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Abstract 
Temporal Networks play an important role in solving 
planning problems and they are also used, though not as 
frequently, when solving scheduling problems. In this paper 
we propose an extension of temporal networks by parallel 
and alternative branching. This extension supports 
modelling of alternative paths in the network; in particular, 
it is motivated by modelling alternative process routes in 
manufacturing scheduling. We show that deciding which 
nodes can be consistently included in this extended temporal 
network is an NP-complete problem. To simplify solving 
this problem, we propose a pre-processing step whose goal 
is to identify classes of equivalent nodes. The ideas are 
presented using precedence networks, but we also show how 
they can be extended to simple temporal networks. 

Introduction 

Scheduling problems typically deal with allocating known 
activities to available resources and time. Real-life 
problems are usually more complex than existing 
theoretical models and, for example, they also require 
selection among alternative process routes or alternative 
resources in complex manufacturing enterprises. Due to 
efficiency issues, selection of alternative processes and 
resource allocation are frequently done separately from 
scheduling. However, this also has several drawbacks. 
First, if the selected route or resource allocation cannot be 
scheduled, it is necessary to backtrack from the scheduling 
module to resource allocation and process selection 
modules. Second, even if the resource allocation and 
selected routes are feasible, separating the allocation and 
process selection algorithms from the scheduling algorithm 
may ruin the quality of the solution. Hence, a better result 
will be obtained when process selection and resource 
allocation is done within scheduling. While resource 
allocation is now an accepted part of scheduling problems 
and there exist approaches for doing resource allocation 
within scheduling, for example (Focacci, Laborie, and 
Nuijten 2000), process selection is still treated separately. 
 In this paper we propose an extension of temporal 
networks that can model alternative process routes. We 
describe the main ideas using networks with only 
precedence relations, but at the end of the paper we also 

show how these ideas can be extended to simple temporal 
networks. To model selection of alternatives, we assign a 
validity variable to each node in the network. This validity 
variable indicates whether the node is selected or not to be 
in the final solution plan. The decision about 
validity/invalidity of the node is done by the solver. We 
also augment the precedence network by a description of 
splitting and joining operations that implicitly define 
dependencies between nodes in the network. The 
dependency relations specify which nodes must/cannot be 
valid in relation to the validity status of other nodes. The 
main motivation for these operations goes from modelling 
manufacturing processes. The nodes correspond to 
activities (or more precisely start times of activities) and 
the arcs describe flow of products between the activities. In 
some nodes the manufacturing process can split into two or 
more parallel sub-processes that can join back to a single 
process. For example, a piece of wood is cut in parts that 
are processed in parallel and then assembled together to a 
final product. This is called parallel branching. Another 
form of branching is alternative branching when the 
process also splits in sub-processes, but these sub-
processes are treated as alternatives so exactly one of them 
is used. The alternative sub-processes can also join back to 
a single process (Figure 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Graph of parallel (top) and alternative processes with a 

selected process. 



In the paper we formally define the above-described 
precedence graph with parallel and alternative branching 
that we call a P/A graph. We also show that the problem 
whether there exists an assignment of validity variables 
consistent with the specified branching is NP-complete. 
Hence there is a little hope for a fast solving algorithm so 
we plan to model the problem as a constraint satisfaction 
problem. To support constraint modelling, we propose a 
pre-processing step where sets of equivalent nodes are 
identified in the P/A graph. We call the nodes equivalent, if 
their validity status is identical in all solutions, that is, such 
nodes are either all valid or all invalid in any consistent 
assignment of validity variables. This will help us to bridge 
alternative routes and consequently improve the constraint 
model. We conclude the paper by showing that the 
presented ideas can be extended to simple temporal 
networks. We compare our proposal with existing works 
on temporal networks. Namely, we demonstrate that our 
P/A simple temporal networks can model temporal 
constraint satisfaction problems. 

P/A Graphs 
Let G be an acyclic graph. A subgraph of G is called a fan-
out subgraph if it consists of nodes x, y1, …,yk (for some 
k) such that each (x,yi), 1 ≤ i ≤ k, is an arc in G. Similarly, 
a subgraph of G is called a fan-in subgraph if it consists of 
nodes x, y1, …,yk (for some k) such that each (yi,x), 1 ≤ i ≤ 
k, is an arc in G. In both cases x is called a principal node 
and all y1, …,yk are called branching nodes. G is called a 
P/A graph if the description of the graph (list of nodes and 
arcs) is accompanied by a list of pairwise edge-disjoint fan-
out and fan-in subgraphs, where each subgraph on the list 
is marked either as a parallel subgraph or an alternative 
subgraph. An assignment of 0/1 (false/true) values to nodes 
of a given P/A graph is called feasible if  
• in every parallel subgraph all nodes are assigned the 

same value (both the principal node and all branching 
nodes are 0 or both the principal node and all branching 
nodes are 1), 

• in every alternative subgraph either all nodes (both the 
principal node and all branching nodes) are 0 or the 
principal node and exactly one branching node are 1 
while all other branching nodes are 0. 

It can be easily noticed that given an arbitrary P/A graph 
the assignment of the value 0 to all nodes is always 
feasible. On the other hand, if some of the nodes are 
required to take value 1 (as we shall see later, this 
requirement is a very natural one if the P/A graph is used 
to model a real-life problem), then the existence of a 
feasible assignment is by no means obvious. Let us now 
formulate this decision problem formally.  
Definition: P/A graph assignment problem is given by a 
P/A graph G and a list of nodes of G which are assigned 
value 1. The question is whether there exist a feasible 
assignment of 0/1 values to all nodes of G which extends 
the prescribed partial assignment. 

Remark: The above problem remains the same if we allow 
forcing the value 1 for just a single vertex. To see this, 
observe that the general case can be reduced to this special 
one by adding an extra vertex, forcing it to 1 and 
connecting it by a fan-in (or fan-out) parallel subgraph to 
all nodes that were forced to 1 originally. Moreover, if the 
original graph was acyclic, then so is the new one. 

Proposition 1: The P/A graph assignment problem is NP-
complete. 

Proof: The problem is obviously in NP, because it suffices 
to guess the assignment and test its feasibility, which can 
be done in linear time in the number of parallel and 
alternative subgraphs (and hence in the number of edges). 
For the NP-hardness, we shall show that the 3SAT 
problem, which is known to be NP-complete (Garey and 
Johnson, 1995), can be reduced (in a polynomial time) to 
the P/A graph assignment problem. Recall that the 3SAT 
problem is a problem of deciding whether there exists a 
model (a satisfying assignment of truth values to 
propositional variables) for a given formula in a 
conjunctive normal form, where each clause in the formula 
consists of exactly three literals. Moreover we may assume 
that no variable appears twice in a single clause, i.e. each 
clause consists of literals of three distinct variables. 
 Now we shall describe how to construct, for a given 
CNF (an instance of 3SAT), an instance of the P/A graph 
assignment problem. Consider e.g. a clause (a ∨ b ∨ ¬c). 
There exist seven mutually exclusive assignments of truth 
values to variables a, b, and c satisfying this clause (each 
assignment except of a=false, b=false, c=true is a satisfying 
one). We can model this clause using a “clause subgraph” 
which consists of a node for the clause, seven nodes for the 
mutually exclusive satisfying assignments, and six nodes 
for the values of propositional variables (three for positive 
values and three for negative values, i.e. one for each 
literal). The clause node is connected to all assignment 
nodes by a fan-out alternative subgraph and each value 
node is connected to appropriate assignment nodes (those 
assignment nodes containing the literal which corresponds 
to the given value node) by a fan-in alternative subgraph. 
The following figure shows the clause subgraph for the 
clause (a ∨ b ∨ ¬c), where capital letters in the assignment 
nodes represent value false (so e.g. aBc corresponds to 
a=true, b=false, c=true). 
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Each clause from the input CNF will be modelled using a 
clause graph with the above-described structure. To 
connect the clause graphs, we introduce a formula node 
and connect it with all clause nodes by a fan-out parallel 
subgraph. The formula node is forced to take the value 1 
(because we need the formula to be satisfied). A variable 
which is used in more than one clause will have value 
nodes in all clause graphs where it appears. To 
interconnect these value nodes we introduce for each 
variable in the formula a variable node, which is forced to 
take the value 1, and two literal nodes connected to the 
variable node by a fan-in alternative subgraph. Finally, 
each literal node is connected by a fan-in parallel subgraph 
to all value nodes in clause graphs which correspond to the 
given literal. The following figure shows these additional 
nodes and connections (the shaded nodes are the nodes that 
are forced to take the value 1). 
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First let us observe that the number of nodes in the 
constructed P/A graph is linear in the size of the input CNF 
formula. Namely, if there are M clauses and N variables 
(and hence L = 3M literals) in the input CNF, then we get a 
graph with (14M + 3N + 1) nodes. Because 14M + 1 ≤ 5L 
and N ≤ L (assuming each variable appears at least once in 
the formula) we get that there are at most 8L nodes in the 
constructed P/A graph. 
 Now let us assume that the input CNF has a satisfying 
assignment. We shall construct a feasible assignment of the 
constructed P/A graph as follows. All clause nodes will get 
the value 1 to satisfy the parallel fan-out from the formula 
node. The literal nodes of each variable will get the 0 and 1 
values as defined by the satisfying assignment of the input 
CNF (e.g. if variable b is false in the satisfying assignment, 
then the node b gets the value 0 and the node ¬b gets the 
value 1). This satisfies the alternative fan-in into the 
variable nodes, and moreover it defines the 0 and 1 values 
for all value nodes via the parallel fan-ins that replicate the 

literal values into all clause subgraphs. Finally, for each 
clause exactly one assignment node is made valid, namely 
the one in which all three literals are valid, which satisfies 
the alternative fan-out from the clause nodes. It remains to 
show that also all alternative fan-ins into value nodes are 
satisfied. So let us consider an arbitrary value node. If it 
corresponds to a valid literal then it is connected to exactly 
one valid assignment node (the one where also the other 
two literals are valid), and if it corresponds to an invalid 
literal then it is connected only to invalid assignment nodes 
(see figure below). In both cases this is exactly what we 
need and hence the constructed assignment of 0/1 values to 
all nodes is feasible. 
  
 
 
 
 
 
 
 

 
To complete the proof let us assume that there exists a 
feasible assignment of 0/1 values to all nodes of the 
constructed P/A graph. In this assignment: 
• All clause nodes have value 1 to satisfy the parallel fan-

out from the formula node. 
• For each clause exactly one assignment node has value 

1 to satisfy the alternative fan-out from the clause 
nodes. 

• For each variable one literal node has value 1 and the 
other has value 0 to satisfy the alternative fan-ins into 
the variable nodes. The literal values are replicated into 
the value nodes by the parallel fan-ins into the literal 
nodes. 

Now let us check that the truth assignment defined by the 
values assigned to the literal nodes satisfies the input CNF. 
To this end let us pick an arbitrary clause and assume by 
contradiction that it is falsified. That means that the three 
valid value nodes correspond to the only missing 
combination among the assignment nodes, or in other 
words, that the valid assignment node must be connected to 
an invalid value node. However, this is a contradiction, 
because the corresponding fan-in subgraph into this value 
node spoils the feasibility of the assignment (the principal 
node is 0 while one of its branching nodes is 1). Hence, the 
input CNF has a satisfying assignment if and only if the 
constructed P/A graph has a feasible assignment. 

Q.E.D. 

P/A Graph Pre-processing 
Because solving the P/A graph assignment problem is hard, 
we now focus on inferring some information from the 
graph that can be used later to improve solver efficiency. In 
particular, we describe an algorithm for finding equivalent 
nodes in the P/A graph. We call a set of nodes of the P/A 
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graph equivalent if and only if the nodes are assigned the 
same value in all feasible assignments of 0/1 values to 
nodes. The problem of finding the largest possible sets of 
equivalent nodes is probably hard (but we have no formal 
evidence of it yet), therefore at this stage we focus on 
discovering certain typical situations only. The most 
important situation we want to recognize consists of a 
process which splits in several sub-processes in alternative 
branching and all these sub-processes join afterwards. 
Principal nodes where the production process splits and 
sub-processes join back again are equivalent. We are 
looking for the algorithm that can discover at least such 
equivalence classes. 
 The proposed algorithm has two phases. In the initial 
phase an undirected hyper-graph is constructed from the 
input P/A graph. The constructed hyper-graph has almost 
the same structure and represents almost the same 
information about the production processes as the original 
P/A graph. Only the directions of arcs and hence 
precedence relations are omitted, which is not a problem 
because the input P/A graph is acyclic so the precedence 
relations trivially hold (actually, the precedence relations 
are used only to define fan-in and fan-out subgraphs in 
acyclic P/A graphs). 
 The second and major phase of the algorithm repeatedly 
transforms the given hyper-graph using certain 
transformation rules into a simpler and more explicit 
hyper-graph. Sets of equivalent nodes of the input P/A 
graph are built along these transformation steps. This phase 
terminates when no transformation rule can be applied or 
when a conflict in the hyper-graph is detected. 
 
 
 
 
 
 

 

 

 

 

 
Figure 2. Example of P/A graph with PAR/ALT annotation. 

Initial Phase of the Algorithm 
Let ),( EVG =  be a P/A graph represented as sets of 
marked fan-in and fan-out sub-graphs (Figure 2). We 
construct a hyper-graph ),( FVH =  over the same set of 
nodes V in the following way. Let the set of hyper-edges F 
be empty at the beginning. 

For each fan-in parallel sub-graph over nodes 
kyyyx ,...,,, 21 , where x  is the principal node, insert 

edges (trivial hyper-edges) }}{},{{ iyx  for ki ≤≤1  
into F. 

Fan-out sub-graphs marked as parallel are treated in 
the same way as fan-in parallel sub-graphs. 

For each fan-in alternative sub-graph over nodes 
kyyyx ,...,,, 21 , where x  is the principal node, insert 

non-trivial hyper-edge }},...,,{},{{ 21 kyyyx  into F. 

As in the case of parallel branching, fan-out sub-
graphs marked as alternative are treated in the same 
way as fan-in alternative sub-graphs. 

 
Informally speaking, we use the same nodes in the hyper-
graph as in the P/A graph. For each arc that is a part of 
parallel branching in the P/A graph we add an edge 
between the same nodes in the hyper-graph. For a set of 
arcs that form alternative branching in the P/A graph, we 
add a non-trivial hyper-edge connecting the same nodes in 
the hyper-graph (a black dot in Figure 3). We use the 
convention that an edge with the same structure is added 
only once (we do not allow multi-edges). Figure 3 shows a 
hyper-graph constructed for the P/A graph from Figure 2. 
 The last step of the initial phase is constructing the 
initial equivalence classes. Let us denote vQ  the 
equivalence class for Vv∈ . Initially we set }{vQv =  for 
every Vv∈ . The constructed hyper-graph ),( FVH =  with 
associated equivalence classes is used as the input for the 
transformation phase of the algorithm. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. Hyper-graph corresponding to the P/A graph. 

Transformation Phase of the Algorithm 
The goal of the transformation phase is to modify the 
hyper-graph while preserving the equivalence classes. This 
is realized by three transformation rules that update the 
hyper-graph by adding derived hyper-arcs. During these 
updates, the initial equivalence classes are being joined  
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Edge contraction rule. The first transformation rule 
contracts an edge. An edge Fvu ∈}}{},{{  can be 
contracted if for any non-trivial hyper-edge FyX ∈}}{,{  

1}){(},{ ≤∪∩ yXvu . The case when an edge cannot be 
contracted is treated separately. The edge contraction rule 
represents standard operation from graph theory. 
 Let Fvu ∈}}{},{{  be the edge that can be contracted. 
Then the following steps are carried out. Erase the vertex 
v  by assigning: }{vVV −←  and vuu QQQ ∪← . Edges 
and hyper-edges which have v  as an endpoint need to be 
modified to form a correct hyper-graph without v . If there 
is an edge Fvx ∈}}{},{{ , where ux ≠ , replace the edge 

}}{},{{ vx  by }}{},{{ ux . If there is a non-trivial hyper-
edge FvX ∈}}{,{  then replace the hyper-edge }}{,{ vX  
by }}{,{ uX . If there is a non-trivial hyper-edge 

FyX ∈}}{,{ , where Xu∉ , Xv∈  and uy ≠  then 
replace it by hyper-edge }}{},{}){{( yuvX ∪− . 

Hyper-edge extension rule. If there are non-trivial hyper-
edges FYx ∈}},{{  and FZy ∈}},{{ , where Yy∈  and 

}{)}({)}({ yZyYx =∪∩∪  then add a new hyper-edge 
}}{},{{ yZYx −∪  into F . It may happen that the new 

edge generated by this rule is already present in the hyper-
graph from another reason. Then the rule does not change 
the hyper-graph. 

Hyper-edge meet rule. If there are non-trivial hyper-edges 
FYx ∈}},{{  and FwZ ∈}}{,{ , where wx ≠  and YZ ⊆  

then add a new hyper-edge }}{)(},{{ wZYx ∪−  into F . 
Again the rule has no effect if the edge generated by this 
rule is already present in the hyper-graph. A special case of 
this rule when YZ =  results in addition of a new edge. 
The edge generated in this case allows further contractions 
subsequently. 
 This transformation rule in cooperation with the 
previous rule can discover the situation when a production 
chain splits into several alternatives and all these 
alternatives join again. 

Conflict detection rule. The case when an edge that 
cannot be contracted occurs in the hyper-graph indicates a 
conflict. This conflict means that some validity variables 
are forced to be 0. The current version of the algorithm is 
not able to handle this situation so this rule terminates the 
algorithm and reports a conflict to the user. 

 If any of the above-defined transformation rules cannot 
be applied, the algorithm terminates with success. After 
successful termination the node equivalence classes 
associated with nodes remaining in the final hyper-graph 
represent sets of equivalent nodes. Figures 4 and 5 
illustrate several steps of the transformation phase. The 
algorithm finishes with the following equivalence classes 
{a,b,c,d,e,f,g,A,B}, {j,q,v}, and {k,w}. 
 Figure 4 shows a hyper-graph that we obtained from the 
hyper-graph in Figure 3 by repeatedly applying the edge 
contraction rule. Namely, we contracted all edges between 
nodes a and g so we obtained a single node that describes 
equivalence class {a,b,c,d,e,f,g}. We also contracted 
edges{{j},{q}} and {{q},{v}} and got a node with 

equivalence class {j,q,v}. Finally, we contracted edge 
{{A},{B}} to obtain a node with equivalence class {A,B}. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Hyper-graph after edge contractions. 

The hyper-graph in Figure 5 was obtained by applying the 
hyper-edge meet rule to hyper edges {{k},{r,t}} and 
{{w},{r,t}} that lead to adding a new edge {{k},{w}}. 
This edge was then contracted to find a new equivalence 
class {k,w}. The new bottom hyper-edge {{A},{u,j,k}} was 
then obtained by applying the hyper-edge meet rule using 
hyper-edge {{u},{x,y,z}}. The new top hyper-edge was 
obtained by applying hyper-edge extension rule. 

 
 
 
 
 
 
 
 
 

 
 

Figure 5. Hyper-graph after extension and meet rule application. 

If we apply further the hyper-edge extension rule to the 
bottom hyper-edge we will obtain two hyper-edges that 
meet which will later lead to joining equivalence classes 
{a,b,c,d,e,f,g} and {A,B} (not shown). 

Correctness of the algorithm 
We shall show now that the algorithm is correct, that is, it 
returns groups of equivalent nodes. We can easily define 
feasible assignment of 0/1 values to nodes of the hyper-
graph. This definition should ensure that an assignment of 
0/1 values to nodes of the original P/A graph is feasible if 
and only if it is feasible for the corresponding hyper-graph 
(the correspondence between P/A graph and hyper-graph is 
determined by the initial phase of the algorithm). 
 Let us denote U Vv vQQ ∈= . An assignment 

}1,0{: →Qval  in hyper-graph ),( FVH =  is feasible if 
and only if for every edge Fvu ∈}}{},{{  )()( vvaluval =  
and for every non-trivial hyper-edge FvU ∈}}{,{  

)()( vvaluvalUu =∑ ∈ . Nodes in the same equivalence class 
associated with a given node have assigned the same value. 
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 To prove the correctness of the algorithm it is sufficient 
to show that hyper-graph transformation rules preserve 
feasible assignments. 

Proposition 2 (correctness of edge contraction). An 
assignment }1,0{: →Qval  in hyper-graph ),( FVH =  is 
feasible if and only if it is feasible for hyper-graph after 
application of the edge contraction rule. 

Proof. Let Fvu ∈}}{},{{  be the contracted edge. For 
Fvx ∈}}{},{{ , where ux ≠  feasibility for hyper-graph 

H  forces )()( vvalxval =  and )()( vvaluval = . Feasibility 
for hyper-graph after edge contraction forces 

)()( uvalxval =  since  }}{},{{ vx  is replaced by }}{},{{ ux  
and )()( vvaluval =  since uQv∈ . These two conditions 
are clearly equivalent. 
 For hyper-edge FvX ∈}}{,{  feasibility for H  forces 

)()( vvalxvalXx =∑ ∈  and )()( vvaluval = . Feasibility for 
hyper-graph after edge contraction forces 

)()( uvalxvalXx =∑ ∈  since }}{,{ vX  is replaced by 
}}{,{ uX  and )()( vvaluval =  since uQv∈ . We again 

obtained equivalence of both conditions. 
 Finally for hyper-edge FyX ∈}}{,{ , where Xu∉ , 

Xv∈  and uy ≠ , feasibility for H  forces 
)()( yvalxvalXx =∑ ∈  and )()( vvaluval = . Feasibility for 

hyper-graph after edge contraction forces 
)()()()( yvaluvalvvalxvalXx =∑ +−∈  and 

)()( vvaluval =  since uQv∈ . These conditions are again 
equivalent. 

Q.E.D. 

Proposition 3 (correctness of hyper-edge extension). An 
assignment }1,0{: →Qval  in hyper-graph ),( FVH =  is 
feasible if and only if it is feasible for hyper-graph after 
application of the hyper-edge extension rule. 

Proof. Let FYx ∈}},{{  and FZy ∈}},{{ , where Yy∈  
and }{)}({)}({ yZyYx =∪∩∪  be the non-trivial hyper-
edges that are selected to form a new hyper-edge in 
resulting hyper-graph. Feasibility for hyper-graph H  
requires Σz∈Y val(z) = val(x), Σz∈Z val(z) = val(y), and 
Σz∈Y val(z) + Σz∈Z val(z) – val(y)  = val(x). It is exactly the 
condition forced by the feasibility in the resulting hyper-
graph. 

Q.E.D. 

Proposition 4 (correctness of hyper-edge meet). An 
assignment }1,0{: →Qval  in hyper-graph ),( FVH =  is 
feasible if and only if it is feasible for hyper-graph after 
application of the hyper-edge meet rule. 

Proof. Let FYx ∈}},{{  and FwZ ∈}}{,{ , where zx ≠  
and YZ ⊆  be the non-trivial hyper-edges on which the 
rule is applied. Feasibility for hyper-graph H requires that 

)()( xvalyvalYy =∑ ∈  and )()( wvalzvalZz =∑ ∈  which is 
equivalent with the requirement 

)()()()( xvalwvalzvalyval ZzYy =∑ +∑ − ∈∈ . 
Q.E.D. 

Temporal Networks with Alternatives 
So far we assumed acyclic graphs describing precedence 
relations between nodes and we focused on the logical 
aspects of the network, namely selecting the nodes to 
satisfy parallel and alternative branching. Nevertheless, in 
real-life problems we usually need a finer time resolution 
so we can extend precedence relations to simple temporal 
relations. It means that each arc (X,Y) in a P/A graph is 
annotated by a pair of numbers  [a,b] where a describes the 
minimal distance between nodes X and Y and b describes 
the maximal distance, formally, a ≤ Y-X ≤ b. We call the 
resulting graph a P/A simple temporal network. Now the 
problem is to decide validity of nodes satisfying parallel 
and alternative branching and to assign time (number) to 
each valid node in such a way that all simple temporal 
relations between valid nodes are satisfied. We call the 
problem of deciding whether a feasible assignment of 
validity and time variables exists a P/A simple temporal 
network assignment problem. Again, we assume that 
validity of some nodes is set to 1 (otherwise, there is a 
trivial solution where all nodes are invalid). This is a 
typical situation when the proposed temporal network is 
used to model real-life problems. The last nodes in the 
structure of alternative process routes typically describe 
delivery to a customer. Because the delivery must be 
fulfilled and we can just select alternative ways how to do 
it, these nodes must be valid. 
 Recall, that there exist polynomial algorithms for 
checking consistency of simple temporal networks 
(Dechter, Meiri, and Pearl 1991) so solving simple 
temporal problems is “easy”. However, as we showed 
above adding parallel and alternative branching makes the 
problem hard.  

Proposition 5: The P/A simple temporal network 
assignment problem is NP-complete. 

Proof: The problem is obviously in NP, because it suffices 
to guess the assignment and test its feasibility, which can 
be done in linear time in the number of arcs. The P/A 
simple temporal network is a generalisation of P/A graph 
in the following sense. For any P/A graph we can construct 
a P/A simple temporal network where all temporal 
constraints are in the form [0,∞]. Now, there exists a 
feasible assignment to the P/A graph if and only if there 
exists a feasible assignment to the corresponding P/A 
simple temporal network. Moreover, if we assume that all 
time variables are set to 0, which trivially satisfies all 
temporal constraints, we get one-to-one mapping between 
assignments. Hence, the P/A simple temporal network 
assignment problem is NP-complete. 

Q.E.D. 
 
It may seem that we can further generalise the framework 
by using a disjunction of simple temporal relations. 
Formally, each arc (X,Y) is annotated by a set of number 
pairs [ai,bi] for i=1,..,n with the following meaning 
∨i=1,..,n ai ≤ Y-X ≤ bi. Nevertheless, this generalisation does 



not increase the expressive power of the framework 
because we already have alternatives there. In fact, arc 
(X,Y) with a disjunctive constraint ∨i=1,..,n  ai ≤ Y-X ≤ bi 
can be substituted by a sub-network with simple temporal 
constraints as Figure 6 shows. Note that auxiliary nodes x’ 
and y’ are necessary to keep fan-out subgraph with 
principal node X or fan-in subgraph with principal node Y 
(if such subgraphs exists) “isolated” from the newly added 
fan-out and fan-in subgraphs (otherwise we may have more 
than one fan-out or fan-in subgraph branching out of or in 
the same node, namely X or Y). Nodes x’ and y’ are 
equivalent in the sense described in the previous section 
and the algorithm presented there can detect this 
equivalence. 
 
 
 
 
 
 
 

 
Figure 6. Modelling disjunctions of temporal constraints. 

Because our framework covers SAT problems, we believe 
that it should be possible to model arbitrary temporal 
disjunctions as specified in disjunctive temporal networks 
(Stergiou and Koubarakis 1998). Nevertheless, we did no 
formal analysis in this direction yet because our application 
area (manufacturing scheduling) assumes only specific 
temporal disjunctions describing disjunctive resources. To 
handle these disjunctions, we plan to use existing 
constraints for disjunctive resources. For example the 
paper (Barták 2006) presents such a constraint that can 
handle activities with the validity status. 

Example 
So far we have discussed mainly the theoretical 
background of our proposal, so let us now present an 
example showing how the proposed framework can model 
a real-world problem. Consider the manufacturing of 
pistons where each piston consists of a rod and a tube that 
need to be assembled together to form the piston. Each rod 
consists of the main body and a special kit that is welded to 
the rod (the kit needs to be collected from warehouse and 
then assembled). The rod body is sawn from a large metal 
stick. The tube can also be sawn from a larger tube. Both 
rod body and tube must be collected together from the 
warehouse to ensure that their diameters fit. If the tube is 
not available, it can be bought from an external supplier. In 
any case some welding is necessary to be done on the tube 
before it can be assembled with the rod. Finally, between 
sawing and welding, both rod and tube must be cleared of 
metal cuts produced by sawing. Assume that welding and 
sawing operations require ten time units, assembly 
operation requires five time units, clearing can be done in 

two time units, and the material is collected from 
warehouse in one time unit. If the tube is bought from 
external supplier then it takes fifty time units to get it. 
Moreover, tube and rod must cool-down after welding 
which takes five time units. 
 The above problem could be easily modelled using a 
simple temporal network if there is no alternative whether 
to produce the tube in-house or buy it. Our proposal is 
focused exactly on this type of problems where (exclusive) 
alternatives must be modelled. Figure 7 shows a P/A 
simple temporal network modelling the problem. Each 
operation is modelled using a single node in the network 
indicating the start time of the operation. Note that neither 
disjunctive temporal networks nor other existing 
extensions of temporal networks can model this problem. 

Figure 7. Example of manufacturing process with alternatives. 

Related Works 

The intended application area for the proposed framework 
is manufacturing scheduling. There exists a benchmark set 
MaScLib by ILOG (Nuijten at el. 2003) which contains a 
formal description of real-life manufacturing scheduling 
problems. This description includes the concept of validity 
variables and logical dependencies between them. 
Temporal and logical relations are modelled separately 
there and various binary logical relations can be defined 
between the validity variables. Our framework defines the 
logical dependencies via branching in the temporal graph. 
According to our experience this is satisfactory for 
modelling manufacturing (and other) processes. Moreover, 
we believe that the coupled definition will lead to more 
efficient filtering algorithms that use together temporal and 
logical information. In (Barták and Čepek, 2006) we 
already showed that integrated filtering of precedence and 
dependency constraints significantly reduces solving time. 
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 We are not aware about another approach that can 
handle alternative process routes in the same generality as 
the proposed P/A simple temporal networks. The paper 
(Focacci, Laborie, and Nuijten 2000) describes a graph 
concept for modelling alternative processes, but it cannot 
be used for alternative routes because all activities must be 
present. Probably the closest approach to our proposal is 
the work by Beck and Fox (1999) on modelling alternative 
processes using PEX (probability of existence) variables. 
In our framework we focus on logical validity variables 
(PEX uses an interval of real numbers 〈0,1〉) but the main 
ideas of propagation are very similar. Using validity 
variables instead of PEX values simplifies integration to 
existing constraint solvers and we believe that using logical 
deduction during pre-processing can generate additional 
input to the filtering algorithm. 
 Our work is naturally related to temporal networks as we 
proposed an extension of simple temporal networks. We 
already showed that the proposed framework covers 
Temporal Constraint Satisfaction Problems (Dechter, 
Meiri, and Pearl 1991). Disjunctive Temporal Network 
(Stergiou and Koubarakis 1998) is another approach to 
handling temporal alternatives. We have no formal 
comparison to our P/A simple temporal network yet, but 
our ambition is slightly different from DTN – we model 
alternative routes rather than any temporal disjunction. 
 Recently several other extensions of temporal networks 
appeared like resource temporal networks (Laborie 2003) 
or disjunctive temporal networks with finite domain 
constraints (Moffitt, Peintner, and Pollack 2005). These 
extensions integrate temporal reasoning with reasoning on 
non-temporal information, like fluent resources. Our 
ambition is to extend existing constraint-based scheduling 
by some planning decisions, namely selection of 
alternative processes. So we extended temporal reasoning 
by logical reasoning on existence of nodes in the network. 
Actually, the possibility to decide about validity/invalidity 
of the node is the main difference of our approach from the 
above mentioned works on temporal networks where all 
nodes must always be present. 
 There exists Conditional Temporal Planning 
(Tsamardinos, Vidal, and Pollack 2003) where existence of 
node in the network depends on some condition. Though 
there is some similarity in modelling alternative 
processes/plans, satisfaction of condition in CTP depends 
on external forces – Nature – rather than being an internal 
relation between the nodes. In our approach, decision of 
validity of the node is done internally based on logical 
relations between the nodes. 

Conclusions 
The paper reports a work in progress on extension of 
simple temporal networks for handling alternative process 
routes. We focused on formalization of the this new 
modelling framework, showing its complexity, and 
proposing a pre-processing step for extracting information 
about logically equivalent nodes from the network. We are 

currently working on filtering algorithms for removing 
inconsistencies from the network based on ideas of 
constructive disjunction. We believe that the pre-
processing phase can feed the filtering algorithm by useful 
information about implied logical relations (such as 
equivalence classes and dependencies) that can be used to 
improve the filtering power. 
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