
 
 

 

  

Abstract—In this work, we introduce a new heuristic TEMCQ 

(Tabu Exponential Monte-Carlo with Counter) for solving exam 

timetabling problems. This work, an extension of the EMCQ 

(Exponential Monte-Carlo with Counter) heuristic that was 

originally introduced by Ayob and Kendall. EMCQ accepts an 

improved solution but intelligently accepts worse solutions 

depending on the solution quality, search time and the number of 

consecutive non-improving iterations. In order to enhance the 

EMCQ heuristic, we hybridise it with tabu search, in which the 

accepted moves are kept in a tabu list for a certain number of 

iterations in order to avoid cyclic moves. In this work, we test 

TEMCQ on the un-capacitated Carter’s benchmark examination 

timetable dataset and evaluate the heuristic performance using 

standard proximity cost. We compare our results against other 

methodologies that have been reported in the literature over recent 

years.  Results demonstrate that TEMCQ produces good results 

and outperforms other approaches on several benchmark 

instances.   

I. INTRODUCTION 

xamination timetabling deals with the allocation of a 

number of exams to a given number of timeslots while 

satisfying a set of constraints (see Carter and Laporte [1]). 

The constraints for exam timetabling are typically divided 

into two categories: hard and soft. Hard constraints are 

rigidly enforced and cannot be violated under any 

circumstances. For example, there cannot be any students 

sitting two exams at the same time. A timetable that is able to 

satisfy all of the hard constraints is feasible. Soft constraints, 

such as allowing sufficient time between exams in order to 

give students enough time to revise, should be satisfied as far 

as possible. Soft constraints may vary from one academic 

institution to another [2]. However, due to the complexity of 

the problem, it is not usually possible to generate solutions 

without violating some of these soft constraints. In order to 

minimise a violation of soft constrains, a penalty cost is 

attached to each violation. The measurement of the quality of 

an exam timetable is based on the value of the penalty cost 

given. A lower penalty shows a better quality of exam 

timetable.  

 To date, many approaches have been designed to solve 

 
 

timetabling problem. For example: graph based heuristics 

[3][4], basic local search [5][6][7], tabu search [8][9], 

simulated annealing ([10]), genetic algorithms [11], memetic 

algorithms [2][12] great deluge algorithms [13], Ant 

Colony[14], particle swarm optimization[15] and Fuzzy 

Reasoning[16]. These methodologies have been successfully 

applied to timetabling problems. Further information about 

exam timetabling can be found in [17-22]. 

In this work, we hybridise tabu search and EMCQ 

heuristics in order to take advantage of tabu list that can 

memorise recent moves. When a new search is carried out, it 

will search for a solution space by excluding neighbours that 

have restricted by a tabu list. When designing tabu search, it 

is important to fine-tune the parameters according to the 

problem in hand. Such parameters include the tabu tenure 

and the stopping conditions.   

In 2007, Abdullah et al. [23] developed a large 

neighbourhood search for different optimization problems 

which was based on the improvement graph construction 

methodology, originally developed by Ahuja and Orlin [30]. 

A tree-based neighbourhood structure was designed to carry 

out cyclic exchanges among the timeslots, rather than the 

more traditional pair-wise exchange based operators that 

were more commonly employed. Then, they stored improved 

moves in a tabu list for a certain number of Tabu tenure. 

This approach reported the best results on several Carter’s 

dataset problems at the time of its publication. However, one 

of the limiting factors of applying this method in solving 

exam timetabling problems is the fact that it requires a great 

deal of computational time to generate a solution.  

In 2001White and Xie [31] developed a four-stage Tabu 

Search called OTTABU. Using an exam timetabling problem 

from the University of Ottawa, their approach showed that 

solutions could be gradually improved by considering a 

greater number of constraints at each stage of the process.  In 

addition to utilising recent short term memory, long term 

memory was also used to record the frequency of the most 

active moves in the search history. They determined the size 

of the long term memory by analyzing the less important 

exams in the problem first.  

Based on the capability of memorising previous moves 
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using the tabu list, in this work, we propose a new heuristic 

(TEMCQ) that embeds a tabu list within the EMCQ 

(Exponential Monte-Carlo with Counter [29]) algorithm. We 

utilise graph coloring heuristics (hybridisations of Least 

Saturation Degree, Largest Degree first and Largest 

Enrolments First heuristics) in constructing the initial 

solution (see Ayob et al. [28]). The solution is then improved 

by an adaptive TEMCQ heuristic search. The aim of this 

work is to investigate the effectiveness of combining a tabu 

list with EMCQ in searching for good quality solutions. In 

order to demonstrate the performance of TEMCQ heuristic, 

we test the heuristic on un-capacitated (where the size of the 

room is disregarded) Carter’s [27] examination timetabling 

datasets (type I, see [18]). In this work, we use standard 

proximity cost [27] to evaluate the quality of timetable. 

II. TABU EMCQ HEURISTIC 

EMCQ (Exponential Monte-Carlo with Counter) heuristic 

was introduced by Ayob and Kendall [29]. The EMCQ 

algorithm is quite similar to a simulated annealing approach. 

The difference is that, no cooling schedule is required. 

EMCQ always accepts improving solutions. A non-

improving solution is adaptively accepted based on the 

solution quality, search time and the number of consecutive 

non-improving iterations (i.e. a period where the search is 

trapped in a local optima). In order to accept the non-

improving moves, a random number [0, 1] is generated. The 

move is accepted if the generated random number is less than 

e
-Θ/λ   where Θ=δ*t, λ=P (Q). δ is the difference between the 

previous and trial solutions (i.e. δ = f (Sol*)-f (Sol) where f 

(Sol*) and f(Sol) are the quality of the trial solutions and 

previous solution, respectively) and t is an iteration counter. 

P(Q) is a function to intelligently control Q, where Q is the 

number of consecutive non improving moves. This work 

uses λ=Q (selected based on preliminary experiments) in 

order to adaptively control the acceptance probability. The 

probability of accepting a worse solutions decreases as the 

number of iterations increase. However, if there is no 

improvement over a series of consecutive iterations, then the 

probability of accepting worse solution will increase 

accordingly with regard to the quality of the trial solution, as 

well as the search time. 

In this work, we enhance the EMCQ heuristic by 

hybridising it with a tabu search algorithm. We utilise a short 

term memory in tabu search in order to improve the search 

process in the EMCQ heuristic. Any event (i.e. exams in this 

case) that have been involved in a move are added to the 

tabu list (in this work, it has a length of 4, 6 and 8). The 

exams in the tabu list are prohibited to be chosen for the next 

move for a certain number of iterations. Thus, we give more 

opportunity to other exams to be considered in performing 

moves that may result in better quality solutions and attempt 

to avoid cyclic moves.  All examinations in the tabu list will 

change to non tabu status after a limited number of 

successful iterations are reached (i.e. accepted moves). We 

set the tabu tenure value based on preliminary experiments.   

Let us consider a solution space S; an objective function f 

and a neighborhood structure n. Figure I present the pseudo-

code for our proposed method, TEMCQ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Generate Initial Solution, Sol; calculate the initial cost, f (Sol);  

Set best solution, Solbest← Sol; f (Solbest) ← f (Sol);  

Set maximum number of iterations, Max-Iter=MAX_ITER; Maximum 
tabu length, MaxT_Length=MAX_T_LENGTH; Maximum 
consecutive Un-improvement, Max_Un-improvement =MAX_Un-
improvement;  

Set Tabu list length, T_Length=0; Tabu tenure, T_Tenure=0; Q=1; 
Number of Iteration, T=0; Un-improvement =0; 

Do while (T < Max-Iter)  

{ Generate a feasible neighbor solution, Sol* that is not restricted by 
a tabu list and calculate f (Sol*);  

Calculate δ = f (Sol*)-f (Sol); 

If (f (Sol*) <= f (Sol))  

{ Sol ← Sol*; f (Sol) ← f (Sol*);   

Q=1; Un-improvement=0; 

Remove first item from the tabu list if T_Length >= 
MaxT_Length 

Add new move into the end of tabu list; T_Length++; 

 If (f (Sol*) < =f (Solbest))  

  {    Solbest ← Sol;   f (Solbest) ← f (Sol) ;} 

} 

Else  

{ Generate a random number R between [0, 1];  

If (R ≤ e-δ*T/Q)       

{     

Sol ← Sol*;    f (Sol) ← f (Sol*);    

Q=1;   Un-improvement=0;  

Pop out the first item from the tabu list if T_Length >= 
MaxT_Length 

Add new move into the end of tabu list; T_Length++; 

} 

Else    

{ Un-improvement= Un-improvement+1; 

 If (Un-improvement== Max_Un-improvement) 

 { Q=Q+1; Un-improvement=0 ;}  

} 

} 

T=T+1; 

} end while; 
Return the best solution, Solbest and f (Solbest

 t
).     

 

Figure I: TEMCQ algorithm 
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The algorithm starts by generating a feasible, initial 
solution. In this work, we construct an initial solution using 
graph coloring heuristics that hybridise least saturation 

degree, largest degree First and largest enrolments First 
(LS+LD+LE) heuristics proposed in Ayob et al. [28]. Then, 
we initialise all the parameters. Next, we iteratively generate 
a feasible trial solution. The feasible trial solution is a new 
solution, that is not restricted by Tabu List and that satisfies 
all the hard constraints. In this work, a trial solution is 
generated by randomly moving an event (exam) to another 
clash free timeslot. Once a new feasible solution, Sol* is 
obtained, we calculate the quality of the new solution and 
compare with the quality of the incumbent solution. The 
quality of the solution is measured using the standard 
Proximity Cost (see [27]). If there is an improvement (or 
even make the same quality), we accept the new solution and 
replace it with the incumbent solution (i.e. Sol← Sol*), then 
we also update the best solution (Solbest← Sol; f(Solbest)← 
f(Sol)) if f(Sol*)<=f(Solbest). We also accept the same quality 
solution because the new solution is different from the old 
solution and accepting it might help avoid becoming trapped 
in a local optima.  

However, in order to escape from a local optima, a 
worse solution is adaptively accepted with a probability that 
depends on Q (the number of consecutive non-improvement 
iterations), solution quality (δ) and search time (t). A worse 
solution is more likely to be accepted if δ is small or Q is 
large. This is a diversification factor where the search will 
diversify when it is trapped in a local optima. The 
intensification factor is controlled by a parameter T. That is, 
the larger the value of T, the more unlikely we are to accept 
a worse solution.  

In this work, we increase Q by 1 when a limited number 
of consecutive, non-improving moves (the number of 
consecutive non-improving was chosen based on preliminary 
experiments) are reached. The idea of TEMCQ is to ensure 
that we only accept a moderately worse solution after most 
of the neighborhood of the current solution has been 
explored and none of them are found to be better than the old 
solution. The accepted move will be added to the end of 
Tabu List and we remove the first item from the tabu list if 
its length is greater than a pre-defined number. That is, each 
exam will stay in tabu list for a certain number of accepted 
moves (tabu tenure) in order to avoid cyclic moves. This 
procedure is repeated until we reach the number of iterations 
(Max-Iter).     

III. EXPERIMENTS AND RESULTS 

The algorithm was tested on Carter’s un-capacitated 
exam timetabling benchmark datasets [27] (type I, [18]). We 
perform our experiment on 12 datasets (10 runs for each 
datasets). The characteristics of datasets are shown in Table 
I. Our algorithm was implemented using Visual C++ and 
tested on a PC with an AMD Athlon 1.92 GHz processor, 
512 RAM and Windows XP 2002.  

The results of this experiment (best result out of ten 
runs) are presented in Table 2 and are comparable to the 

current state-of-the-art approaches reported in the literature. 
The best results obtained from literature and our works are 
shown in bold. 

In this work, tabu tenure and the limited number of 
consecutive non-improving were selected after thorough 

testing for each instance. We have tested number of different 
alternative values and the ones selected are those that gave 
the best results concerning both the quality of the solution 
and the computational time needed to achieve this solution. 
Thus, the selected tabu tenure values are 4, 6 and 8 whilst 
the limited numbers of consecutive non-improving are 10, 
10, and 8 respectively. The best result over the 12 datasets is 
obtained when the value of tabu tenure=4, the limited 
number of consecutive non-improving=10 for (Car-f-92, 
Car-s-91, Tre-s-92, Uta-s-92, Yor-f-83), tabu tenure=6, the 
limited number of consecutive non-improving=10 for (Ear-f-
83, Hec-s-92) and tabu tenure=8, the limited number of 
consecutive non-improving=8 for (Kfu-s-93, Rye-s-93, Ute-
s-92) respectively .  

TEMCQ outperforms other well known approaches that 
have been reported in the literature (with regards to 
examination timetabling) in solving five instances (i.e. Car-f-
92, Car-s-91, Tre-s-92, Uta-s-92 and Yor-f-83). However, 
Although TEMCQ shows the worst solutions for ( Rye-s-93), 
we belief, TEMCQ might be able to produce good quality 
solutions (comparable to other well-known approaches) if 
parameter modifications are applied such as changing tabu 

tenure, tabu list length or the number of consecutive non-
improvements. This will be reported in our future work after 
performing further experiments.  

 

TABLE I 
UN-CAPACITATED STANDARD CARTER BENCHMARK EXAM TIMETABLING 

DATASET 

DATASETS Number 
of 

timeslots 

Number of 
examinations 

Number 
of 

students 

Car-f-92 32 543 18419 

Car-s-91 35 682 16925 

Ear-f-83 24 190 1125 

Hec-s-92 18 81 2823 

Kfu-s-93 20 461 5349 

Lse-f-91 18 381 2726 

Rye-s-93 23 486 11483 

Sta-f-83 13 139 611 

Tre-s-92 23 261 4360 

Uta-s-92 35 622 21267 

Ute-s-92 10 184 2750 

Yor-f-83 21 181 941 
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IV. CONCLUSIONS 

We have presented a new heuristic, Tabu EMCQ 
(TEMCQ) that hybridizes tabu search with Exponential 
Monte-Carlo with Counter (EMCQ). TEMCQ always 
accepts improving solutions. Worse solutions are adaptively 
accepted based on the quality of a trial solution, the search 
time and the number of consecutive non-improving 
iterations. That is, a trial solution may be accepted based on 
the EMCQ’s acceptance criterion. If this happens, a new 
solution must be sought by exploring new neighborhoods. 
The EMCQ method will check the probability of accepting a 
worse solution. This may prevent the search from becoming 
trapped for a long time depending on the number consecutive 
non- improving moves and the quality of the trial solution. In 
this case, the parameters can be intelligently controlled by 
automatically increasing the desired number of the non-
improvement counter, Q. 

The accepted moves will be added to Tabu List to avoid 
cycling moves during the search process. In addition, this 
restriction could give more opportunity to other events to be 
considered in performing moves that may result in better 
quality solutions. Results demonstrate that TEMCQ is very 
promising and can be used to produce good quality solutions 
that are comparable to other published results (for solving 
examination timetabling). This work also demonstrates that 
embedding a tabu list with EMCQ has produced a good 
heuristic search. We believe that TEMCQ could also be 
applied to other problem domains. 
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