Breast Cancer Wisconsin 
Original Data Set), Diabetes (Pima Indians Diabetes Data 
Set), Glass (Glass Identification Data Set), Heart (Statlog 
Heart Data Set). 

Each database was divided in 3 groups of instances, each 
one corresponding to training set, validation set, and testing 
set. These groups were set up with different sizes depending 
on the database as shown in Table I. 

This in division was established a proportion of 50% to 
training dataset 25% to validation dataset and 25%  to testing 
dataset, except to diabetes database in which the division was 
33% to three instances.  

TABLE I.  TRAINING, VALIDATION AND TESTING SET INSTANCES 

Database 
Number of Instances 

Training Validation Testing 

Cancer 347 176 176 
Diabetes 256 256 256 

Glass 128 43 43 
Heart 134 68 68 
Iris 74 38 38 

 
In the whole experiment some configurations were used 

by default. For all approaches, the MLPs were initialized 
with random weights between [-1, +1]. A hidden layer with 
different size was defined for each database. Cancer and 
heart databases used MLPs with 5 nodes in hidden layer. 
Diabetes, glass, and iris databases used MLPs with 10 nodes 
in hidden layer. Hidden and output nodes were connected to 
a bias with value 1. Connections between bias and all nodes 
were also weighted with random values between [-1, +1]. 

 

B. Training Approaches 

Each database was used on the training process of a MLP 
population. We used 2 different population sizes (50 and 

                                                           
 1 http://archive.ics.uci.edu/ml/datasets.html 

200), and for each population size, MLPs were trained with 4 
different approaches, using 2 different algorithms: 

• BP: backpropagation algorithm was used in each 
MLP and the best MLP element in the population 
was selected, considering the training cycle with best 
pair of training and validation fitness. 

• DE with fixed parameters: as recommended in 
literature [22], the values of parameters F = 0.8 and 
CR = 0.5 were chosen. 

• DE with adaptive parameters: F and CR were 
recalculated after each generation – 6 techniques 
were tested to select the method we consider more 
appropriate, and these techniques are described in 
session C. 

• Hybrid DE+BP: DE with adaptive parameters was 
combined to BP, with the objective to join 
characteristics found in each one of these algorithms, 
i.e., the DE global search refined by the BP local 
search after each DE generation evolution. Fig. 3, 
shows part of DE algorithm (extract from Fig. 3) 
with a hybrid variation using backpropagation to 
local search over each global search improvement 
caught by DE. A BP call was added (lines 12a and 
12b) every time a child Pi is generated and replaces 
its parent Qi in the population. Backpropagation runs 
up to maximum of 10 cycles and stops when Pi gets 
fitness improvement comparing to original Pi fitness 
generated by DE crossover 

 
8:    … 

9:    for each individual Pi ∈∈∈∈ P do 

10:       AssessFitness(Pi) 

11:       if Q ≠ {} and Fitness(Qi) <   

                        Fitness(Pi) then 

12:          Pi ←←←← Qi 

12a:      else  

12b:         BackPragation(Pi); 

13:       if Best={} or Fitness(Pi) <  

                        Fitness(Best) then 

14:          Best ←←←← Pi 

15:    Q ←←←← P 

16:    … 

Figure 5.  Partial hybrid DE algorithm with backpropagation 

The evolution of each MLP element in the population is 
based only on the training fitness, but to select the best MLP 
to be used on the final testing phase, not only the training 
fitness was considered, but also the validation fitness. To be 
replaced for a new best MLP, the candidate MLP must have 
training and validation fitness both better than the 
corresponding ones in current best. Fig. 4, shows the MLP 
evolution of training fitness (blue) and validation fitness 
(red) along the maximum of 500 generations. Generation 187 
was green lighted because it presented the best combination 
of training and validation fitness. Even better training fitness 
can be observed on next generations, there is no validation 
fitness improvement. 

 



 
Figure 6.  Best MLP Training Evolution 

C. Adaptive Parameters Techniques for DE 

As part of this experiment, we needed to select a method 
for dynamically changing F and CR parameters along the 
training process, We tested 6 different combinations of 
techniques, all with a population of 50 MLPs and using heart 
database. Partial results were compared and analyzed, and 
finally we chose the technique considered more appropriate 
to run as DE with adaptive parameters approach.  

In a global adaptive adjustment of F and CR, these 
parameters are recalculated after each generation [9]. The A 
factor is used to identify the level of improvement each 
generation has in best partial fitness. [9] suggests A to be 
calculated as the ratio between the current generation (i) best 
fitness and the best fitness got in the previous generation (i-
1), and then compute a new F and CR based on A and a 
random number chosen from 0 and 1. The new calculated 
values of F and CR are then applied for all MLP elements in 
population in the next generation. 

Other techniques to adapt F and CR parameter were 
evaluated: a) adaptive element, where F and CR are 
computed for each element in the population; b) element 
adaptive with reduction factor, where a reduction factor of 
0.5 is applied to A (A = A * 0.5) for each generation in that 
no improvement is reached on best fitness; c) global adaptive 
using best, where the best MLP in population is forced to be 
used in the linear combination; d) global adaptive using 
multiple vectors, where a vector of “n” candidates is 
randomly generated to choose one candidate to crossover (a 
vector of size 5 was used to test this approach) [9]; and e) 
element adaptive using best and reduction factor, that 
combines two of the techniques mentioned previously.  

To compare the results of these 6 different techniques 
that calculate adaptive F and CR parameters, training and 
validation sets of heart database were used to measure not 
only the fitness, but also other parameters as: best training 
fitness, best validation fitness, generation which best fitness 

is found, scores of right answers using best MLP found with 
the validation set of instances, and cover rate considering a 
trust rate in the answers. 

The approach “global adaptive with best and multiple 
vectors” had the best score in evaluation, but it shows an 
overload in CPU usage. Therefore, we decided to choose the 
second best approach, which is the one using only global 
adaptive parameters.  

D. Comparing BP and DE approaches 

BP, DE with fixed parameters, DE with adaptive 
parameters and a hybrid approach combining DE and BP 
were executed for each selected database, with populations 
of 50 and 200 individuals. The results were compared with 
different criteria as follow: 

 
• Best Fitness Generation: tendency to reach the best 

fitness between the approaches BP, DE and BP+DE.  
• CPU Usage: According to the training stop criterion 

previously defined, each population training 
execution could reach from 200 to 500 cycles or 
generations. CPU usage is a criterion that shows 
differences between how fast approaches can reach 
desired results the bests; 

• Best Fitness: selection of best MLP considered both 
training and validation fitness as a criteria, as 
explained before (Fig. 6). Best fitness is the 
combination of training fitness and validation fitness 
obtained from the MLP chosen as best MLP during 
the training process; 

• Testing Best MLPs: best MLPs were executed over 
testing group of instances for each database set. To 
demonstrate results obtained, some concepts used to 
calculate each MLP score: a) Trust Rate: responses 
obtained from MLP output layer nodes are given by 
float numbers between 0 and 1; desired answers are 
registered on databases as exactly 0 or 1 values for 
each instance class; de trust rate determines the 
degree of confidence that MLP output values should 
be considered as valid response to a positive 
classification; in the table below, trust rate used was 
70%, which means only responses greater or equal to 
0.7 were considered; b) Cover Rate: for some 
specific instances, MLP output values can be less 
than Trust Rate; in these cases, such instances are 
not covered by trust in their responses; Cover Rate 
means the number of instances which answers match 
Trust Rate over the total of instances considered in 
the MLP test; and c) Score: even when MLP outputs 
an answer that matches Trust Rate, it does not 
necessarily means the answer is right; MLP could 
classify an instance as if it belongs to Class1 with 
99% of confidence when actually instance belongs to 
Class2; score measures the number of right answers 
given by the MLP comparing to desired answers 
registered on database, only based instances that 
match Rebiality Rate. 
 

 
(4) 

 
(5) 

 
(6) 



(a) Population size = 50 

(b) Population size = 200 

(b) Population size = 200 

(a) Training Fitness for Population size = 50 

(b) Training Fitness for Population size = 200 

E. Results 

According with Best Fitness Generation criteria, the 
Table II shows DE tends to take more time than BP to reach 
the best fitness (considering the generation number). When 
BP is combined with DE in the hybrid alternative, there is a 
tendency that the best fitness is reached before than in the 
solutions using only DE. 

TABLE II.  BEST FITNESS GENERATION 

 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
     
Because of backpropagation is not exactly an evolution 

algorithm, we used a group of independent MLPs and 
selected the best MLP from this group after the training 
processes finishes. The number of MLPs being trained with 
BP was the same of population size used with DE. The 
maximum of 500 cycles for BP and 500 generations for DE 
were defined as timeout in the training process. However, 
when 200 cycles or generations are reached with no 
improvement on best, the training process also finishes. 

According to the CPU usage criteria, Table III shows that 
BP is faster than DE approaches for all selected databases. 

TABLE III.  CPU USAGE 

Approach 
CPU Usage (minutes) 

Cancer Diabetes Glass Heart Iris 

BP 33 41 36 34 25 

DE fixed 56 216 131 97 40 

DE adaptive 81 174 168 78 151 

DE + BP 58 47 38 64 35 

 (a) Population size = 50 

  

 

 

 

 

 

Data presented in Table III were obtained after one 
execution of each algorithm and variation. Next, we chose 3 
databases (glass, heart and iris) to be executed 10 times with 
BP and DE+BP approaches and with a population size of 50. 
Table IV shows the average and standard deviation of CPU 
usage. Values are similar to the ones obtained previously 
with only one execution, and confirm that BP is relative 
faster than approaches using DE. 

TABLE IV.  AVERAGE AND STANDARD DEVIATION CPU USAGE 

 
According to the best fitness criteria obtained from the 

best MLP chosen along the population training process for 
each database, each population size and each algorithm 
approach, results can be compared in Table V. Best training  
and validation fitness for each database was bold 
highlighted. 

TABLE V.  BEST TRAINING  VALIDATION FITNESS (FROM BEST MLP) 

 

 

 

 

 

 

 

 
 
 
 

 

Approach 
CPU Usage (minutes) 

Cancer Diabetes Glass Heart Iris 

BP 53 76 65 59 26 

DE fixed 184 343 196 185 82 

DE adaptive 236 365 139 293 36 

DE + BP 174 165 116 187 37 

Databases 
Best Fitness Generation 

BP DE DE+BP 

Cancer 63 307 92 

Diabetes 31 113 103 

Glass 59 49 155 

Heart 288 95 225 

Iris 152 184 101 

Databases 

Best Fitness Generation 

BP DE DE+BP 

Cancer 276 134 26 

Diabetes 3 453 320 

Glass 7 282 130 

Heart 231 184 53 

Iris 53 480 122 

Approach 
CPU Usage (minutes) Standard Deviation 

Glass Heart Iris Glass Heart Iris 

BP 36 35 13 3,52 2,59 1,14 

DE + BP 55 76 17 3,35 2,09 1,14 

Algorithm 
Training Fitness 

Cancer Diabetes Glass Heart Iris 

BP 0.003 0.110 0.057 0.018 0.015 

DE fixed 0.047 0.169 0.370 0.091 0.140 

DE adaptive 0.022 0.166 0.372 0.097 0.100 

DE + BP 0.021 0.141 0.176 0.032 0.013 

Algorithm 
Training Fitness 

Cancer Diabetes Glass Heart Iris 

BP 0.004 0.110 0.071 0.018 0.015 

DE fixed 0.028 0.195 0.367 0.053 0.159 

DE adaptive 0.026 0.146 0.297 0.081 0.033 

DE + BP 0.020 0.125 0.166 0.049 0.014 



(a) Population size = 50 

(d) Validation Fitness for Population size = 200 

(c) Validation Fitness for Population size = 50 

(a) Population size = 50 

(b) Population size = 200 

 

 

 

 

 

 

 

BP algorithm reached the best values for training fitness 
except for iris database, even considering two different 
population sizes, and BP also reached most of best validation 
fitness.  

Considering test phase of best MLPs, Table VI shows 
Scores and Cover Rates obtained from a Trust Rate of 70%. 
These measures were calculated after one execution training 
for each database, each population size of 50 and 200, and 
each algorithm used. 

TABLE VI.  COMPARATIVE OF SCORES (TRUST RATE = 70%) 

 

 

 

 

 

On the results shown in Table VI, we can observe that 
DE+BP seems to be a little more efficient than using only 
BP, but in the statistical results presented in Table VII both 
algorithms are equivalent considering scores and BP has a 
small advantage compare to DE+BP considering the cover 
rate.  

Data presented in Table VI were calculated based in only 
one execution of each algorithm for each database. To 
confirm data obtained we chose 3 databases (glass, heart and 
iris) to be executed 10 times with BP and DE+BP 
approaches and with a population size of 50. Table VII 
shows the average of scores and cover rated calculated from 
10 executions. 

TABLE VII.  AVERAGE SCORES AND COVER RATES 

Algorithm 
BP DE+BP 

Score Cover Score Cover 

Glass 71.4 72.0 71.3 65.5 
Heart 82.5 92.6 82.2 83.6 
Iris 94.74 100 94.75 99.2 

 
Identify the statistic significance between the values that 

compose the median score and cover obtained from the 
Glass, Heart and Iris bases (Table VII), the statistical method 
Kruskal-Wallis was used by way of the R-Commander tool 
[20]. Only the values of the average score for the Heart base 
presented statistic significance of 0.01341, in other words, p-
value=0.01341. 

VII. CONCLUSION 

Based on results contained in the Tables II-VII, we can 
observe that DE tends to take more time than BP to reach the 
best fitness. DE improves the time spent to reach the best 
fitness when combined with BP. We can also observed that 
the training execution with the BP algorithm takes less time 
consuming than DE algorithm. This makes sense since the 
DE algorithm needs to create more MLPs instances to 
perform a linear combination. Considering training and 
validation the fitness, despite the apparent advantage 
presented by BP algorithm relative to DE algorithm, 
statistical test showed that both algorithms are equivalent to 
measured scores, although the BP is better to cover desired 
confidence tests. The DE algorithm provides the advantage 
of global research and may also be combined with others 
algorithms in hybrid solutions for best results. Nevertheless, 
this BP algorithm experiment was more efficient to cover the 
cases used in test based on the confidence parameter used. 
Future work is suggested for testing other hybrid variations 
to combine global and local search algorithms and adjust the 
parameters used in attempting to find more efficient 
solutions for the classification of this data and others.  
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