
Modelling Alternatives in Temporal Networks

Roman Barták*, Ondřej Čepek* , Pavel Surynek*

*Charles University, Faculty of Mathematics and Physics
Malostranské nám. 2/25, 118 00 Praha 1, Czech Republic
{roman.bartak, ondrej.cepek, pavel.surynek}@mff.cuni.cz

Institute of Finance and Administration

Estonská 500, 101 00 Praha 10, Czech Republic

Abstract
Temporal Networks play an important role in solving
planning problems and they are also used, though not as
frequently, when solving scheduling problems. In this paper
we propose an extension of temporal networks by parallel
and alternative branching. This extension supports
modelling of alternative paths in the network; in particular,
it is motivated by modelling alternative process routes in
manufacturing scheduling. We show that deciding which
nodes can be consistently included in this extended temporal
network is an NP-complete problem. To simplify solving
this problem, we propose a pre-processing step whose goal
is to identify classes of equivalent nodes. The ideas are
presented using precedence networks, but we also show how
they can be extended to simple temporal networks.

Introduction

Scheduling problems typically deal with allocating known
activities to available resources and time. Real-life
problems are usually more complex than existing
theoretical models and, for example, they also require
selection among alternative process routes or alternative
resources in complex manufacturing enterprises. Due to
efficiency issues, selection of alternative processes and
resource allocation are frequently done separately from
scheduling. However, this also has several drawbacks.
First, if the selected route or resource allocation cannot be
scheduled, it is necessary to backtrack from the scheduling
module to resource allocation and process selection
modules. Second, even if the resource allocation and
selected routes are feasible, separating the allocation and
process selection algorithms from the scheduling algorithm
may ruin the quality of the solution. Hence, a better result
will be obtained when process selection and resource
allocation is done within scheduling. While resource
allocation is now an accepted part of scheduling problems
and there exist approaches for doing resource allocation
within scheduling, for example (Focacci, Laborie, and
Nuijten 2000), process selection is still treated separately.
 In this paper we propose an extension of temporal
networks that can model alternative process routes. We
describe the main ideas using networks with only
precedence relations, but at the end of the paper we also

show how these ideas can be extended to simple temporal
networks. To model selection of alternatives, we assign a
validity variable to each node in the network. This validity
variable indicates whether the node is selected or not to be
in the final solution plan. The decision about
validity/invalidity of the node is done by the solver. We
also augment the precedence network by a description of
splitting and joining operations that implicitly define
dependencies between nodes in the network. The
dependency relations specify which nodes must/cannot be
valid in relation to the validity status of other nodes. The
main motivation for these operations goes from modelling
manufacturing processes. The nodes correspond to
activities (or more precisely start times of activities) and
the arcs describe flow of products between the activities. In
some nodes the manufacturing process can split into two or
more parallel sub-processes that can join back to a single
process. For example, a piece of wood is cut in parts that
are processed in parallel and then assembled together to a
final product. This is called parallel branching. Another
form of branching is alternative branching when the
process also splits in sub-processes, but these sub-
processes are treated as alternatives so exactly one of them
is used. The alternative sub-processes can also join back to
a single process (Figure 1).

Figure 1. Graph of parallel (top) and alternative processes with a

selected process.

In the paper we formally define the above-described
precedence graph with parallel and alternative branching
that we call a P/A graph. We also show that the problem
whether there exists an assignment of validity variables
consistent with the specified branching is NP-complete.
Hence there is a little hope for a fast solving algorithm so
we plan to model the problem as a constraint satisfaction
problem. To support constraint modelling, we propose a
pre-processing step where sets of equivalent nodes are
identified in the P/A graph. We call the nodes equivalent, if
their validity status is identical in all solutions, that is, such
nodes are either all valid or all invalid in any consistent
assignment of validity variables. This will help us to bridge
alternative routes and consequently improve the constraint
model. We conclude the paper by showing that the
presented ideas can be extended to simple temporal
networks. We compare our proposal with existing works
on temporal networks. Namely, we demonstrate that our
P/A simple temporal networks can model temporal
constraint satisfaction problems.

P/A Graphs
Let G be an acyclic graph. A subgraph of G is called a fan-
out subgraph if it consists of nodes x, y1, …,yk (for some
k) such that each (x,yi), 1 ≤ i ≤ k, is an arc in G. Similarly,
a subgraph of G is called a fan-in subgraph if it consists of
nodes x, y1, …,yk (for some k) such that each (yi,x), 1 ≤ i ≤
k, is an arc in G. In both cases x is called a principal node
and all y1, …,yk are called branching nodes. G is called a
P/A graph if the description of the graph (list of nodes and
arcs) is accompanied by a list of pairwise edge-disjoint fan-
out and fan-in subgraphs, where each subgraph on the list
is marked either as a parallel subgraph or an alternative
subgraph. An assignment of 0/1 (false/true) values to nodes
of a given P/A graph is called feasible if
• in every parallel subgraph all nodes are assigned the

same value (both the principal node and all branching
nodes are 0 or both the principal node and all branching
nodes are 1),

• in every alternative subgraph either all nodes (both the
principal node and all branching nodes) are 0 or the
principal node and exactly one branching node are 1
while all other branching nodes are 0.

It can be easily noticed that given an arbitrary P/A graph
the assignment of the value 0 to all nodes is always
feasible. On the other hand, if some of the nodes are
required to take value 1 (as we shall see later, this
requirement is a very natural one if the P/A graph is used
to model a real-life problem), then the existence of a
feasible assignment is by no means obvious. Let us now
formulate this decision problem formally.
Definition: P/A graph assignment problem is given by a
P/A graph G and a list of nodes of G which are assigned
value 1. The question is whether there exist a feasible
assignment of 0/1 values to all nodes of G which extends
the prescribed partial assignment.

Remark: The above problem remains the same if we allow
forcing the value 1 for just a single vertex. To see this,
observe that the general case can be reduced to this special
one by adding an extra vertex, forcing it to 1 and
connecting it by a fan-in (or fan-out) parallel subgraph to
all nodes that were forced to 1 originally. Moreover, if the
original graph was acyclic, then so is the new one.

Proposition 1: The P/A graph assignment problem is NP-
complete.

Proof: The problem is obviously in NP, because it suffices
to guess the assignment and test its feasibility, which can
be done in linear time in the number of parallel and
alternative subgraphs (and hence in the number of edges).
For the NP-hardness, we shall show that the 3SAT
problem, which is known to be NP-complete (Garey and
Johnson, 1995), can be reduced (in a polynomial time) to
the P/A graph assignment problem. Recall that the 3SAT
problem is a problem of deciding whether there exists a
model (a satisfying assignment of truth values to
propositional variables) for a given formula in a
conjunctive normal form, where each clause in the formula
consists of exactly three literals. Moreover we may assume
that no variable appears twice in a single clause, i.e. each
clause consists of literals of three distinct variables.
 Now we shall describe how to construct, for a given
CNF (an instance of 3SAT), an instance of the P/A graph
assignment problem. Consider e.g. a clause (a ∨ b ∨ ¬c).
There exist seven mutually exclusive assignments of truth
values to variables a, b, and c satisfying this clause (each
assignment except of a=false, b=false, c=true is a satisfying
one). We can model this clause using a “clause subgraph”
which consists of a node for the clause, seven nodes for the
mutually exclusive satisfying assignments, and six nodes
for the values of propositional variables (three for positive
values and three for negative values, i.e. one for each
literal). The clause node is connected to all assignment
nodes by a fan-out alternative subgraph and each value
node is connected to appropriate assignment nodes (those
assignment nodes containing the literal which corresponds
to the given value node) by a fan-in alternative subgraph.
The following figure shows the clause subgraph for the
clause (a ∨ b ∨ ¬c), where capital letters in the assignment
nodes represent value false (so e.g. aBc corresponds to
a=true, b=false, c=true).

a ∨ b ∨ ¬c

aBc abc abC aBC Abc AbC ABC

a ¬a b ¬b c ¬c

ALT

ALT

Each clause from the input CNF will be modelled using a
clause graph with the above-described structure. To
connect the clause graphs, we introduce a formula node
and connect it with all clause nodes by a fan-out parallel
subgraph. The formula node is forced to take the value 1
(because we need the formula to be satisfied). A variable
which is used in more than one clause will have value
nodes in all clause graphs where it appears. To
interconnect these value nodes we introduce for each
variable in the formula a variable node, which is forced to
take the value 1, and two literal nodes connected to the
variable node by a fan-in alternative subgraph. Finally,
each literal node is connected by a fan-in parallel subgraph
to all value nodes in clause graphs which correspond to the
given literal. The following figure shows these additional
nodes and connections (the shaded nodes are the nodes that
are forced to take the value 1).
.

First let us observe that the number of nodes in the
constructed P/A graph is linear in the size of the input CNF
formula. Namely, if there are M clauses and N variables
(and hence L = 3M literals) in the input CNF, then we get a
graph with (14M + 3N + 1) nodes. Because 14M + 1 ≤ 5L
and N ≤ L (assuming each variable appears at least once in
the formula) we get that there are at most 8L nodes in the
constructed P/A graph.
 Now let us assume that the input CNF has a satisfying
assignment. We shall construct a feasible assignment of the
constructed P/A graph as follows. All clause nodes will get
the value 1 to satisfy the parallel fan-out from the formula
node. The literal nodes of each variable will get the 0 and 1
values as defined by the satisfying assignment of the input
CNF (e.g. if variable b is false in the satisfying assignment,
then the node b gets the value 0 and the node ¬b gets the
value 1). This satisfies the alternative fan-in into the
variable nodes, and moreover it defines the 0 and 1 values
for all value nodes via the parallel fan-ins that replicate the

literal values into all clause subgraphs. Finally, for each
clause exactly one assignment node is made valid, namely
the one in which all three literals are valid, which satisfies
the alternative fan-out from the clause nodes. It remains to
show that also all alternative fan-ins into value nodes are
satisfied. So let us consider an arbitrary value node. If it
corresponds to a valid literal then it is connected to exactly
one valid assignment node (the one where also the other
two literals are valid), and if it corresponds to an invalid
literal then it is connected only to invalid assignment nodes
(see figure below). In both cases this is exactly what we
need and hence the constructed assignment of 0/1 values to
all nodes is feasible.

To complete the proof let us assume that there exists a
feasible assignment of 0/1 values to all nodes of the
constructed P/A graph. In this assignment:
• All clause nodes have value 1 to satisfy the parallel fan-

out from the formula node.
• For each clause exactly one assignment node has value

1 to satisfy the alternative fan-out from the clause
nodes.

• For each variable one literal node has value 1 and the
other has value 0 to satisfy the alternative fan-ins into
the variable nodes. The literal values are replicated into
the value nodes by the parallel fan-ins into the literal
nodes.

Now let us check that the truth assignment defined by the
values assigned to the literal nodes satisfies the input CNF.
To this end let us pick an arbitrary clause and assume by
contradiction that it is falsified. That means that the three
valid value nodes correspond to the only missing
combination among the assignment nodes, or in other
words, that the valid assignment node must be connected to
an invalid value node. However, this is a contradiction,
because the corresponding fan-in subgraph into this value
node spoils the feasibility of the assignment (the principal
node is 0 while one of its branching nodes is 1). Hence, the
input CNF has a satisfying assignment if and only if the
constructed P/A graph has a feasible assignment.

Q.E.D.

P/A Graph Pre-processing
Because solving the P/A graph assignment problem is hard,
we now focus on inferring some information from the
graph that can be used later to improve solver efficiency. In
particular, we describe an algorithm for finding equivalent
nodes in the P/A graph. We call a set of nodes of the P/A

aBc abc abC aBC Abc AbC ABC

a ¬a b ¬b c ¬c

ALT

a ∨ b ∨ ¬c

aBc abc abC aBC Abc AbC ABC

a ¬a b ¬b c ¬c a ¬a

¬a ∨ b ∨ d

a ¬a b ¬b c ¬c

A B C

formula

PAR

ALT

ALT

ALT

PAR

…

graph equivalent if and only if the nodes are assigned the
same value in all feasible assignments of 0/1 values to
nodes. The problem of finding the largest possible sets of
equivalent nodes is probably hard (but we have no formal
evidence of it yet), therefore at this stage we focus on
discovering certain typical situations only. The most
important situation we want to recognize consists of a
process which splits in several sub-processes in alternative
branching and all these sub-processes join afterwards.
Principal nodes where the production process splits and
sub-processes join back again are equivalent. We are
looking for the algorithm that can discover at least such
equivalence classes.
 The proposed algorithm has two phases. In the initial
phase an undirected hyper-graph is constructed from the
input P/A graph. The constructed hyper-graph has almost
the same structure and represents almost the same
information about the production processes as the original
P/A graph. Only the directions of arcs and hence
precedence relations are omitted, which is not a problem
because the input P/A graph is acyclic so the precedence
relations trivially hold (actually, the precedence relations
are used only to define fan-in and fan-out subgraphs in
acyclic P/A graphs).
 The second and major phase of the algorithm repeatedly
transforms the given hyper-graph using certain
transformation rules into a simpler and more explicit
hyper-graph. Sets of equivalent nodes of the input P/A
graph are built along these transformation steps. This phase
terminates when no transformation rule can be applied or
when a conflict in the hyper-graph is detected.

Figure 2. Example of P/A graph with PAR/ALT annotation.

Initial Phase of the Algorithm
Let),(EVG = be a P/A graph represented as sets of
marked fan-in and fan-out sub-graphs (Figure 2). We
construct a hyper-graph),(FVH = over the same set of
nodes V in the following way. Let the set of hyper-edges F
be empty at the beginning.

For each fan-in parallel sub-graph over nodes
kyyyx ,...,,, 21 , where x is the principal node, insert

edges (trivial hyper-edges) }}{},{{ iyx for ki ≤≤1
into F.

Fan-out sub-graphs marked as parallel are treated in
the same way as fan-in parallel sub-graphs.

For each fan-in alternative sub-graph over nodes
kyyyx ,...,,, 21 , where x is the principal node, insert

non-trivial hyper-edge }},...,,{},{{ 21 kyyyx into F.

As in the case of parallel branching, fan-out sub-
graphs marked as alternative are treated in the same
way as fan-in alternative sub-graphs.

Informally speaking, we use the same nodes in the hyper-
graph as in the P/A graph. For each arc that is a part of
parallel branching in the P/A graph we add an edge
between the same nodes in the hyper-graph. For a set of
arcs that form alternative branching in the P/A graph, we
add a non-trivial hyper-edge connecting the same nodes in
the hyper-graph (a black dot in Figure 3). We use the
convention that an edge with the same structure is added
only once (we do not allow multi-edges). Figure 3 shows a
hyper-graph constructed for the P/A graph from Figure 2.
 The last step of the initial phase is constructing the
initial equivalence classes. Let us denote vQ the
equivalence class for Vv∈ . Initially we set }{vQv = for
every Vv∈ . The constructed hyper-graph),(FVH = with
associated equivalence classes is used as the input for the
transformation phase of the algorithm.

Figure 3. Hyper-graph corresponding to the P/A graph.

Transformation Phase of the Algorithm
The goal of the transformation phase is to modify the
hyper-graph while preserving the equivalence classes. This
is realized by three transformation rules that update the
hyper-graph by adding derived hyper-arcs. During these
updates, the initial equivalence classes are being joined

non-trivial
hyper-edge

b

c d e f

g

h i j k

l m n o p q r t

u v w

x y z

A

B

PAR

PAR
PAR

ALT

ALT
ALT

ALT

PAR

ALT

ALT

PAR

ALT

ALT

PAR

a

Edge contraction rule. The first transformation rule
contracts an edge. An edge Fvu ∈}}{},{{ can be
contracted if for any non-trivial hyper-edge FyX ∈}}{,{

1}){(},{ ≤∪∩ yXvu . The case when an edge cannot be
contracted is treated separately. The edge contraction rule
represents standard operation from graph theory.
 Let Fvu ∈}}{},{{ be the edge that can be contracted.
Then the following steps are carried out. Erase the vertex
v by assigning: }{vVV −← and vuu QQQ ∪← . Edges
and hyper-edges which have v as an endpoint need to be
modified to form a correct hyper-graph without v . If there
is an edge Fvx ∈}}{},{{ , where ux ≠ , replace the edge

}}{},{{ vx by }}{},{{ ux . If there is a non-trivial hyper-
edge FvX ∈}}{,{ then replace the hyper-edge }}{,{ vX
by }}{,{ uX . If there is a non-trivial hyper-edge

FyX ∈}}{,{ , where Xu∉ , Xv∈ and uy ≠ then
replace it by hyper-edge }}{},{}){{(yuvX ∪− .

Hyper-edge extension rule. If there are non-trivial hyper-
edges FYx ∈}},{{ and FZy ∈}},{{ , where Yy∈ and

}{)}({)}({ yZyYx =∪∩∪ then add a new hyper-edge
}}{},{{ yZYx −∪ into F . It may happen that the new

edge generated by this rule is already present in the hyper-
graph from another reason. Then the rule does not change
the hyper-graph.

Hyper-edge meet rule. If there are non-trivial hyper-edges
FYx ∈}},{{ and FwZ ∈}}{,{ , where wx ≠ and YZ ⊆

then add a new hyper-edge }}{)(},{{ wZYx ∪− into F .
Again the rule has no effect if the edge generated by this
rule is already present in the hyper-graph. A special case of
this rule when YZ = results in addition of a new edge.
The edge generated in this case allows further contractions
subsequently.
 This transformation rule in cooperation with the
previous rule can discover the situation when a production
chain splits into several alternatives and all these
alternatives join again.

Conflict detection rule. The case when an edge that
cannot be contracted occurs in the hyper-graph indicates a
conflict. This conflict means that some validity variables
are forced to be 0. The current version of the algorithm is
not able to handle this situation so this rule terminates the
algorithm and reports a conflict to the user.

 If any of the above-defined transformation rules cannot
be applied, the algorithm terminates with success. After
successful termination the node equivalence classes
associated with nodes remaining in the final hyper-graph
represent sets of equivalent nodes. Figures 4 and 5
illustrate several steps of the transformation phase. The
algorithm finishes with the following equivalence classes
{a,b,c,d,e,f,g,A,B}, {j,q,v}, and {k,w}.
 Figure 4 shows a hyper-graph that we obtained from the
hyper-graph in Figure 3 by repeatedly applying the edge
contraction rule. Namely, we contracted all edges between
nodes a and g so we obtained a single node that describes
equivalence class {a,b,c,d,e,f,g}. We also contracted
edges{{j},{q}} and {{q},{v}} and got a node with

equivalence class {j,q,v}. Finally, we contracted edge
{{A},{B}} to obtain a node with equivalence class {A,B}.

Figure 4. Hyper-graph after edge contractions.

The hyper-graph in Figure 5 was obtained by applying the
hyper-edge meet rule to hyper edges {{k},{r,t}} and
{{w},{r,t}} that lead to adding a new edge {{k},{w}}.
This edge was then contracted to find a new equivalence
class {k,w}. The new bottom hyper-edge {{A},{u,j,k}} was
then obtained by applying the hyper-edge meet rule using
hyper-edge {{u},{x,y,z}}. The new top hyper-edge was
obtained by applying hyper-edge extension rule.

Figure 5. Hyper-graph after extension and meet rule application.

If we apply further the hyper-edge extension rule to the
bottom hyper-edge we will obtain two hyper-edges that
meet which will later lead to joining equivalence classes
{a,b,c,d,e,f,g} and {A,B} (not shown).

Correctness of the algorithm
We shall show now that the algorithm is correct, that is, it
returns groups of equivalent nodes. We can easily define
feasible assignment of 0/1 values to nodes of the hyper-
graph. This definition should ensure that an assignment of
0/1 values to nodes of the original P/A graph is feasible if
and only if it is feasible for the corresponding hyper-graph
(the correspondence between P/A graph and hyper-graph is
determined by the initial phase of the algorithm).
 Let us denote U Vv vQQ ∈= . An assignment

}1,0{: →Qval in hyper-graph),(FVH = is feasible if
and only if for every edge Fvu ∈}}{},{{)()(vvaluval =
and for every non-trivial hyper-edge FvU ∈}}{,{

)()(vvaluvalUu =∑ ∈ . Nodes in the same equivalence class
associated with a given node have assigned the same value.

l m

a [bcdefg]

h i

k [w] n o p j [qv]

r t u

x y z

A [B]

a [bcdefg]

h i k

l m n o p j [qv] r t

u w

x y z

A [B]

 To prove the correctness of the algorithm it is sufficient
to show that hyper-graph transformation rules preserve
feasible assignments.

Proposition 2 (correctness of edge contraction). An
assignment }1,0{: →Qval in hyper-graph),(FVH = is
feasible if and only if it is feasible for hyper-graph after
application of the edge contraction rule.

Proof. Let Fvu ∈}}{},{{ be the contracted edge. For
Fvx ∈}}{},{{ , where ux ≠ feasibility for hyper-graph

H forces)()(vvalxval = and)()(vvaluval = . Feasibility
for hyper-graph after edge contraction forces

)()(uvalxval = since }}{},{{ vx is replaced by }}{},{{ ux
and)()(vvaluval = since uQv∈ . These two conditions
are clearly equivalent.
 For hyper-edge FvX ∈}}{,{ feasibility for H forces

)()(vvalxvalXx =∑ ∈ and)()(vvaluval = . Feasibility for
hyper-graph after edge contraction forces

)()(uvalxvalXx =∑ ∈ since }}{,{ vX is replaced by
}}{,{ uX and)()(vvaluval = since uQv∈ . We again

obtained equivalence of both conditions.
 Finally for hyper-edge FyX ∈}}{,{ , where Xu∉ ,

Xv∈ and uy ≠ , feasibility for H forces
)()(yvalxvalXx =∑ ∈ and)()(vvaluval = . Feasibility for

hyper-graph after edge contraction forces
)()()()(yvaluvalvvalxvalXx =∑ +−∈ and

)()(vvaluval = since uQv∈ . These conditions are again
equivalent.

Q.E.D.

Proposition 3 (correctness of hyper-edge extension). An
assignment }1,0{: →Qval in hyper-graph),(FVH = is
feasible if and only if it is feasible for hyper-graph after
application of the hyper-edge extension rule.

Proof. Let FYx ∈}},{{ and FZy ∈}},{{ , where Yy∈
and }{)}({)}({ yZyYx =∪∩∪ be the non-trivial hyper-
edges that are selected to form a new hyper-edge in
resulting hyper-graph. Feasibility for hyper-graph H
requires Σz∈Y val(z) = val(x), Σz∈Z val(z) = val(y), and
Σz∈Y val(z) + Σz∈Z val(z) – val(y) = val(x). It is exactly the
condition forced by the feasibility in the resulting hyper-
graph.

Q.E.D.

Proposition 4 (correctness of hyper-edge meet). An
assignment }1,0{: →Qval in hyper-graph),(FVH = is
feasible if and only if it is feasible for hyper-graph after
application of the hyper-edge meet rule.

Proof. Let FYx ∈}},{{ and FwZ ∈}}{,{ , where zx ≠
and YZ ⊆ be the non-trivial hyper-edges on which the
rule is applied. Feasibility for hyper-graph H requires that

)()(xvalyvalYy =∑ ∈ and)()(wvalzvalZz =∑ ∈ which is
equivalent with the requirement

)()()()(xvalwvalzvalyval ZzYy =∑ +∑ − ∈∈ .
Q.E.D.

Temporal Networks with Alternatives
So far we assumed acyclic graphs describing precedence
relations between nodes and we focused on the logical
aspects of the network, namely selecting the nodes to
satisfy parallel and alternative branching. Nevertheless, in
real-life problems we usually need a finer time resolution
so we can extend precedence relations to simple temporal
relations. It means that each arc (X,Y) in a P/A graph is
annotated by a pair of numbers [a,b] where a describes the
minimal distance between nodes X and Y and b describes
the maximal distance, formally, a ≤ Y-X ≤ b. We call the
resulting graph a P/A simple temporal network. Now the
problem is to decide validity of nodes satisfying parallel
and alternative branching and to assign time (number) to
each valid node in such a way that all simple temporal
relations between valid nodes are satisfied. We call the
problem of deciding whether a feasible assignment of
validity and time variables exists a P/A simple temporal
network assignment problem. Again, we assume that
validity of some nodes is set to 1 (otherwise, there is a
trivial solution where all nodes are invalid). This is a
typical situation when the proposed temporal network is
used to model real-life problems. The last nodes in the
structure of alternative process routes typically describe
delivery to a customer. Because the delivery must be
fulfilled and we can just select alternative ways how to do
it, these nodes must be valid.
 Recall, that there exist polynomial algorithms for
checking consistency of simple temporal networks
(Dechter, Meiri, and Pearl 1991) so solving simple
temporal problems is “easy”. However, as we showed
above adding parallel and alternative branching makes the
problem hard.

Proposition 5: The P/A simple temporal network
assignment problem is NP-complete.

Proof: The problem is obviously in NP, because it suffices
to guess the assignment and test its feasibility, which can
be done in linear time in the number of arcs. The P/A
simple temporal network is a generalisation of P/A graph
in the following sense. For any P/A graph we can construct
a P/A simple temporal network where all temporal
constraints are in the form [0,∞]. Now, there exists a
feasible assignment to the P/A graph if and only if there
exists a feasible assignment to the corresponding P/A
simple temporal network. Moreover, if we assume that all
time variables are set to 0, which trivially satisfies all
temporal constraints, we get one-to-one mapping between
assignments. Hence, the P/A simple temporal network
assignment problem is NP-complete.

Q.E.D.

It may seem that we can further generalise the framework
by using a disjunction of simple temporal relations.
Formally, each arc (X,Y) is annotated by a set of number
pairs [ai,bi] for i=1,..,n with the following meaning
∨i=1,..,n ai ≤ Y-X ≤ bi. Nevertheless, this generalisation does

not increase the expressive power of the framework
because we already have alternatives there. In fact, arc
(X,Y) with a disjunctive constraint ∨i=1,..,n ai ≤ Y-X ≤ bi
can be substituted by a sub-network with simple temporal
constraints as Figure 6 shows. Note that auxiliary nodes x’
and y’ are necessary to keep fan-out subgraph with
principal node X or fan-in subgraph with principal node Y
(if such subgraphs exists) “isolated” from the newly added
fan-out and fan-in subgraphs (otherwise we may have more
than one fan-out or fan-in subgraph branching out of or in
the same node, namely X or Y). Nodes x’ and y’ are
equivalent in the sense described in the previous section
and the algorithm presented there can detect this
equivalence.

Figure 6. Modelling disjunctions of temporal constraints.

Because our framework covers SAT problems, we believe
that it should be possible to model arbitrary temporal
disjunctions as specified in disjunctive temporal networks
(Stergiou and Koubarakis 1998). Nevertheless, we did no
formal analysis in this direction yet because our application
area (manufacturing scheduling) assumes only specific
temporal disjunctions describing disjunctive resources. To
handle these disjunctions, we plan to use existing
constraints for disjunctive resources. For example the
paper (Barták 2006) presents such a constraint that can
handle activities with the validity status.

Example
So far we have discussed mainly the theoretical
background of our proposal, so let us now present an
example showing how the proposed framework can model
a real-world problem. Consider the manufacturing of
pistons where each piston consists of a rod and a tube that
need to be assembled together to form the piston. Each rod
consists of the main body and a special kit that is welded to
the rod (the kit needs to be collected from warehouse and
then assembled). The rod body is sawn from a large metal
stick. The tube can also be sawn from a larger tube. Both
rod body and tube must be collected together from the
warehouse to ensure that their diameters fit. If the tube is
not available, it can be bought from an external supplier. In
any case some welding is necessary to be done on the tube
before it can be assembled with the rod. Finally, between
sawing and welding, both rod and tube must be cleared of
metal cuts produced by sawing. Assume that welding and
sawing operations require ten time units, assembly
operation requires five time units, clearing can be done in

two time units, and the material is collected from
warehouse in one time unit. If the tube is bought from
external supplier then it takes fifty time units to get it.
Moreover, tube and rod must cool-down after welding
which takes five time units.
 The above problem could be easily modelled using a
simple temporal network if there is no alternative whether
to produce the tube in-house or buy it. Our proposal is
focused exactly on this type of problems where (exclusive)
alternatives must be modelled. Figure 7 shows a P/A
simple temporal network modelling the problem. Each
operation is modelled using a single node in the network
indicating the start time of the operation. Note that neither
disjunctive temporal networks nor other existing
extensions of temporal networks can model this problem.

Figure 7. Example of manufacturing process with alternatives.

Related Works

The intended application area for the proposed framework
is manufacturing scheduling. There exists a benchmark set
MaScLib by ILOG (Nuijten at el. 2003) which contains a
formal description of real-life manufacturing scheduling
problems. This description includes the concept of validity
variables and logical dependencies between them.
Temporal and logical relations are modelled separately
there and various binary logical relations can be defined
between the validity variables. Our framework defines the
logical dependencies via branching in the temporal graph.
According to our experience this is satisfactory for
modelling manufacturing (and other) processes. Moreover,
we believe that the coupled definition will lead to more
efficient filtering algorithms that use together temporal and
logical information. In (Barták and Čepek, 2006) we
already showed that integrated filtering of precedence and
dependency constraints significantly reduces solving time.

X Y
[0,0] [0,0]

[0,0]

[0,0]

[a1,b1]

[an,bn]

… ALT ALT x‘ y‘

buyTube

weldTube

sawTube

clearTube

sawRod

clearRod

collectKit

weldRod

assemblePiston

ALT

ALT

[1,∞]

[1,∞]

[0,∞]

[0,∞]
[10,∞]

[10,∞]

[50,∞]

[2,∞] [2,∞]

[1,∞]

[5,∞]

[15,∞] [15,∞]

collectMaterial

assembleKit

[5,∞]

shipPiston

 We are not aware about another approach that can
handle alternative process routes in the same generality as
the proposed P/A simple temporal networks. The paper
(Focacci, Laborie, and Nuijten 2000) describes a graph
concept for modelling alternative processes, but it cannot
be used for alternative routes because all activities must be
present. Probably the closest approach to our proposal is
the work by Beck and Fox (1999) on modelling alternative
processes using PEX (probability of existence) variables.
In our framework we focus on logical validity variables
(PEX uses an interval of real numbers 〈0,1〉) but the main
ideas of propagation are very similar. Using validity
variables instead of PEX values simplifies integration to
existing constraint solvers and we believe that using logical
deduction during pre-processing can generate additional
input to the filtering algorithm.
 Our work is naturally related to temporal networks as we
proposed an extension of simple temporal networks. We
already showed that the proposed framework covers
Temporal Constraint Satisfaction Problems (Dechter,
Meiri, and Pearl 1991). Disjunctive Temporal Network
(Stergiou and Koubarakis 1998) is another approach to
handling temporal alternatives. We have no formal
comparison to our P/A simple temporal network yet, but
our ambition is slightly different from DTN – we model
alternative routes rather than any temporal disjunction.
 Recently several other extensions of temporal networks
appeared like resource temporal networks (Laborie 2003)
or disjunctive temporal networks with finite domain
constraints (Moffitt, Peintner, and Pollack 2005). These
extensions integrate temporal reasoning with reasoning on
non-temporal information, like fluent resources. Our
ambition is to extend existing constraint-based scheduling
by some planning decisions, namely selection of
alternative processes. So we extended temporal reasoning
by logical reasoning on existence of nodes in the network.
Actually, the possibility to decide about validity/invalidity
of the node is the main difference of our approach from the
above mentioned works on temporal networks where all
nodes must always be present.
 There exists Conditional Temporal Planning
(Tsamardinos, Vidal, and Pollack 2003) where existence of
node in the network depends on some condition. Though
there is some similarity in modelling alternative
processes/plans, satisfaction of condition in CTP depends
on external forces – Nature – rather than being an internal
relation between the nodes. In our approach, decision of
validity of the node is done internally based on logical
relations between the nodes.

Conclusions
The paper reports a work in progress on extension of
simple temporal networks for handling alternative process
routes. We focused on formalization of the this new
modelling framework, showing its complexity, and
proposing a pre-processing step for extracting information
about logically equivalent nodes from the network. We are

currently working on filtering algorithms for removing
inconsistencies from the network based on ideas of
constructive disjunction. We believe that the pre-
processing phase can feed the filtering algorithm by useful
information about implied logical relations (such as
equivalence classes and dependencies) that can be used to
improve the filtering power.

Acknowledgements
The research is supported by the Czech Science
Foundation under the contract no. 201/04/1102 and by the
EMPOSME project under EU FP6 scheme.

References

Barták, R. 2006. Incremental Propagation of Time
Windows on Disjunctive Resources. In Proceedings of the
Nineteenth International Florida Artificial Intelligence
Research Society Conference, AAAI Press, pp. 25-30.
Barták, R.; Čepek, O. 2006. Incremental Filtering
Algorithms for Precedence and Dependency Constraints. In
Proceedings of the 18th IEEE International Conference on
Tools with Artificial Intelligence (ICTAI 2006). IEEE
Press (to appear).
Beck, J.Ch. and Fox, M.S. 1999. Scheduling Alternative
Activities. Proceedings of AAAI-99, USA, pp. 680-687.
Dechter, R.; Meiri, I. and Pearl, J. 1991. Temporal
Constraint Networks. Artificial Intelligence, 49:61.95.
Focacci, F.; Laborie, P.; and Nuijten, W. 2000. Solving
Scheduling Problems with Setup Times and Alternative
Resources. In Proceedings of AIPS 2000.
Garey, M. R. and Johnson, D. S. 1979 Computers and
Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman and Company, San Francisco.
Laborie, P. 2003. Resource temporal networks: Definition
and complexity. In Proceedings of the 18th International
Joint Conference on Artificial Intelligence, pp. 948-953.
Moffitt, M. D.; Peintner, B.; and Pollack, M. E. 2005.
Augmenting Disjunctive Temporal Problems with Finite-
Domain Constraints. In Proceedings of the 20th National
Conference on Artificial Intelligence (AAAI-2005), pp.
1187-1192. AAAI Press.
Nuijten, W.; Bousonville, T.; Focacci, F.; Godard, D.; Le
Pape, C. 2003. MaScLib: Problem description and test bed
design, http://www2.ilog.com/masclib
Stergiou, K., and Koubarakis, M. 1998. Backtracking
algorithms for disjunctions of temporal constraints. In
Proceedings of the 15th National Conference on Artificial
Intelligence (AAAI-98), pp. 248-253. AAAI Press.
Tsamardinos, I.; Vidal, T. and Pollack, M.E. 2003. CTP: A
New Constraint-Based Formalism for Conditional
Temporal Planning. Constraints, 8(4):365.388.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

