Fal Y

’;‘“‘%Q HOKKAIDO UNIVERSITY

N

Title Adapting the Learning Rate of the Learning Rate in Hypergradient Descent
Author(s) Itakura, Kazuma; Atarashi, Kyohei; Oyama, Satoshi; Kurihara, Masahito
2020 Joint 11th International Conference on Soft Computing and Intelligent Systems and 21st International Symposium
Citation on Advanced Intelligent Systems (SCIS-ISIS), 1-6
https://doi.org/10.1109/SCISISIS50064.2020.9322765
Issue Date 2020-12
Doc URL http://hdl.handle.net/2115/80339
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
Rights any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
g creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.
Type proceedings

File Information

itakura-scisisis2020.pdf

L

Instructions for use

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

Adapting the Learning Rate of the Learning Rate in
Hypergradient Descent

Kazuma Itakura*, Kyohei Atarashi*, Satoshi Oyama’* and Masahito Kurihara?
*Graduate School of Information Science and Technology, Hokkaido University
tGlobal Institution for Collaborative Research and Education, Hokkaido University
J:Faculty of Information Science and Technology, Hokkaido University
Kita 14, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0814, Japan
kazuvabo03 @eis.hokudai.ac.jp, {katarashi, oyama, kurihara} @ist.hokudai.ac.jp

Abstract—Gradient descent is a widely used optimization
method. The adjustment of the learning rate is an important
factor in improving its performance, and many researchers have
investigated methods for automatically adjusting the learning
rate. One such method, hypergradient descent, automatically
adjusts the learning rate by using gradient descent. However,
it introduces the ‘learning rate of the learning rate,” and an
appropriate value for the learning rate of the learning rate must
be chosen in order to effectively adjust the learning rate. We
investigated the use of two datasets and two optimization methods
for doing this and achieved an effective adjustment of the learning
rate when the objective function was convex and L-smooth.

Index Terms—optimization, hypergradient descent, adjusting
learning rate

I. INTRODUCTION

Optimization methods are used in machine learning to find
values for model parameters @ that minimize loss function
f(@). A typical machine learning problem is classification,
i.e., predicting an output label for input data. When training a
machine learning model for classification, we search for values
of parameters @ that minimize loss function f(6) defined by
the difference between the true label and the model output
label. Since the choice of the optimization method affects clas-
sification accuracy and training time, optimization methods are
important to improving the performance of machine learning.

The widely used gradient descent optimization method
searches for optimal parameter values by gradient updating
of the parameter values:

9t+1 =0, *a‘vf(ot)a (D

where « is the learning rate. The adjustment of « is important
for improving the performance of gradient descent. Choosing
an appropriate value for the learning rate reduces the training
time, so optimal values can be searched for more quickly.
On the other hand, choosing an inappropriate value lengthens
the training time, and optimal values may never be found
in the worst case. Many researchers in the machine learning
field have investigated methods for automatically adjusting the
learning rate, and several methods based on gradient descent
have been reported, including Adagrad [1], Adadelta [2], and
Adam [3].

The hypergradient descent (HD) method [4] enables au-
tomatic adjustment of the learning rate by using gradient

descent. In other words, HD searches for the optimal learning
rate by hypergradient updating of the learning rate along with
updating of the parameter values. The hypergradient is the
gradient of a loss function with respect to the hyperparameters.
It was proposed by Maclaurin et al. [5]. The equation for
updating learning rate o,

Oyl = O — B Vaf(et)a)

follows the equation for updating 6 (Eq. (1)); V. f(0:) is
the hypergradient with respect to «, and [is the learning
rate of a. HD can be applied to not only Eq. (1) but also
to equations used to update the parameters in many methods
based on gradient descent by adding Eq. (2) after updating the
parameter values.

However, an appropriate value for the “learning rate of the
learning rate” 3 introduced in HD must be chosen. As it is for
«, if an appropriate value for 3 is chosen, the learning rate
is effectively adjusted. In contrast, if an inappropriate value is
chosen, the convergence of the learning is slower, and learning
rate @« may become negative in the worst case.

We investigated methods for adapting a value for the
learning rate of the learning rate 5 to lead to an effective
adjustment of learning rate o when the loss function is convex
and L-smooth. Many previous studies on HD have chosen
a value for 5 using an experimental search method such as
grid search and random search. While several researchers have
suggested a specific appropriate value for S, there has been no
reported research that experimentally proved that the specific
value certainly leads to an effective adjustment of «. In this
paper, we demonstrate the appropriateness of the method for
adapting a value for S by solving classification problems.

In section 2, we describe HD and present the method for
adapting a value for 3. In section 3, we describe an experiment
demonstrating that the ([value presented in section 2 is
appropriate by solving classification problems. Future work
is mentioned in section 4, and the key points are summarized
in section 5.

II. HYPERGRADIENT DESCENT

HD automatically adjusts the learning rate by hypergra-
dient updating of the learning rate. In this section, we first
explain the hypergradient aspect of HD. Next, we describe the

derivation of the HD update equation and present examples of
HD applied to stochastic gradient descent (SGD) and Adam.
Finally, we present the method for adapting a value for the
learning rate of the learning rate.

A. Hypergradient

The hypergradient is the gradient of a loss function with
respect to a hyperparameter and is searched for by means
of automatic differentiation in reverse mode [6]. Automatic
differentiation analytically searches for the value of the gradi-
ent. Specifically, we search in reverse mode for values of the
gradients of intermediate variables with respect to a hyperpa-
rameter while tracing the procedure used to search for optimal
parameter values through training with the hyperparameter. An
intermediate variable is the result of a simple equation that is
a component of the entire training procedure, which explicitly
models the dependence on the hyperparameter. The product of
all gradients at the intermediate variables with respect to the
hyperparameter gives the hypergradient due to the chain rule
of differentiation.

There are two requirements for searching for the hypergra-
dient. First, the intermediate variables must be differentiable
for the hyperparameter. For example, we can not search for the
hypergradient with respect to the depth of the decision tree be-
cause the depth does not explicitly appear in the intermediate
variables, and the intermediate variables are not differentiable.
Second, sufficient memory is needed to hold the intermediate
variables. All of the intermediate variables are used to trace
the training procedure in reverse mode. The bigger the dataset
for training, the greater the amount of memory needed to hold
the intermediate variables and the longer the training time. In
HD, the amount of memory required is reduced by searching
for an approximated hypergradient.

B. Overview of Hypergradient Descent

HD iteratively updates the learning rate along with itera-
tively updating the parameter values using

Qp = Op—1 *ﬂ'vaf(et—l)v 3)
0, =0, 1—0o-Vf(6:i_1), “4)

where V,f(0;—1) is the hypergradient of loss function
f(6;_1) with respect to learning rate «, and ¢ is the number
of iterations. We can search for hypergradient V,, f(6;—1)
because the intermediate variables are all the 8 and « values
used in the ¢ — 1 iterations. The hypergradient explicitly
depends on a.

If we searched for exactly V,f(6;—1), the training time
and required memory could become huge. In HD, the hyper-
gradient is searched for as an approximate value that depends
only on the previous iteration. This reduces the training time
and required memory. By combining Eqgs. (3) and (4), we can
rewrite V,, f(0;-1) as

Vaf(etfl) =Vaf (0t72 — Q- Vf(etfz)) . &)

The approximate value, which depends only on the previous
iteration, does not reflect dependence with respect to the «

Algorithm 1 Stochastic gradient descent with HD
Require: «g, f:(0),00,0
f/, V“uo — 0, 0
while 6, not converged do
t+—t+1
gi < Vfi(0:1)
hi <= g¢ - Vaug_1
ap o1 — -y
Uy < —OQ - Gy
Valty < —gs
Ht “— 01571 + U
end while
return 0O,

Algorithm 2 Adam with HD
Require: o, 1(0),0, 3,51, P2, €
t,mg,vg, Vaug < 0,0,0,0
while 8; not converged do
t—t+1
gt <+ Vfi(0:-1)
hi < g¢ - Vaug_1
ap a1 — Ry
my < Br-my_1+ (1= 1) -g¢
vy PBovimr 4+ (1= B2) - g7
1y < my /(1 — B7)
Oy < vy /(1 — B)
U < —Oy - mt/(\/ﬁj—i—e)
Vau + —mt/(\/’a + 6)
0 0; 1 +uy
end while
return 6,

Fig. 1. Algorithms for SGD with HD and Adam with HD.

of 0;_5 and V f(0;_2) on the right side of Eq. (5). In other
words, V, f(6:—1) is calculated as

Vaf(81) = V50, 1) 0
sty L0z THO0)
=V/f(0i-1) - (=V[(6:-2)). (6)

Finally, we insert Eq. (6) into Egs. (3) and (4), so the HD
update equations are expressed as

ar=a;1+B-Vf(0i_1) Vf(0;_2), @)
0, =0, 1— 0 -Vf(0i_1). ¥

Egs. (7) and (8) show that only two procedures are needed
to adjust the learning rate. One saves the gradients from
the previous iteration Vf(6;_2) and the current iteration
Vf(6:-1), and the other calculates the inner product between
the two gradients.

Furthermore, we can apply HD to many methods based on
gradient descent. Eqgs. (7) and (8) are the update procedure
for SGD with HD. They can be replaced with equations for
the update procedures of other methods. This is illustrated in
Algorithms 1 and 2. The parts in red or blue are the parts to
be changed when applying HD to other methods.

As mentioned in section 1, the learning rate of the learning
rate [is introduced in HD, and we have to choose an
appropriate value for 3. Next, we present the method for
adapting a value for 3 to lead to effective adjustment of the
learning rate.

C. Adapting the learning rate of the learning rate

Rubio suggested that adapting 3 as 1/ (L ||Vf(0t,2)H2)
leads to effective adjustment of the learning rate when the
loss function is convex and L-smooth [7]. However, he did
not describe a specific derivation of the value for 3. Here we
first determine whether the value for /3 suggested by Rubio is
reasonable.

We start by rewriting the equation for updating learning rate
« in HD (Eq. (5)):

ap =001 — - Vaf(@r—2—a-V[f(0;_2))
=ai1—f- vagtfl(a% &)

where we define function g;_1(«) as f(0i—2—a-V f(0;_2)).
The effective adjustment of o means that the value for loss
function f(0) is effectively reduced as € is updated. Moreover,
when g;_1(«) decreases as « is updated, f(0) also decreases
as @ is updated. That is, the value for S used to reduce g;_1 (@)
as « is updated leads to effective adjustment of « in HD.

Eq. (9) is the same as the update equation in gradient
descent for g;_1(«) that has « as parameters. If the loss
function is convex and L-smooth, learning convergence is
guaranteed in gradient descent. We can prove Theorem 1 in a
manner similar to that used by Bubeck [8].

Definition 1. Let C' be a convex set. A function f: C' — R
is convex if for every u,v € C and « € [0,1] [9, p.157],

flau+ (1 —a)v) <af(u)+ (1 -a)f(v).

Definition 2. A differentiable function f : R? — R is j3-
smooth if its gradient is S-Lipschitz; namely, for all v, w we
have [9, p.162]

IVf(v) = VW) < Bllv—w].

Theorem 1. The gradient descent update equation for function
£(8) with respect to 0 is

0, =0, 1 —a -Vf(0i_1), (10)

where 0, is the parameter for t iterations and « is the learning
rate. If f is convex and L-smooth, « < 1/L, and 0 is updated
by gradient descent, then

16" — 6o]|”

100 =107 < F

where 0 is the optimal parameter value.

Proof: Because f is L-smooth, we have

L
F(00) < f(Or-1)+(VF(Br-1),0:=0r1) + (|0 — 0.
1D
By rearranging Eq. (10), we obtain
6:—1—0
VI(O1) = == (12)

Combining Egs. (11) and (12), because o < 1/L, we obtain

L
f(0:) < f(0i-1) +(VF(01-1),0: —O0:_1) + 3 16 — 01671”2
1 L
< f(Oim1) — = 10: — 0] + = 110, — 8,1
« 2
1
< f(O1) = 5160 =61 (13)

Because f(0:) — f(0:—1) < 0, f(6:) is monotone non-
increasing.
Moreover, because f is convex, we have

f(07) = f(6:-1) + Oi-1).
Combining Egs. (13) and (14), because «« < 1/L, we have

(Vf(6:-1),0" — (14)

1
—0;1)— % 16 — ;1]
(15)

£(60) < (67)~ (V1 (8:-1).6"
The (Vf(0;-1),0" — 6;_1) is rewritten as

(Vf(0:-1),6" — 6,1)

= é(gt_l —0:,0"—06;_1)

= 5o (16 60— 0"~ 0,
16"~ 6:al)

100 = 6:a = 6" = 00 *)
(16)

—16; — 6,1

1 .
— (6~ 6| -
e}

Therefore, by combining Egs. (15) and (16), we obtain
* 1 * *
100 = 1(0") < 5= (16" = 01]* ~ 0"~ 84J°) . 17)

Adding all inequalities from 1 to ¢ in Eq. (17), we obtain
t
> (T (6%))
k=1
t
Z((Il - wlfww—wm)

k=1
1 * *
= o= (116" = 00 ~ 6" — 6:]*) . as)

Also, because f(8;) is monotone non-increasing, we have

<> U (67)).

k=1

f(6y) — (19)

N\H

Thus, by combining Eqgs. (18) and (19), we obtain the target
inequality:

7(0,) - %Z ")
=1
<5 t(\w* 00>~ 6" — 0:/1°)
6"~ 6ol
- 2at

|

Next, consider the requirement for the loss function f(0)

for making g(«) convex and L-smooth. Because we defined

g(a) as f(@,_2 — a - Vf(0,—2)), Theorems 2 and 3 hold.
Moreover, we can show Theorem 4 holds from Theorem 3.

Theorem 2. Assume that f : RY — R can be written as
f(w) = g({w,x) +y) for some x ER% y €R, and g : R —
R. Then, convexity of g implies convexity of f [9, p.115].

Theorem 3. Let f(w) = g({w,x) + b), where g : R — R is
a B-smooth function, x € R% and b € R. Then, fi
smooth [9, pp.162—163].

Theorem 4. Let f(w) = g(Xw + b), where g : R™ — R
is an L-smooth function, X e R™*" w € R", and b € R™.
Then, f is L ||X||F-sm00th where ||XH% is the square of the
Frobenius norm (HXHF =>", Z L),

Proof: Due to the chain rule of differentiation, we have
Viw) =X -Vg(Xw+b).

Thus, by combining the facts that | Xw|| < ||X|| [|w| and
that g is L-smooth, we obtain

IVf(w) = Vf(w)|

= [X(Vg(Xw + b) — Vg(Xw + b))

< X g [[Vg(Xw + b) — Vg(Xw + b)|

<X g - L[[X(w — w)

2 _

< L|[X|fp [[w = wl|.

Therefore, f is L ||X\|%—smooth. |
If loss function f is convex and L-smooth, g;_; is convex

and L ||V f(0;_2)||*-smooth from Theorems 2 and 3. Because

of Theorem 1 and the form of the function g; ;, we can
effectively adjust the learning rate in HD by adapting 3 as

1/ (LY f(0r-2)]

Finally, we show an example loss function that is convex
and L-smooth and an appropriate value for 3 for that function.
Cross-entropy loss function I between output y of the single-
layer perceptron and true label t is

y = X0 +b,
eyi

n b
v
Z_j:l ew

n
- E tizi,
i=1

Zi =

SGD with HD Adam with HD
beta=0.1 beta=0.1
10 1 -=-- beta=0.001 —-=-- beta=0.001
—-—-- beta=1le-05 -—-- beta=1le-05
17 ——- beta=1e-07 wn 100 —-—- beta=1e-07
8 —— beta_adapted 8 —— beta_adapted
o o2]
C C
© ©
- -
]]
14
10000 A
& & 1000 4
o o
s S 0o
i | =
© © X
B B 10y A
© © S
> > [~~e
1 \\,’_l ~d
>
0.14 104
1
»
g 0.014 0.1 "'\‘
o i\
S T
W N f\’l i
0-001 4 0.001 4LV v
s v _—/F""[\"
T T i
o001y oy b =My AN
0.0001 ! i.: R
0 5 10 15 20
epoch

Fig. 2. Convergence of learning using Mixed National Institute of Standards
and Technology (MNIST) dataset for SGD with HD and Adam with HD.
Row: top: training loss; middle: validation loss; bottom: value of c. Color
corresponding to value of f3: yellow: 10™1; blue: 1073; green: 10~5;
magenta: 10=7; red: adapted 3 as 1/(L ||V f(0:—2)||?).

where X is the input data, 8 is a parameter, b is the
bias term, and t¢;, y;, and z; are the i-th element of each
vector. Function E is convex and 1-smooth with respect to
y [10]. Therefore, function E is convex and ||X||%—smooth
with respect to 6 because of Theorem 4. By adapting 3
as 1/(||X||;||Vf(0t_2)||2), we can effectively adjust the
learning rate.

III. EXPERIMENT

The experimental results show that adapting [as
1/(L ||V f(8:—2)||?) leads to effective adjustment of the learn-
ing rate if the loss function is convex and L-smooth regardless
of the datasets and optimization methods used.

A. Settings

We experimentally examined the appropriateness of the
value for [by solving classification problems. We used
MNIST and CIFARI10 datasets, which predict an output label
for input images, to investigate learning convergence for

10 SGD with HD 10 Adam with HD
o1k beta=0.1 o beta=0.1
70 --- beta=0.001 2h --- beta=0.001
6 .'|/\z‘ -==- beta=1le-05 6 —-—=- beta=1le-05
[7)) ,' ¥ \ -—- beta=1le-07 (7)) —=-~- beta=1le-07
5 \ 5
8 | \—— beta_adapted 8 —— beta_adapted
= 41 — 4
o o
C C
@© W ©
P 2 D —
-~ == B
1 1
10 . 10
af 94
81 11 ! 81
7100 1) 71
" o 0 i
AN 2 .
[} 1
- AN -
c 4 AR c 4
S it A S
B3 e NN 53
~ v S v
© v v (©
i) o) AN
= L% = L]\ e e~
© © =
> >
1 1
104 101
1
TN
B 7 1 -
© 1 A o 0170 -\ N ’\'1| s
c 0.1 n c v v o I/ H 'l
[oX i\ [} 1 R
© d N A © I [
@G 0.014 ! NN AN © 40014 A A
I [v 1) N |
AR R AR A HH
0.001 M |]
1t 1 [1 [[Jig:} LA i
[T R N— iy S 1INy IoViALET
4 "i‘li,ft?lr" i :-k\, 1e-057 | M i S AN
000014 vy (itabi| iy I ISR T
1 [111 1 - 1 1 il
0 5 10 15 20 0 5 10 15 20
epoch epoch
Fig. 3. Convergence of learning using Canadian Institute For Advanced

Research (CIFAR)-10 database for SGD with HD and Adam with HD.
Row: top: training loss; middle: validation loss; bottom: value of c. Color
corresponding to value of f3: yellow: 10™1; blue: 1073; green: 1077;
magenta: 10~7; red: adapted 8 as 1/(L ||V £(04—2)?)

various combinations of the two datasets and two optimization
methods: SGD with HD and Adam with HD (Algorithms 1
and 2, respectively). We adapt 3 as 1/(HX||?: IV £(0:—2)[%).
which we refer to as “adapted 3”. To utilize the value chosen
for B (see section 2), we used the cross-entropy function
between the output of a single-layer perceptron and the true
label as the loss function, which was convex and HXH%-
smooth. We compared learning convergence when [was
fixed at a value taken from the set {1071, 1073,107°,1077}
and when [was “adapted 7. The initial value of learning
rate o was 107* regardless of the dataset and optimization
method. We implemented the algorithm for this experiment by
modifying the source code published by Baydin in github'.

B. Results and discussion

Fig. 2 plots the learning results in each setting for the
MNIST dataset. The results demonstrate that the appropriate

Uhttps://github.com/gbaydin/hypergradient-descent

value for 3 depends on the optimization method. The plots
for SGD with HD show that the learning converged relatively
quickly when 3 was fixed at 10~2 (blue) or 10~° (green).
Those for Adam with HD show that the learning converged
relatively quickly when 3 was fixed at 1075 or 10~7 (ma-
genta). Moreover, the learning did not converge when /3 was
fixed at 103 using Adam with HD while they did converge
using SGD with HD. In short, when 3 was a fixed value, the
learning converged only with a specific optimization method.
In contrast, when “adapted 5~ (red) was used, the learning
converged using both SGD and Adam with HD.

Fig. 3 shows the learning results in each setting for the
CIFARI10 dataset. Comparison of Figs. 2 and 3 shows that
the appropriate value for S depends on the dataset. When
B was fixed at 10~! (yellow) or 1072 in Adam using the
MNIST dataset, the learning did not converge because 5 was
too large. In contrast, in Adam using the CIFARI10 dataset,
even when 3 was fixed at 1075, the learning did not converge
because 3 was too large. That is, when was a fixed value,
the learning converges only for a specific dataset. In contrast,
when “adapted 5” (red) was used, the learning converged for
both datasets.

The bottom two plots in Figs. 2 and 3 show that “adapted
B effectively adjusted the learning rate. When the learning
did not converge when 3 was fixed, the learning rate diverged
in a disorderly manner. In contrast, when “adapted 5~ was
used, the learning rate converged to a certain value. When f3
was fixed, the learning rate converged to a certain value in
most cases in which the learning converged.

This experiment shows that adapting [as
1/(L ||V f(8:—2)||>) leads to effective adjustment of the
learning rate for various combinations of datasets and
optimization methods. When 3 was a fixed value, the learning
converges only in specific settings. The use of “adapted 3” is
feasible in multiple experimental settings.

IV. FUTURE WORK

Here we assumed that the loss function is convex and L-
smooth in order to facilitate chosing the appropriate value for
(. Of course, many real problems in machine learning do not
meet this assumption. Thus, to solve such problems, we need
an appropriate value for 8 when the loss function is neither
convex nor L-smooth.

Moreover, because J is a learning rate, it can be adjusted
using HD. In that case, (3 itself would be effectively adjusted
in exchange for adding the learning rate of . Future work
thus includes investigating what happens when the number of
learning rates to adjust increases.

V. CONCLUSION

Hypergradient descent enables learning rate « to be auto-
matically adjusted using gradient descent. However, using it
introduces the learning rate of the learning rate 3, requiring
that we choose an appropriate value for 3 in order to effec-
tively adjust . We investigated methods for adapting the value
for 8 regardless of the dataset and optimization method under

the assumption that the loss function is convex and L-smooth.
The experimental results showed that the learning converges
for various combinations of datasets and optimization methods
when /S is adapted as 1/ (L ||Vf(9t_2)||2>. This means that
an appropriate value for 3 can be chosen that leads to an
effective adjustment of learning rate « for such loss functions.

Extension of our investigation to non-convex and/or non-
L-smooth loss functions remains for future work, as does
applying HD to real problems in order to improve the utility
of HD.

(1]

(2]
(3]

(4]

(51

(6]

(7]
(8]
[9]
[10]

REFERENCES

J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, vol. 12, pp. 2121-2159, 2011.

M. D. Zeiler, “Adadelta: An adaptive learning rate method,” arXiv
preprint arXiv:1212.5701, 2012.

D. P. Kingma and J. L. Ba, “Adam: a method for stochastic optimiza-
tion,” in International Conference on Learning Representations, 2015,
pp. 1-13.

A. G. Baydin, R. Counish, D. M. Rubio, M. Schmidt, and F. Wood,
“Online learning rate adaptation with hypergradient descent,” in Inter-
national Conference on Learning Representations, 2018.

D. Maclaurin, D. Duvenaud, and R. Adams, “Gradient-based hyperpa-
rameter optimization through reversible learning,” in Proceedings of the
32nd International Conference on Machine Learning, 2015.

A. G. Baydin and B. A. Pearlmutter, “Automatic differentiation of
algorithms for machine learning,” ICML AutoML Workshop, Tech. Rep.,
2014.

D. M. Rubio, “Convergence analysis of an adaptive method of gradient
descent,” University of Oxford, Oxford, M. Sc. thesis, 2017.

S. Bubeck, “Convex optimization: Algorithms and complexity,” Foun-
dations and Trends in Machine Learning, vol. 8, pp. 231-357, 2015.
S. S. Shwartz and S. B. David, Understanding Machine Learning: From
Theory to Algorithms. Cambridge university press, 2014.

B. Gao and L. Pavel, “On the properties of the softmax function with
application in game theory and reinforcement learning,” arXiv preprint
arXiv:1704.00805, 2017.

