The Boolean Hierarchy and the Polynomial
Hierarchy: a Closer Connection

Richard Chang*
Jim Kadin

TR 89-1008
May 1989

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*This research is supported in part by NSF research grant DCR-8520597.

The Boolean Hierarchy and the Polynomial
Hierarchy: a Closer Connection

Richard Chang* Jim Kadin

Computer Science Department
Cornell University

Ithaca, NY 14853
May 18, 1989

Abstract

We show that if the Boolean hierarchy collapses to its k** level, then the polynomial
hierarchy collapses to the k** level of the difference hierarchy of £ languages.

1 Introduction

The Boolean hierarchy (BH) was defined by [CH86][Wec85] [CGH*88] as the difference
hierarchy of NP sets. In [Kad88a] it was shown that if the BH collapses at any level, then
the polynomial time hierarchy (PH) collapses to PNP "o@ogn)] the class of languages in
PNP™ that are recognized by deterministic polynomial time machines that make O(logn)
queries to an NPNF oracle. Since the BH is contained in PNP| this result showed that the
structure of classes above NP but within PNF is related to the structure of the PH as a
whole.

In this paper we extend the result of [Kad88a] by showing that if the BH collapses to
its kt* level, then the PH collapses to the k** level of the Boolean hierarchy within A}
(the difference hierarchy of NP"F languages). The k** level of the AL Boolean hierarchy
is contained within PNP" logk+1] the class of languages in pNPYY recognized by machines
that make at most [logk + 1] queries for all inputs. Therefore the collapse of the BH
implies that the languages within the PH can be recognized by deterministic polynomial
time machines that make a constant number of queries to an NP oracle, and the deeper
the collapse of the BH, the smaller this constant is.

The argument in [Kad88a] that the collapse of the BH implies the collapse of the PH
went as follows:

*Supported in part by NSF research grant DCR-8520597

e If the BH collapses to its k** level, then for each length n, the unsatisfiable Boolean
formulas of length n can be partitioned into “easy” and “hard” formulas. The easy
formulas can be recognized as unsatisfiable by a particular NP algorithm, and the
hard formulas cannot be recognized by the algorithm.

e The hard formulas are key strings in the sense that for each length n, sequences of
at most k — 1 hard formulas of length n contain enough information to allow an NP
machine to recognize all the unsatisfiable formulas of length n.

e A sparse set S was constructed by taking one sequence of hard formulas for each
length.

e Since co-NP C NP?| the results of Yap [Yap83] imply that PH C X%.
o By arguing further that S € NP"?| it was shown that PH C PNP™"[0(logn)] 1

In this paper we present a deeper analysis of the hard sequences. We show that it is
not necessary to choose a particular hard sequence to put into S. In fact a smaller amount
of information, contained in a sparse set T, is enough to allow a £} machine recognize &}
languages, i.e.

PNP

NPV C NPTOSAT,

Since T € NP™ and is almost a tally set (T is a subset of a P-printable set), we are able
to show that NPNP" is contained in the k** level of the AF Boolean hierarchy.

2 Definitions and Notation

We assume that the reader is familiar with the classes NP, co-NP, the polynomial time
hierarchy (PH), and the NP-complete set SAT.

Notation For any language L, L<" is the set of strings in L of length less than or equal
to n. L™" is the set of strings in L of length n.

Notation We will write 7; for the j** projection function, and 7 j) for the function that
selects the 7** through j** elements of a k-tuple. For example,

mi({z1,...,2k)) = T;

W(lvj)((x17 v ’xk)) = <‘T1, e ,xj).

Notation We will assume a canonical encoding of the polynomial time nondeterministic
oracle Turing Machines, Ny, N2, N3, ..., with effective composition, etc. Also, we will
assume that all polynomials and running times used in this paper are at least O(n) and
monotone increasing.

1Mahaney has found an error in the proof that the set S is in NPNF [Mah89]. Lemma 4.8 in [Kad88a] and
Lemma 6.4 in [Kad88b] are not correct. The argument presented in this paper does not use the erroneous
lemma and actually proves a stronger result.

Definition We write BH(k) and co-BH(k) for the k* levels of the Boolean hierarchy,
defined as follows:

BH(1) ¥ NP,
BH(k+1) ¥ {L,-L,| L, € NP and L, € BH(k)},
co-BH(k) ¥ {L|T e BH(k)}.

Definition We write BH3(k) and co-BH3(k) for the k* levels of the Boolean hierarchy
in AY, defined as follows:

BH3(1) ¥ NPNP,
BHs(k+1) ¥ {L;—Ly|L; € NP"? and L, € BH;(k)},
co-BH3(k) ¥ {L |T e BHs(k)}.
An equivalent way to define the BH is as follows [CGH*88]:
BH(1) ¥ NP,
BH(2k) ¥ {L|L =L'nT, where L' € BH(2k — 1) and L, € NP},
BH(2k+1) & {L|L =L'UL, where ' € BH(2k) and L, € NP},
co-BH(k) ¥ {L|T e BH(k)}.

From this definition, it is not hard to prove that the following languages are complete
for the respective levels of the Boolean hierarchy [CGH*88|:

Definition We write Lpyx) for the canonical complete language for BH(k) and Lco-BH(x)
for the complete language for co-BH(k):

Leu) ' SAT,

Lir(2k) def {(z1,...,22%) | (x1,...,T2k-1) € LBn(2k-1) and zox € SAT},
Lu(2k+1) def {{z1,...,z2k+1) | (z1,--.,T2) € Lnak) or Tax41 € SATY,
Leo-puay = SAT,

Leo-BH(2K) = {{(21,--+,22k) | (€1,- -, T2k-1) € Leo-H(zk—1) OF T2k € SAT},
Leo-BH(2k+1) = {(21,--,T241) | (21,-- -, 22k) € Leo-Bu(2k—1) and 2ax41 € SAT}.

Definition L,, and L,, are the canonical <F -complete languages for £f and Y respec-
tively:

Luz‘i—if{(Nj,x,li) | NjSAT(:v) accepts in < |z| + ¢ steps},

Luati:ef{(Nj,x,li) | NjL’” (z) accepts in < |z| + ¢ steps}.

3 An Example for BH(2) = co-BH(2)

If BH(2) = co-BH(2) then there is a reduction from Lpyz) to Leo-gH(2) Via some polynomial
time function h. So, if h(F1, F?) = (G1,Gz), then

F, € SAT and F, € SAT <= G; € SAT or G, € SAT.

The key is that A maps a conjunction to a disjunction. Both conditions of the conjunction
are met if just one of the disjuncts is met. In the easy case, if G, is satisfiable, then Fy
is satisfiable and F; is not satisfiable. This gives rise to an NP algorithm for recognizing
some of SAT: Given any formula F3, guess a formula F; with |F;| < |F;| and accept if
77'2°h(F1,F2) € SAT.

Formulas that can be recognized as unsatisfiable by this NP algorithm are said to be
easy. Formally, a Boolean formula F is easy if 3F; with |Fy| < |F| and m°h(Fy, F) € SAT.

If all unsatisfiable formulas are easy, then co-NP = NP. So it is likely that there are
hard unsatisfiable formulas. We say a formula F is hard if

1. F € SAT.
2. VFl with IF]| < |F|, 7!'2°h(F1,F) € SAT.

While the set of hard strings is probably not in NP (note that it is in co-NP), an
individual hard formula of length m encodes enough information to allow an NP machine
to recognize all of SAT-". Let F be a hard formula of length m. Suppose F} is any
formula of length < m and h(Fy, F) = (G1,G). Since F is hard, we know that F € SAT
and G € SAT. Recall that

F; € SAT and F € SAT <= G; € SAT or G € SAT.
Replacing F € SAT with “true” and G € SAT with “false”, we get
F, € SAT < G, € SAT,
or (by negating both sides of the iff)
F, € SAT <= G, € SAT.

So, given the hard string, F', an NP machine can recognize if F} € SAT=" by computing
G) = m°h(Fy, F) and verifying that G; € SAT. In other words, a hard formula of length
m and the reduction from BH(2) to co-BH(2) induce a reduction from SAT=™ to SAT.

The approach taken in [Kad88a] was to encode enough information into a sparse set S
so that an NP machine could get hold of a hard string of a given length or determine that
there was none. Then the NP5 machine could recognize SAT, implying that co-NP C NP
and that the PH collapses [Yap83].

In this paper we take a slightly different approach to show that the collapse of the BH
implies a deeper collapse of the PH. Rather than constructing a sparse oracle that allows
an NP machine to recognize SAT, we show that there is a smaller amount of information,
essentially a tally set, that allows an NPN* machine to recognize the complete language
for 5. For the case where BH(2) = co-BH(2), this information is the tally set

4

T % {1™ | 3 a hard formula of length m}.

Since the set of hard formulas is in co-NP, if we tell an NP machine that there is a
hard formula of length m, it can guess a hard formula and verify with one query that it is
hard. With that formula, the NPNY machine can produce an NP machine that recognizes
SAT ™. If we tell an NPNF machine that there are no hard formulas of length m, then it
knows that the “easy” NP algorithm recognizes all of SAT . In either case, the N pNP
machine can use its NP machine for SAT ' to remove one level of oracle querying from a
YP machine, and therefore recognize any ¥f language.

Since an NP machine can guess and verify hard formulas, T € N PNP. This implies
that a PNP"" machine can tell with one query if there are any hard formulas of a given
length. Since this is exactly what an NPN* machine needs to recognize a &% language, the
PNP™ machine can pass the information in one more NPN? query and therefore reco&nize
a TP language with only two queries. Hence BH(2) = co-BH(2) implies £§ C PNF i
the class of languages recognizable in deterministic polynomial time with two queries to
NPNP,

With more work, we can show that ¥¥ is actually contained in the second level of the
AY Boolean hierarchy.

4 Main Result

We can generalize the analysis of the previous section to higher levels of the BH by replacing
the concept of hard formulas with the concept of hard sequences of formulas. Just as an
individual hard formula could be used with the reduction from BH(2) to co-BH(2) to
induce a reduction from SAT to SAT, a hard sequence is a j-tuple that can be used with
a <P -reduction from BH(k) to co-BH(k) to define a <F -reduction from BH(k — j) to
co-BH(k — j).

Definition Suppose Lgpx) <P Leo-BH(k) Via some polynomial time function h. Then, we
call (1™, z,...,z;) a hard sequence with respect to h if j = 0 or if all of the following hold:

1.1<j<k-1.

2. |zj| £ m.

©w

z; € SAT.
4. (1™, z4,...,2;-1) is a hard sequence with respect to h.

5. Forall y;,...,y, € £<™ (where £ = k — j)
7T(+1°h(<y1,. ey Yes Ty . ,:L'1>) € SAT.

If (1™, zy,...,x;) is a hard sequence, then we refer to j as the order of the sequence and
say that it is a hard sequence for length m. Also, we will call a hard sequence mazimal if
it cannot be extended to a hard sequence of higher order. We say that j is the maximum
order for length m, if there is a hard sequence of order j for length m and there is no hard

5

sequence of order j + 1 for length m. Finally, when the individual strings zi,...,z; are of
no importance, we use the shortened notation (1™,7) instead of (1™, z4,..., ;).

Our proof that BH C BH(k) implies PH C BH3(k) is rather involved. All of our lemmas
and theorems start with the assumption that BH(k) = co-BH(k), or in other words, that
there exists a function A that is a <P -reduction from LiH(k) t0 Leo-BH(x)- First we show that
a hard sequence of order j for length m does indeed induce a reduction from Lpy_j) to
Leo-BH(k—j) (Lemma 1). Then we show that a maximal hard sequence for length m induces

a polynomial time reduction from SAT-" to SAT (Lemma 2). In Lemma 3 we argue
that given a maximal hard sequence, an NP machine can recognize an initial segment
of L,,, the canonical complete language for Y. Lemma 4 takes this a step further by
showing that given the maximum order of hard sequences for a length, an NPNP machine
can recognize an initial segment of L,,, the canonical complete language for £E. We then
define the set T which encodes the orders of hard sequences for each length, and we show
that T € NPNP (Lemma 5). We put all this analysis together in Theorem 6 and show that
BH(k) = co-BH(k) implies PH C PNP™" 1K,

Moving toward the AY Boolean hierarchy, we prove that an NP machine can recognize
if there is a hard sequence of order j for length m if it is given a hard sequence for a
polynomially longer length (Lemma 7). In Lemma 8 we show that the maximum order of
hard sequences for a length is enough information to permit an NPN* machine to recognize
when a string is not in Ly,; that is, the NPNP machine can recognize an initial segment
of a complete language for II5. Finally, this gives us the machinery to prove our main
theorem.

We start by showing that a hard sequence of order j for length m induces a reduction
from Lgu-j) to Leo-BH(k—j) for tuples of strings up to length m.

Lemma 1 Suppose Lpn) <P Leo-BH(k) Via some function h and (1™, zy,...,;) is a hard
sequence with respect to h. Then for all y;,...,y, € Z<™ (where £ =k — j)

(y15---,ye) € Leuey <= ma,0°h((y1,- -, 96,25, -+, 71)) € Leo-BH(t)-

Proof (by induction on j)
Induction Hypothesis P(j): For all yy,...,yx_; € BS™

(Y1y-- - Yk—j) € LBnk—j) <= T k-°h((¥1s- -+ Yk=j>Tjs- -, %1)) € Leo-BH(k-j)-

Base Case P(0): By the hypothesis of the lemma, h reduces Lpyk) to Leo-BH(k), SO

(y1,---,Yk) € Leugy <= h({y1,---,¥)) € Leo-BH(K)-
However, 7(1 x)°h({y1, - .. k) = h({y1,- -, Yk)), sO

(y1,---, k) € Leugy <= mar)°h((y1,---,¥)) € Leo-BH(k)-

Induction Case P(j +1): Suppose P(j) holds. Let £ = k — j. Let (1™, zy,...,z;41) be a
hard sequence. By the induction hypothesis, for all y;,...,y,1 € ZS™

(Y1,---»¥e-1,Tj41) € Leuy <= 70,0°h((y1,- -, Yt=1,Tj415- -, 1)) € Leo-BH(0)-

If £ is even, then by the definitions of Lpy(,) and Leo.-BH(e)

(1‘1, .. ,$t-1) € LBH(l—l) 7T(1,t—1)°h((y1, e Y1, 5415 - - - ,551)) € Lco-BH(l-l)
and zj4; € SAT or moh({y1,---,Ye-1,Tjt1,-..,21)) € SAT.

If £ is odd, then by the definitions of Lpy(s) and Leo.-BH(e)

(z1,...,Te1) € LBH(e-) T(1,e-1)°h((Y15 - - - Ye-1,Tj41, - -, 1)) € Leo-BH(-1)
or z;41 € SAT and meh({y1,..-,Ye-1,Zj41,.--,21)) € SAT.

or (by negating both sides of the iff),

(z1,...,2e-1) & LBH(e-1) T(1,e-1)°h((Y15 - - - Ye—1,Tj41, - -, 1)) & Leo-BH(e-1)
and 41 € SAT or moh({y1,---,Ye—1,Tj41,---,21)) € SAT.
Since (1™, z1,...,zj41) is a hard sequence, from parts 3 and 5 of the definition of a hard

sequence we know that z;;; € SAT and
meh((y1,s- -, Ye—1,Tj41,- .-, Z1)) € SAT.

Therefore in equations (1) and (3), the second conjunct on the left side is true and the
second disjunct on the right side is false. Hence

(:El’ e ’wl—l) € LBH([——]) — 7r(1,(_1)°h(<y1, ey Y1, T541, -4 - 71:1)) € Lco-BH(l—l)‘

Then replacing k — j for £, we have

(1, Tk_(j+1)) € LBHK-(j+1))
—
7r(1,k—(j+l))°h(<yla sy Yk—(G+1)s Ti+1s - oy iBl)) € Lco—BH(k—-(j+1))-
So, we have established the induction hypothesis P(7 + 1).]

Lemma 2 shows that a maximal hard sequence for length m induces a polynomial time
reduction from SAT-" to SAT, or in other words, given a maximal hard sequence for
length m, an NP machine can recognize SAT-".

Lemma 2 Suppose Lgpx) <P Leo-BH(k) Via some function A and (1™, zy,..., ;) is a max-
imal hard sequence with respect to k. Then for all y € <™

y € SAT
<
Jy,...,ye-1 € ™ moh({y1, .-y Yeo1,Y,Tj, ..., 21)) € SAT

(where £ = k — j).

Proof
Ifj=k—1((y1,...,Ye_1) is the empty sequence), then, by Lemma 1, for all y € Z<™

7

y € BH(1) <= m°h({y,zj,..., 1)) € co-BH(1).
However, BH(1) = SAT and co-BH(1) = SAT. So, we have

AT.

wnn

y € SAT <— m°h({y,zj,...,21)) €
or (by negating both sides of the iff)

y € SAT < m°h({y,zj,...,71)) € SAT.
Thus, the lemma holds when j = k — 1 (i.e. when y1,...,y,1 is the empty sequence).
Consider the case when j < k — 1.

(=) Suppose y € SAT. Since (1™, z1,...,z;) is maximal, (1™, 2,...,2;,y) is not a hard
sequence. However, j+1 < k—1, |y| < m, y € SAT, and (1™, 24,..., ;) is a hard sequence.
So, (1™, z1,...,2;y) must fail to be a hard sequence by failing to satisfy condition 5 of
the definition of hard sequences. Thus,

Jyy,...,ye-1 € 5™ moh({y1, -y Yeo1,Y,Tjy .- ,21)) € SAT.
(«=) Suppose that for some yq,...,y,_1 € ™
meh((y1, -+, Ye-1,Y,Zj, ..., 1)) € SAT.
Since (z1,...,z;) is a hard sequence for length m, by Lemma 1
(y1,---,¥e-1,Y) € Leney <= 7@1,0°h({y1,---,¥e-1,9,Zj,...,71)) € Leo-BH(e)-

If £ is even, then by the definitions of Lgy(,) and Le.-BH(e)

(yl’ o ayl—l) € LBH(l-—l) W(],l-l)oh(<yl’ e Ye-1,Y,T5y - -0 ,.1?1)) € Lco-BH((—l) (4)
and y € SAT or moh({y1,.--,Ye-1,Y,Zj,-..,21)) € SAT.

If £ is odd, then by the definitions of Lpy () and Le,-BH(e)

(yl’ cee 7yl—l> € LBH((—I) 77(1,1_1)°h((y1, e Ye-1,Y,Ty5, - - ,5171)) € Lco-BH((—l) (5)
or y € SAT and meh({y1,...,Ye-1,Y,j,...,21)) € SAT.

or (by negating both sides of the iff)

(yl,---,yt_l) & LBH((—I) — 7f(1,e_1)°h(<y1, cee ayl—l,y’xjv---’xl)) ¢ Lco-BH(l—l) (6)
and y € SAT or meh({y1,. .., Ye-1,Y,j,...,x1)) € SAT.

In either case, we already know by hypothesis that

meh((y1,-- - Ye-1,Y,Tj,...,21)) € SAT,

so the right sides of the iff in equations (4) and (6) are satisfied. Therefore, the left sides
of equations (4) and (6) must also be satisfied, and we have y € SAT. O

Lemma 2 essentially states that a maximal hard sequence produces a way to witness
that a formula is unsatisfiable. Hence, given a maximal hard sequence, an NP machine
can guess these witnesses and verify that formulas up to a certain length are unsatisfiable.
But if an NP machine can verify that formulas are unsatisfiable, it can simulate an NPN¥
computation by guessing the answer to each NP query and verifying that its answer is
correct. We use this idea to prove Lemma 3 which states that given a maximal hard
sequence, an NP machine can recognize an initial segment of L,,, the canonical complete
language for X¥.

Lemma 3 Suppose h is a <F -reduction from Lpn) to Leo-BH(x)- Then there exists an
NP machine N,, and a polynomial p,, such that if m > p,,(|w|) and (1™, z;,...,z;) is a
maximal hard sequence w.r.t. h, then

w € Ly, <= N,,(w,(1™,z1,...,2,)) accepts.

Proof

Let L., = L(NZ*T). Define p,,(n) to be the upper bound on the running time of
N,, on inputs of length n. Obviously, N,,(w) queries only strings of length < m, since
m > po,(|w|). On input (w, (1™, z1,...,2;)), Ny, does the following:

1. Simulate N,, step by step until NV,, makes an oracle query to SAT.

2. When N,, queries “y € SAT?”, branch into two computations. One guesses that
y € SAT, the other guesses that y € SAT.

3. The branch that guesses y € SAT, will guess a satisfying assignment for y. If none
are found, all computations along this branch terminate. If a satisfying assignment
is found, then the guess that y € SAT is correct and the simulation continues.

4. The branch that guesses y € SAT, will use the maximal hard sequence to find
a witness for y € SAT —i.e., guess £ — 1 strings yi,...,ye-1 € ES™, compute
F = meh({y1,--.,Ye-1,Y,Zj,..., 1)), and guess a satisfying assignment for F. If
none are found, all computations along this branch terminate. Otherwise, the guess
that y € SAT is correct and the simulation continues.

By Lemma 2, if (1™, 24, ..., ;) is a maximal hard sequence, then for each query y, y € SAT
if and only if some computation in step 4 finds a satisfiable F. So, in the simulation of the
oracle query, all the computations along one branch will terminate and some computations
in the other branch will continue. Thus, the simulation continues if and only if the guesses
for the oracle answers (either y € SAT or y € SAT) are verified, and hence

w € L(NJAT) < N,,(w, (1™, z1,...,x;)) accepts.

Taking the spirit of Lemma 3 one step further, we show that, with the help of a
maximal hard sequence, an NPN* machine can simulate a £f machine. In addition, an
NP™? machine can guess and verify hard sequences, so it does not need to be given a
maximal hard sequence, all it really needs is the mazimum order. Therefore there exists
an NPNP machine which, given the maximum order of hard sequences for a length, can
recognize initial segments of L,,, the complete language for ¥.

Lemma 4 Suppose h is a <P -reduction from LH(k) to Leo-BH(x)- There exists an NPSAT

machine N,, and a polynomial p,, such that for any m > p,,(|wl|), if j is the maximum
order for length m w.r.t. h, then

w € Ly, = N;*(w,j,1™) accepts.
Furthermore, if j is greater than the maximum order for length m w.r.t. h,
Vw NAT(w,7,1™) rejects.

Proof

Let L,, = L(NuLa“?), where L,, = L(NSAT) is the canonical complete language for Xf.
Let r(n) be a polynomial upper bound on the running time of N,, on inputs of length n.
Clearly, N,,(w) will only query strings of length < r(n), where n = |w|. Apply Lemma 3
to obtain N,, and the polynomial p,,. Let Poa(n) X, (r(n)).

The critical observation to make here is that the set of hard sequences is in co-NP.
(This is obvious from the definition of hard sequences.) So, given j, the maximum order
for length m > p,,(n), an NPN? machine can guess j strings zi,...,z; € 5™ and ask the
NP oracle if (1™,2,,...,z;) forms a hard sequence. If (1™, 2,,...,z;) does form a hard
sequence, then it must also be a maximal sequence since it is of maximum order. Now,
NESAT(w,j, 1™) can simulate Nlﬂ” (w) step by step, and when N, queries “y € L,,?”, N,,
will ask “(y, (1™, z4,...,2;)) € L(N,,)”. By Lemma 3, the two queries will return with the
same answers, SO

w € L(NE2) < N (w,j7,1™) accepts.

Note that when N,, guesses the hard sequence (1™, z1,...,;), several computation
paths of the NP machine may survive, because there may be many hard sequences of
maximum order. However, uniqueness is not important here because any maximal hard
sequence will work for N,,. So, all the computation branches that manage to guess a hard
sequence of maximum order will have the same acceptance behavior. Furthermore, if j
is greater than the maximum order, then none of the computation paths survive because
there are no hard sequences of order j for length m. Thus, in this case, Ny, (w,7,1™) will
reject. O

We have shown that maximal hard sequences and maximum orders expand the compu-
tational power of nondeterministic machines. We define the set T to be the set of strings
encoding the orders of hard sequences for each length.

Definition Suppose is a <[, -reduction from Lpyx) to Leo-r(x). We define an associated
set T by

10

T ¥ {(1™,5) | 3z4,...,2; € B, s.t. (1™, z4,...,2;) is a hard sequence.}

Note that since the set of hard sequences is in co-NP, T itself is in NPN?. This gives
us the following lemma.

Lemma 5 Suppose k is a <P -reduction from Ln(k) to Leo-BH(k), then the set T' defined
above is in NPNP,)

Since T € NPYP_ a PNP™ machine can compute the order of the maximum hard
sequence for length m with k — 1 queries. The PNP™ machine can then pass this number
to the NPNP machine fo‘T of Lemma 4 to recognize L,,, the complete language for XF.
Therefore if the BH collapses to its k** level, Lemmas 4 and 5 imply that the PH collapses
to PNP™ [kl This collapse of the polynomial time hierarchy implied by the collapse of the
BH is lower than previously known.

Theorem 6 Suppose h is a <} -reduction from Lppx) to Leo-u). Then there exists a
PNP™ machine which accepts L,, with only k queries to the NPNPoracle. That is, the
polynomial hierarchy collapses to P(NPRF)[R],

Proof
By Lemma 4, there exists N,, and p,, such that if j is the maximum order for length
m and m > p,,(Jw|) then

w € Ly, <= N*T(w,j,1™) accepts.

Using the fact that T is in NP"F (Lemma 5), a PMP™ machine can determine if (1™, ¢)
is in T by asking the oracle. Doing this for all values of £ between 1 and k — 1, it can
determine the maximum ¢ such that (1™,¢) is in 7. This maximum ¢, call it j, is of course
the maximum order for length m. Then with one final query, the PNP™ machine asks if

foT(w, J,1™) accepts.

If the oracle answers “yes”, the machine accepts. Otherwise, it rejects. O

Note that we could make Theorem 6 stronger by using binary search instead of linear
search to find the maximum order. However, we will push the collapse even further in
Theorem 9, so our inquiry will follow a new direction.

The following lemma states that an NP machine can recognize if there is a hard sequence
of order j for length m if it is given a maximal hard sequence for a longer length.

Lemma 7 Suppose h is a < -reduction from Lh(r) t0 Leo-BH(k). There exists an NP
machine N, and a polynomial p; such that if (1™2,#) is a maximal hard sequence w.r.t. h
and my > p(my + k), then

(1™ 1) € T < N((1™,j1),(1™,Z)) accepts.

11

Proof
Use Lemmas 3 and 5. O

PNP

In Lemma 4, we showed that, with the help of the maximum order, an N machine

can recognize a complete language for £f. In the next lemma we show that with the help
of the maximum order, an NPNF machine can also recognize a complete language for I
(i.e. recognize when a string is not in L,,).

Lemma 8 Suppose h is a <P -reduction from LiH(x) to Leo-BH(k). Let Ly, be the canonical
complete language for F. There exists an NPSAT machine N, and a polynomial p,, such
that for any m > pr,(|w|), if j is the maximum order for length m w.r.t. h, then

w € Ly, <= NAT(w,j,1™) accepts.
Furthermore, if j is greater than the maximum order for length m w.r.t. &,
Yw fo‘T(w,j, 1™) rejects.

Proof

Let L,, = L(NuL;") where L., is the canonical complete language for £5. By Lemma
4, there exist N,, and p,, such that if j; is the maximum order for length m;, and m; >
Pos(|w]), then

w € L,, <> N3*T(w,j1,1™) accepts.

The language accepted by N3AT is in ¥}, so we can reduce it to L,, via some polynomial
time function g. Let r(n) be an upper bound on the running time of g. Using Lemma 3,
there exist N,, and p,,, such that if (1™2,%) is a maximal hard sequence and m; >
Pop (r(Jw| + k + my)), then

foT(w,jl,lml) accepts <= N,,(g(w,j;1,1™),(1™2,7)) accepts.
Let N, be the NP machine that runs the reduction g and then simulates N,,, 1.e.,
N,(w, j1,1™,(1™2, 7)) accepts. <= Ny, (g(w, j1,1™),(1™2,7)) accepts.

Let p,%p,,or. Now, if m1 > po,(|w]), ma > p.(|w| + k +my), 71 is the maximum order for
length m; and (1™2,7) is a maximal hard sequence, then

we€ L, < NfaAT(w,jl,l"") accepts <= N,(w,j1,1™,(1™2,7)) accepts.

We are trying to prove that there exists a machine NZAT that accepts (w,j,1™) if
w ¢ L,, when m is big enough in relation to |w| and j is the maximum order of the hard
sequences for length m. The N3AT that we have in mind will map

(w,5,17) — (w,j1, 1™, (1™, 7))

12

and accept iff N,(w,j1,1™,(1™,7)) rejects (iff w & Ly,). N3AT can tell whether or not
Ny(w, j1,1™ ,(1™2, 7)) rejects with one query to SAT.

The difficulty in mapping (w, j,1™) — (w, j1,1™,(1™2,7)) lies in the fact that NJAT
is given j, the maximum order of hard sequences for one length m, and it must compute
the maximum orders of two other lengths, m; and m,;. We will define p,, so that if
m > pr,(Jw]), then m will be bigger enough than both m; and m; so that we can apply
Lemma 7 to compute j; and js.

Let pry ()= pe(pa(n+k+Poy(n)) +k), ie. pry(n) = p(ma+k) where my = py(n+k+my)
and m; = p,,(n) (recall p, is the polynomial bound from Lemma 7).

NESAT(w, 7,1™) will do the following. (We will annotate the program with a description
of what N;AT(w, j,1™) accomplishes when j is the maximum order.)

1. Reject if m < pg (Jw]).

2. Guess j strings z1,...,z; € <™ and confirm that (1™, 2,,...,z;) = (1™,Z) is a hard
sequence by asking the SAT oracle. (Recall that checking if a given tuple forms a
hard sequence is a co-NP question.) If j is the maximum order and (1™,) is a hard
sequence, then (1™ Z) is a maximal hard sequence, too.

3. Let n = |w|. Compute m; = p,,(n) and my = p,(n + k + m,).

4. For £ =0 to k — 1 ask SAT if N,((1™,¢),(1™,&)) accepts. Let j; be the maximum
¢ where N;((1™,£),(1™,Z)) does accept. Note that m = p;(mq + k) > pi(m1 + k) so
41 is the maximum order for length m; (by Lemma 7) if j is the maximum order for
length m.

5. For £ = 0 to k — 1 ask SAT if N,((1™2,¢),(1™,&)) accepts. Let j, be the maximum
¢ where N,((1™2,¢),(1™,Z)) does accept. As in step 4, j; is the maximum order for
length m, if j is the maximum order for length m.

6. Guess j, strings y1,...,yj, € L™ and confirm that (1™2,yy,...,y;,) = (1™2,7) is a
hard sequence (with one query to SAT). Note that if (1™2,7) is a hard sequence and
jo is the maximum order, then (1™2,7') is also a maximal hard sequence.

7. Ask SAT if N,(w,j1,1™,(1™2,7)) accepts. If SAT returns “no”, then N3AT accepts.
Note that by the preceding discussion, if j is the maximum order for length m, then
41 is the maximum order for length m,, and (1™2,7) is a maximal hard sequence.
Also, m; = p,,(Jw|) and my = ps(Jw| + k + my), so by equation 7

w € L,, <= Ny(w,j1,1™,(1™2,7)) accepts.

Now, we argue that if j is the maximum order for length m and m > pr,(|w|), then

w € L,, < NE:‘T(w,j, 1™) accepts.

13

First of all, N%AT accepts in step 7 only. So, if w € L,,, all computation paths of N AT
reject—even those that reach step 7, because SAT would answer “yes” in step 7. On the
other hand, if w € L,, then some computation path will reach step 7, get “no” from the
SAT oracle and accept.

Finally, we note that if j is greater than the maximum order for length m, then no
computation path will survive step 2. Thus, in this case fo‘T(w, 7, 1™) rejects. a

Now we are ready to prove our main theorem. This theorem demonstrates a close
linkage between the collapse of the Boolean hierarchy and the polynomial time hierarchy.

Theorem 9 Suppose k is a <P -reduction from Lin(k) to Leo-BH(k)- Let Ly, be the canonical
complete language for £F. Then there exist languages By, ..., By € NPNF such that

Ly =B1—(By—(Bs — (-~ — By)))-
That is, ¥f C BH3(k), and therefore PH C BH;(k).

Proof

- First, recall that in Lemmas 4 and 8 it was shown that N3AT and N;AT accepted Ly,
and L,, (respectively) with the help of the maximum order for a large enough length (and
they reject if the number given for the maximum order is too large). Let w be any string.
Let m = max(po,(|w|), pr, (|w])); then m is large enough so that if j is the maximum order
for length m,

NA(w,5,1™) accepts <= w € Ly,
N3AT(w,5,1™) accepts <= w & Ly,.

We will define the NPNP languages B, . . ., Bi to be the strings accepted by NPN* machines
that try to guess j, the maximum order for length m, and then run N,, and N,,. These
NPMP machines cannot verify when they have guessed the true maximum order, instead
they will base their acceptance behavior on whether they can determine that an earlier
machine in the sequence may have been fooled by an incorrect guess for 7. This successive
approximation scheme converges to the language L,, within k steps.

Definition For 1 < ¢ < k the language By is the set of strings w with the property that
there exist j,...,J¢ such that

1. 0<j1<j2<... <0< k-1

2. for all odd d, 1 < d < ¢, N3AT(w, j4,1™) accepts.

3. forallevend, 1 <d </, NESAT(w,jd, 1™) accepts.

Clearly, B, is in NP"?, since an NPNP machine can guess ji,..., 7, verify the first

property, then simulate N3AT and NfsAT for the different values of j4. Also, observe that
the B,’s form a nested sequence

14

By CBr.1C...C B CBy.
Finally, note that if r = max{{ | w € B,}, then
w € By — (Bz — (B3 — (--- — By))) <= risodd.
Example: Here we give an example which demonstrates that
w € L,, <= r =max{{|w € By} is odd.

Suppose k = 8, the maximum order for length m is 5, and N;AT and N3AT behave as
shown below for the different values of s plugged in as the guess for the maximum order.

s=| 0 1 2 3 4 5 6 | 7

NEAT(w,s,1™) | rej | acc | acc | rej | rej | acc | rej | rej

NssAT(w,s,l"‘) acc | rej | acc | rej | acc | rej | rej | rej

Note that since the maximum order is 5, both NfaAT and Nf’aAT reject for s = 6,7. Also,
one of fo‘T(w, 5,1™) and Nfa"‘T(w, 5,1™) must accept and the other reject. For smaller s,
both may accept or reject, since their behavior is unpredictable. Finally, w € L,,, so we
will show that r is odd. Now we show how this successive approximation works.

The NP machine for B; accepts w by guessing j; = 1, 2, or 5 and checking that
NESAT(w,jl, 1™) accepts. On the other hand, the machine for B; also accepts, because both
NEAT(w,1,1™) and N3AT(w,4,1™) accept (i.e., the machine guesses j; =1 and j, = 4.) If
N2AT(w,4,1™) is the rightmost computation in the table to accept, then w ¢ Ly,. In fact,
in this successive approximation scheme w € B, removes w from By —(B;—(Bs—(- - -—Bg))),
unless some other B, corrects B,. Indeed, in our example, the B3 machine accepts w, by
guessing j; = 1,72 = 2,j3 = 5. Since none of the By, Bs, ..., Bg machines accept w, B;
is never corrected and has the “last word”. Thus, r = 3 and w is placed permanently in
B, — (B; — (B3 — (- — Bs))). Note that none of the By machines know who has the “last
word”. This proof works because in the 8 successive approximations, one of the B,’s does
get the “last word”.

Claim 1: If w € L,,, then r = max{¢ | w € B,} is odd.
Proof: Let j be the maximum order for length m. Now suppose r is even and w € B,.
Then, there exist ji,...,J, so that properties 1-3 in the definition above hold. Therefore

NESAT(w,jr, 1™) accepts

(since 7 is even and w € B,). Since w € Ly,, for the true maximum order j,
N,iAT(w,j, 1™) rejects.

Therefore 7, # j. Observe that j, cannot be greater than j either since for all s >

NE?T(w, $,1™) rejects.

15

Hence 3, < j.

Since we are given that w € L, we know that N3AT(w,j,1™) must accept (Lemma
4). Now consider the sequence ji,...,jr+1 Where jr41 = j. NoAT(w, jr4q,1™) accepts and
r+1 is odd which implies that j;,...,j,4+1 satisfies conditions 1-3, and therefore w € B, ;.
Thus if r is even, r # max{{ | w € B,}. Therefore, r must be odd.

Claim 2: If w & L,, then r = max{{ | w € By} is even.
Proof: Similar to the proof of Claim 1.
Combining Claims 1 and 2 with the observation that if » = max{{ | w € B}, then
w€ By — (By — (B3 — (- — By))) <= ris odd,
we have

w€ Ly, < w€ By, —(B,—(B3—(--- = By))).

Acknowledgements

We are grateful to Juris Hartmanis for his support and guidance. We would also like to
thank Stephen Mahaney for starting us on this endeavor and Georges Lauri for reading a
draft of this paper.

References

[CGH*88] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wag-
ner, and G. Wechsung. The Boolean hierarchy I: Structural properties. SIAM
Journal on Computing, 17, 1988.

[CHS86] J. Cai and L. A. Hemachandra. The Boolean hierarchy: Hardware over NP. In
Structure in Complezity Theory, pages 105-124. Springer-Verlag Lecture Notes
in Computer Science #223, 1986.

[Kad88a] J.Kadin. The polynomial hierarchy collapses if the Boolean hierarchy collapses.
SIAM Journal on Computing, 17, 1988.

[Kad88b] J. Kadin. Restricted Turing Reducibilities and the Structure of the Polynomaial
Time Hierarchy. PhD thesis, Cornell University, February 1988.

[Mah89] S. Mahaney, 1989. private communication.

[Wec85] K. Wagner and G. Wechsung. On the Boolean closure of NP. In Proc. of the
1985 International Conference on Fundamentals of Computation Theory, pages
485-493. Springer-Verlag Lecture Notes in Computer Science #199, 1985.

[Yap83] C. Yap. Some consequences of non-uniform conditions on uniform classes. The-
oretical Computer Science, 26:287-300, 1983.

16

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif

