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Abstract

On the one hand, we investigate combinatorial proper-
ties of finite sequences with high Kolmogorov complex-
ity (like all blocks of equal length occur about equally
frequent); on the other hand we demonstrate the util-
ity of a Kolmogorov complexity method in combinato-
rial theory by several examples (like the ‘coin-weighing’
problem).
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1 Introduction

On randomness related combinatorial proper-
ties of high Kolmogorov complezity finite bi-
nary sequences.

Infinite sequences generated by a (%,%) Bernoulli
process (flipping a fair coin) have the property that
the relative frequency of zeros in an initial n-length
segment goes to % for n goes to infinity. A related
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statement can be made for finite sequences, in the sense
that one can say that the majority of all sequences will
have about one half zeros. However, whereas the earlier
statement is a property about individual infinite ran-
dom sequences, the classical theory of probability has
no machinery to define or deal with individual finite
random sequences.

In [11], Kolmogorov established a notion of complex-
ity (self-information) of finite objects which is essen-
tially finitary and combinatorial. Martin-Lof has estab-
lished, [17], that the proper definition of finite random
sequences corresponds to finite sequences having about
maximal Kolmogorov complexity.

It is useful for many applications (we give an applica-
tion in combinatorial theory below), and of interest for
its own sake, to determine the exact form in which cer-
tain combinatorial properties hold for high-complexity
finite sequences (like equality of number of occurences
of zeros and ones).

On a Kolmogorov complezity method in com-
binatorial theory.

Probabilistic arguments in combinatorial theory, as
used by Erdos and Spencer [5], are usually aimed at
establishing the existence of an object, in a noncon-
structive sense. It is ascertained that a certain member
of a class has a certain property, without actually ex-
hibiting that object. Usually, the method proceeds by
exhibiting a random process which produces the object
with positive probability. Alternatively, a quantitative
property is determined from a bound on its average in
a probabilistic situation. The way to prove such ‘exis-
tential’ propositions often uses averages. We may call
this ‘first-moment’ methods. ‘Second-moment’ meth-
ods, using means and variance of random variables



to establish combinatorial results have been used by
Moser [18]. Pippenger [19], has used related notions
like ‘entropy’, ‘self-information’, and ‘mutual informa-
tion’, from information theory, [21]. He gives two exam-
ples of ‘universal propositions’, such as a lower bound
on the minimum of a quantity, or an upper bound on
the maximum of a quantity.

Says Kolmogorov [12]: “The real substance of the
entropy formula [based on probabilistic assumptions
about independent random variables] ... holds un-
der incomparably weaker and purely combinatorial as-
sumptions... Information theory must precede prob-
ability theory, and not be based on it. By the very
essence of this discipline, the foundations of informa-
tion theory must have a finite combinatorial character.”

It turns out to be quite natural to do combinatorial
proofs by Kolmogorov complexity arguments, which
are of themselves combinatorial in nature. We demon-
strate the utility of a Kolmogorov complexity method
in combinatorial theory by proving several combinato-
rial lower bounds (like the ‘coin-weighing’ problem).

2 Kolmogorov Complexity

To make this paper self-contained we briefly review no-
tions and properties needed in the sequel. We identify
the natural numbers A and the finite binary sequences
as

(0,¢),(1,0),(2,1),(3,00),(4,01),...,

where € is the empty sequence. The length I(z) of a
natural number z is the number of bits in the corre-
sponding binary sequence. For instance, I(¢) = 0. If
A is a set, then |A| denotes the cardinality of A. Let
<.> N xN — N denote a standard computable
bijective ‘pairing’ function. Throughout this paper, we
will assume that < z,y >= 14*)0zy.

Define < z,y,z > by < z,< y,z >>.

We need some notions from the theory of algorithms,
see [20]. Let ¢1,@2,... be a standard enumeration of
the partial recursive functions. The (Kolmogorov) com-
plezity of ¢ € N, given v, is defined as

Clzly) = min{l(< n,z>) : o (< y,2 >) = z}.

This means that C(z|y) is the minimal number of
bits in a description from which z can be effectively
reconstructed, given y. The unconditional complexity
is defined as C(z) = C(ze).

An alternative definition is as follows. Let

Cylely) = min{i(2) : (< y,2>) =2} (1)

be the conditional complexity of z given y with refer-
ence to decoding function . Then C(z|y) = Cy(z|y)
for a universal partial recursive function 9 that satisfies
P(<y,n,z>) = da(< y,z>).

We will also make use of the prefiz complexity K(z),
which denotes the shortest self-delimiting description.
To this end, we consider so called prefiz Turing ma-
chines, which have only 0’s and 1’s on their input tape,
and thus cannot detect the end of the input. Instead
we define an input as that part of the input tape which
the machine has read when it halts. When z # y are
two such input, we clearly have that z cannot be a
prefix of y, and hence the set of inputs forms what is
called a prefiz code. We define K (z) similarly as above,
with reference to a universal prefix machine that first
reads 1™0 from the input tape and then simulates prefix
machine n on the rest of the input.

A survey is [15]. We need the following properties.
Throughout ‘log’ denotes the binary logarithm. We
often use O(f(n)) = —O(f(n)), so that O(f(n)) may
denote a negative quantity. For each z,y € A we have

C(zly) < U(z) +O(1). (2)

For each y € N there is an z € N of length n such
that C(z|y) > n. In particular, we can set y = e. Such
z’s may be called random, since they are without reg-
ularities that can be used to compress the description.
Intuitively, the shortest effective description of z is z
itself. In general, for each n and y, there are at least
2™ —2"7¢ 4 1 distinct z’s of length n with

Clzly) > n—c (3)

In some cases we want to encode z in self-delimiting
form z', in order to be able to decompose z'y into
z and y. Good upper bounds on the prefix com-
plexity of z are obtained by iterating the simple rule
that a self-delimiting (s.d.) description of the length
of z followed by z itself is a s.d. description of z.
For example, z' = 14®)0z and z" = 1{{=D0l(z)z
are both s.d. descriptions for z, and this shows that
K(z) < 21(z)+0(1) and K(z) < I(z)+21(I(z)) +O(1).

Similarly, we can encode z in a self-delimiting form of
its shortest program p(z) (I(p(z)) = C(z)) in 2C(z) +
1 bits. Iterating this scheme, we can encode z as a
selfdelimiting program of C(z) + 2log C(z) + 1 bits,
which shows that K (z) < C(z)+2log C(z) +1, and so
on.

Denote C(< z,y >) by C(z,y). (We also denote
C(z]| < y,z >) by C(z|y, z).) It can be proved, (12, 15],
that, up to a an additive term O(log min{C(z), C(y)}),

C(z,y) = C(z) + Clylz) = C(y) + C(=ly). (4)



This identity is sometimes referred to as symmetry of
information. The logarithmic error term is caused by
the fact that we need to encode a delimitor to separate
two concatenated binary sequences (description of z
and description of y given z) in the original pair.

3 Combinatorial Properties of
High Kolmogorov
Complexity Finite Sequences

E. Borel (1909) has called an infinite sequence of zeros
and ones ‘normal’ in the scale of two if, for each k, the
frequency of occurrences of each block y of length k in
the initial segment of length n goes to limit 27k for n
grows unbounded, [10]. It is known that normality is
not sufficient for randomness, since Champernowne’s
sequence

123456789101112...

is normal in the scale of ten. On the other hand, it
is universally agreed that a random infinite sequence
must be normal. (If not, then some blocks occur more
frequent than others, which can be used to obtain bet-
ter than fair odds for prediction.)

While in the infinite case one considers limiting val-
ues of quantitive properties which hold for each indi-
vidual sequence of a set of probability 1, in the finite
case one considers the ezpected value of quantities over
a set of all sequences of a given length.

We would like to obtain statements that individual
random finite sequences have such-and-such quantita-
tive properties in terms of their length. But as the
result of a sequence of n fair coin flips, any sequence of
length 7 can turn up. This raises the question which
subset of finite sequences can be regarded as genuinely
random. In [17] the viewpoint is taken that finite se-
quences which satisfy all effective tests for randomness
(known and unknown alike), are as random as we will
ever be able to verify. This form of randomness of in-
dividual sequences turns out to be equivalent to such
sequences having maximal Kolmogorov complexity. In
the sequel we use ‘complexity’ in the sense of ‘Kol-
mogorov complexity’.

We prove that each high complexity finite binary se-
quence is ‘normal’ in the sense that each binary block of
length k occurs about equally frequent for k relatively
small. In particular, this holds for k = 1. We quantify
the ‘about’ and the ‘relatively small’ in this statement.

To distinguish individual random sequences obtained
by flipping a physical coin from random sequences writ-

ten down by human subjects, psychological tests [the
correct reference is unknown to the authors] have shown
that a consistent high classification score is reached
by using the criterion that a real random sequerice of
length, say 40, contains a run of zeros or ones of length
6. In contrast, human subjects feel that short random
sequences should not contain such long uniform runs.

We determine the maximal length of runs of zeros
or ones which are with certainty contained in each high
complexity finite sequence. We prove that each such
sequence must contain a relatively long run of zeros.

The properties must be related to length of the se-
quence. In a sequence of length 1, or odd length, the
number of zeros and ones cannot be equal. To apply
such properties in mathematical arguments, it is often
of importance that the precise extent to which such
properties hold is known.

3.1 Expectation versus Complexity

To derive our results, we often use a common pattern
of argument. Following a suggestion of John Tromp,
we can formulate it in the form of a general ‘Tail Law’.

Consider the sample space S = {0,1}* with uniform
probability Pr(z) = 272(®). Put §™ = {0,1}". Then,
Pr(z|z € S*) = 27". Let R: § — Z, total recursive,
be a function that (in our case) measures the deviation
between some function g of z and a reference value
(I(z)) for all strings of the same length. We are inter-
ested in the relation between the complexity of a string
z and this deviation. A natural choice of r would be
the average g(z) over S™. Fix a class D of deficiency
functions 8 : N — N for which K(n|n — §(n)) = O(1).
This is satisfied by every monotone sublinear recursive
function that we are interested in. The complexity of
R can be identified with the complexity of its index in
the effective enumeration of recursive functions, which
we can assume equals some constant plus (optionally)
the complexity of its parameters.

Define the tail probability

p(R;n,m) = Pr{z € §™ : |R(z)| > m}.

Lemma 1 (Tail Lemma) Let f be a function from

N X N to N satisfying
—log p(R;n, f(n,k)) > K(Rn) + k + O(1).

Then for any § € D, we have that all z with C(z) >
n—6§(n) (n =1(z)), satisfy

|R(z)| < f(n,8(n)).



Proof. By contradiction. Assume that for some 6 €
D, there exists an n such that A = {z € 5™ : |R(z)| >
f(n,6(n))} is non-empty. We can describe such an = €
A in the following way:

1. let s be a s.d. program for n given n — §(n), of

length I(s) = K(n|n — §(n)) = O(1).

2. let ¢ be a s.d. program for R given n, of length
I(q) = K(R|n).

3. let z be the index of z in an effective enumeration
of A, from the z’s with the highest |R(z)|'s down.
From |A| = 2" Pr(A4) = 2"p(R;n, f(n,8(n))) it fol-
lows that the length of the (not necessarily s.d.)
description of 7 satisfies:

I(i) <log|A] = n+logp(Rin,f(n,5(n)))
n — K(R|n) — 8(n) — O(1).

IN

The string sqi has length at most n—6(n)—O(1) and
can be padded to a string z of length exactly n—6(n)—c,
where c is a constant determined below. From z we can
reconstruct z by first using its length plus ¢ to com-
pute n (and §(n)) from s, then use n to obtain R from
g, and finally enumerate A to obtain the ith element.
Note that we can enumerate A up to the i¢th element
without using f at all, since we enumerate from the z’s
with the highest |R(z)| down. So, if recursive function
1 embodies above procedure for reconstructing z, we
have, by Equation 1,

C(z) < Cy(z) +cyp <n—6(n) —c+cy.
Choosing ¢ = cy, finishes the proof. O

Corollary 1 (Tail Lemma Dual) The ezact same
argument shows that for sufficiently random z, the de-
viation |R(z)| is not too small. We thus obtain a Tail
Lemma Dual starting from q(R;n,m) = Pr{z € S™ :
|R(z)] < m}.

3.2 Number of Zeros and Ones

Let z have length n. It is known that if C(z|n) =
n+ O(1), then the number of zeros it contains is, [17],

Z + O(v/n).

2

3.2.1 Fixed Complexity

We analyse what complexity can say about the number
of zeros and ones. Let z = z1z5...z, and 6§ € D a
deficiency function. Suppose,

C(z) > n — 6(n).

Let R(z) = ) x; — % be the deviation in the number
of ones in z. With z € {0,1}™ uniformly distributed,
#ones(z) = Y z; is distributed according to the bino-
mial distribution.

A general estimate of the tail probability of the bi-
nomial distribution, with s, the number of successful
outcomes in n experiments with probability of success
0<p<1landg=1-p,isgiven by Chernoff’s bounds,
5, 2],

Pr(|sn — np| > m) < 9¢=™ /4nPq (5)

The tail probability p(R;n,m) bounded by Equation 5
(with R(z) = s, — % and p = ¢ = 1/2) yields:

m’loge

—logp(R;n,m) > 1

n

Clearly, R is a recursive function with K(R|n) =
O(1). Thus, choosing f(n,k) = +/(k+ O(1))nln2,
Lemma 1 gives us: all z with C(z) > n — 6(n)
(n =I(z)), satisfy

|#ones(z) — g| </(6(n) +0(1))nn2. (6)

If the complexity of z satisfies that the conditional
complexity C(z|n) > n—6§(n), clearly Equation 6 holds
a fortiori.

3.2.2 Fixed Number of Zeros

It may be surprising at first glance, but there are no
maximally complex sequences with about equal number
of zeros and ones. Equal numbers of zeros and ones is
a form of regularity, and therefore lack of complexity.
Using the same notation as before, if R(z) = O(1) then
the randomness deficiency §(n) = n — C(z) is relatively
large. For instance,

q(R;n,m) = Pr{z € S™:|R(z)| < m}

m

(2m +1)27" ( n’;2 ) = O(ﬁ).

Thus, setting f(n,k) = 27%-90) /0, the Tail Law
Dual (Corollary 1) gives us: all z with C(z) > n—6(n)
(n =1(z)), satisfy

IN



|#ones(z) — %| > 2-8n)=0M) /.
Perhaps more interestingly, we can define
R/(z) = fones(z) - (5 +1),

so that K(R'|n) is about K(j). Applying the Tail Law
Dual with

fln, k) =27k K()-0Wy/n,

we then find that all z with C(z) > n — 6(n) satisfy

|#ones(z) — (% +7)| > 9-8(n)-K(j)=0(1) /n,

This means that for a random z having exactly 7 +
n/2 ones, K (j) must be at least about log n.

3.3 Number of Blocks

An infinite binary sequence is called normal if each
block of length k occurs with limiting frequency of 27%.
This justifies our intuition, that a random infinite bi-
nary sequence contains about as many zeros as ones.
But also, blocks 00, 01, 10, and 11 should appear about
equally often. In general we expect that each block of
length k occurs with about the same frequency. Can
we find an analogue for finite binary sequences? We
analyse these properties for high complexity finite bi-
nary sequences to obtain a quantification of a similar
statement in terms of the length of the sequence and
its complexity.

3.3.1 Fixed Complexity

Let £ = z; ...z, be a binary sequence of length n, and
y a much smaller string of length [. Let p = 2-! and
#y(z) be the number of (possibly overlapping) distinct
occurrences of y in z. Put Ry(z) = #y(z) — np. (So
Ri(z) = 3 z:—n/2.) For convenience, we assume that
z ‘wraps around’ so that an occurrence of y starting at
the end of z and continuing at the start also counts.

Theorem 1 All z with C(z) > n — §(n) satisfy

[#y(z) — np| < Vanp,

with a = [K (y|n) +log + 6(n) + O(1)](1 — p)i4In 2.

Proof. We prove by contradiction. Assume that n is
divisible by I. (If it is not we can put z on a Procrustus
bed to make its length divisible by I at the cost of hav-
ing the above frequency estimate up to a 1/2 additive
term.) There are ! ways of dividing (the ring) z into
N = n/l contiguous equal sized blocks, each of length
I. For each such division i € {0,1,...,l—1},let Ry:(z)
be the number of (now nonoverlapping) occurrences of
block y minus Np. Notice that Ry ;(z) is the deviation
from the expectation of a Bernoulli sequence of length
N with probability of succes (a block matching y) p,
for which we can use the Chernoff bound 5.

p(Ryi;n,m) < 2e~™ (4NP0-P),
Taking the negative logarithm on both sides:
m?loge
—logp(Ryi;n,m) > ——— — L. 7
Choose m = f(n,k), such that

k)21
f(n,k)*loge _ .

A = K(Ryglm) + £ +0(). ()

Equations 7, 8 enable us to apply the Tail Lemma 1.
Application of the Tail Lemma yields that all = with
C(z) > n — §(n) satisfy |Ryi(z)| < f(n,8(n)). Substi-
tution of f according to Equation 8, with K(Ryiln) =
K(y,i|n) + O(1), gives:

By ()] < \[K(y,iln)+ 6(m) +0(1) vy — ).

loge

The theorem now follows by mnoting that Ry(z) =
420 Ry,i(z), and K(ill) < logl O

With C(z|n,R,) > n — 6(n), Theorem 1 holds a for-

tiori.

3.3.2 Fixed Number of Blocks

Similar to the analysis of blocks of length 1, the com-
plexity drops below its maximum in case some block y
of length I occurs in one of the ! block divisions, say
i, with frequency exactly pN (p = 1/2"). Then we can
point out z by giving n,y,7 and its index in a set of
cardinality

N | _{\N-pN _ 2V
(pN >(2 W =

Therefore,

C(z|n,y) <n— %logn + %—(l + 3logl) + O(1).



3.4 Length of Runs of Zeros

It is known from probability theory, that in a randomly
generated finite sequence the ezpectancy of the length
of the longest run of zeros or ones is pretty high. For
each individual finite sequence with high Kolmogorov
complexity we are certain that it contains each block
up to a certain length (like a run of zeros).

Theorem 2 Let z of length n satisfy C(z) > n—6(n).
Then = contains all blocks y of length

[ =logn — loglogn — log(6(n) + logn) — O(1).

Proof. We are sure that y occurs at least once in z,
if \/anp in Theorem 1 is at most np. This is the case
if @ < np, that is:

K(y|n) +logl+6(n) + O(1)
loge

4] < np.

Substitute K(y|n) <14 2log!+ O(1) (since K(y|n) <
K(y)), and p = 27! with [ set at

I =logn —log(38(n)logn + 3log® n),

(which equals ! in the statement of the theorem up to
an additive constant). The result is

I+ 3log!+6(n)+ O(1)

41 < 3(6(n) logn + log® n),
loge

and it is easy to see that this holds for sufficiently large
n. O

Corollary 2 If §(n) = O(logn) then each block of
length logn — 2loglog n — O(1) is contained in z.

Corollary 3 Analysing the proof of Theorem 2 we
can improve this in case K(y|n) is low. If §(n) =
O(loglogn), then for each ¢ > 0 and n large enough,
z contains an all-zero run y (for which K(y|n) =

O(log!)) of length | =logn — (1 +€) loglogn + O(1).

Corollary 4 (improving [2]) Since there are 2™(1 —
O(1/logn)) strings = of length n with C(z) > n —
loglog n+ O(1), the expected length of the longest run
of consecutive zeros if we flip a fair coin n times, is at
least ! as in Corollary 8. This improves the lower bound
of logn — 2loglogn cited in [2] by a loglog n additive
term.

We show in what sense Theorem 2 is sharp. Let
z = wvw, I(z) = n and C(z) > n — §(n). We can
describe z by giving

1. A description of v in K (v) bits.
2. The literal representation of uw.

3. A description of I(u) in logn + loglogn +
2logloglogn + O(1)

Then, since we can find n by n = [(v) + I(uw),

C(z) < n-I(v)+ K(v)+logn (9)
+ (1+o0(1))loglogn + O(1).

Substitute C(z) = n — §(n) and K(v) = o(loglogn)
(choose v to be very regular) in Equation 9 to obtain:

I(v) < 6(n) + logn + (1 4+ o(1)) loglog n.

This means that, for instance, for each € > 0, no max-
imally complex string =z with C(z) = n + O(1) con-
tains a run of zeros (or the initial binary digits of 7) of
length logn + (1 + €) loglogn for n large enough and
regular enough. By Corollary 3, on the other hand,
such a string =z must contain a run of zeros of length

logn — (1 + €)loglogn + O(1).

4 A Kolmogorov Complexity
Method in Combinatorial
Theory

One can often convert Kolmogorov arguments (or prob-
abilistic arguments for that matter) into counting ar-
guments. Our intention is pragmatic: we aim for ar-
guments which are easy to use in the sense that they
supply rigorous analogs for our intuitive reasoning why
something should be the case, rather than have to re-
sort to nonintuitive meanderings along seemingly un-
related mathematical byways. It is always a matter of
using regularity in an object, imposed by a property
under investigation and quantified in an assumption to
be contradicted, to compress the object’s description
to below its minimal value.

We treat two examples from Erdés and Spencer’s
book, and the two examples in Pippenger’s article. It
is only important to us to show that the application
of Kolmogorov complexity in combinatorics is not re-
stricted to trivialities.

4.1 Tournaments

The first example proved by Erdés and Spencer in [3]
by the probabilistic method, Theorem 3, is originally



due to Erdos and Moser [4]. (Rather, a version with
|2log n] instead of 2[logn].) A tournamentT is a com-
plete directed graph. That is, for each pair of nodes ¢
and j in T, exactly one of edges (z,7), (7,1) is in the
graph. The nodes of a tournament can be viewed as
players in a game tournament. If (7,7) is in T we say
player j dominates player i. We call T transitive if
(i,7), (4, k) in T implies (¢,k) in T

Let T' be the set of all tournaments on N =
{1,...,n}. Given a tournament T € T, fix a standard
coding E : T' — N, such that I[(E(T)) = n(n — 1)/2
bits, one bit for each edge. The bit for edge (1, j) is set
to 1if 72 < 7 and 0 otherwise.

Theorem 3 If v(n) is the largest integer such that ev-
ery tournament on N contains a transitive subtourna-
ment on v(n) nodes, then v(n) < 1+ 2[logn] from
some n onwards.

Proof. By Equation 3, fix T' € T such that
C(E(T)In) 2 I(E(T)). (10)

Let S be the transitive subtournament of T on v(n)
nodes. We compress E(T), to an encoding E'(T), as
follows.

1. Prefix the list of nodes in S in lexicographical or-
der of dominance to E(T'), each node using [logn]
bits, adding v(n)[log n] bits.

2. Delete all redundant bits from the E(T) part, rep-
resenting the edges between nodes in S, saving

v(n)(v(n) — 1)/2 bits.
Then,

(B(T) = (D) + 22 (o(m) ~ 2Mlog n] - 1). (1)

Given n, an O(1) bit description of this discussion and
E'(T) suffice to reconstruct E(T). (We can find v(n)

by exhaustive search.) Therefore,
C(E(T)|n) < I(E'(T)) + O(1). (12)

For large enough n, Equations 10, 11, and 12 can only
be satisfied with v(n) <1+ 2[logn]. O

The general idea used is the following.  If each
tournament contains a large transitive subtournament,

1For each n, define Ty, as the Turing machine that on input
E!(T) outputs E(T). Define complexity Cr, relative to T, and
repeat the given argument, dispensing with the O(1) error term
in Equation 12. This proves Theorem 3 for each n.

then also a T' of maximal complexity contains one. But
the regularity induced by the transitive subtournament
can be used to compress the description of T to below
its complexity, yielding the required contradiction. Use
the method on the following.

Ezercise. Let w(n) be the largest integer so that for
each tournament 7" on N there exist disjoint sets A
and B in N of cardinality w(n) such that A x B C
T. Prove w(n) < 2[logn]. Hint: add 2w(n)[logn]
(describe nodes), and save w(n)? (on edges).

The second example is Theorem 9.1 in [5], originally
due to Erdés [3]. A tournament T on N has property
S(k) if for every set A of k nodes (players) there is a
node (player) in N — A which dominates (beats) all
nodes in A. Let s(k) be the minimum number of nodes
(players) in a tournament with property S(k). An up-
per bound on s(k) has applications in constructing time
stamp systems in distributed computing, [14].

Theorem 4 s(k) < 2%k?(log, 2 + o(1)).

Proof. Assume the notation of the previous theorem.
By Equation 3, choose T such that

C(E(T)|n,k) > I(E(T)) = n(n —1)/2. (13)
Assume that S(k) is false for
n = 2*k*(log, 2 + o(1)). (14)

Fix a set A of k nodes with no common dominator in
N — A. Describe T as follows by a compressed effective
encoding E'(T).

1. List the nodes in A first, using [logn] bits each;

2. Secondly, list E(T') with the bits representing
edges between N—A and A deleted (saving (n—k)k
bits).

3. Thirdly, code the edges between N — A and A.
From each i € N— A, there are 2 —1 possible ways
of directing edges to 4, in total t = (28 — 1)»~*
possibilities. To encode the list of edges [log t] bits
suffice.

Given n, one can reconstruct E(T') from this discussion

(O(1) bits), and E'(T). Hence,
C(E(T)|n, k) < I(E'(T)) + O(1). (15)

Calculation shows that, for large enough n, Equation
14 is consistent with:

(E(T)) > I(E'(T))+ k"~ 5,0<e<1l. (16)

Equations 13, 14, 15, 16, yield the desired contradic-
tion. Therefore, s(k) <n. O



4.2 The Coin-Weighing Problem

A family D = {Di,...,D;} of subsets of N =
{1,...,n} is called a distinguishing family for N if for
any two distinct subsets M and M' of N there exists
an ¢ (1 < i < j) such that |D; N M| is different from
|D; N M'|. Let f(n) denote the minimum of |D| over
all distinguishing families for N. To determine f(n) is
commonly known as the coin-weighing problem. It is
known, that

fln) = (14 O(ZE2ER

logn

log n )-
Erdds and Rényi, [6], Moser, [18], and Pippenger, [19],
have used various methods in combinatorics to show
the lower bound in the theorem below. Pippenger used
an information theoretic argument. We will supply a
proof using Kolmogorov complexity. Fix a standard
encoding E : 2V — N, such that E(4), AC N, is n
bits, one bit for each node in N. The bit for node %
is set to 1 if node 7 is in A, and 0 otherwise. Define
E(D) = (E(Dy),...,E(D;)). To simplify notation, in
the proof below we identify A with E(A4), where A C N
or A=7D.

Theorem 5

f(n) > 2_"[1 + O(M)]_
log n logn

Proof. Use the notation above. By Equations 2, 3,

choose M such that

C(M|D) > n. (17)
Let m; = |D; N M|. Since D is a distinguishing family
for N: given D, the values my,...,m; determine M.
Hence,

C(M|D) < C(my,...,m;|D)+O(1).  (18)

Let d; = |D;|, and assume d; > y/n. By a standard ar-
gument (detailed after the proof), Equation 17 implies
that the randomness deficiency k = d; — C(M N D;|D;)
is O(logd;). Therefore, by Equation 6 or the general
Theorem 1, m; is within range %i+0(\/d,' log d;). Since
m; can be described by its discrepancy with d;/2, and
di S n,

1
C(mi|D;) < 5 logn + O(loglogn),1 <7 < j.

For d; < 4/n this holds trivially. Pad each description
of an m; to a block of length 1logn + O(loglogn).

Then,

C(my,...,m;|D) < Z(%logn + O(loglogn)). (19)

i=1

By Equations 17, 18, and 19, j > n/(3logn +
O(loglogn)), which is equivalent to the theorem. O

Standard Argument. A useful property states that if
an object has maximal complexity, then the complex-
ity of a part, which is easily described as part of the
whole, cannot be too far below maximal. In the par-
ticular case involved in the proof above, the standard
argument runs as follows. The randomness deficiency
k as defined in the proof cannot be large, since we can
reconstruct M from:

1. A description of this discussion, and delimitors be-
tween the separate description items, in O(logn)
bits.

2. The literal description of E(M) leaving out the
bits corresponding to elements in D, saving d;
bits.

3. The assumed short program to reconstruct the bits
in E(M) corresponding to elements in D;, adding
d; — k bits.

4. A description of D and 1.

Then, C(M|D,) < n — k+ O(logn), which by Equa-
tion 17 implies that k < C(i) + O(logn). Since i < j,
and j < n (the set of singleton sets in IV is a distin-
guishing family), we find k = O(logn).

4.3 Covering Families

Let n and N be as before, and let K(N) denote the set
of all unordered pairs of elements from N (the complete
n-graph). If A and B are disjoint subsets of N, then
K (A, B) denotes the set of all unordered pairs {u,v},
u € A and v € B (complete bipartite graph on A and
B). A family C = (K(A1,B1),...,K(A;, B;)) is called
a covering family of K(N), if for any pair {u,v} €
K(N), there exists an i (1 <4 < j) such that {u,v} €
K(A;,B;). For each i (1 <i < j), set C; = A; U B;,
and ¢; = |Cj|. Let g(n) denote the minimum of

T e,

1<i<s



over all covering families for K(N). The problem of de-
termining g(n) arises in the study of networks of con-
tacts realizing a certain symmetric Boolean function,
and the following is known, [9]:

nlogn < g(n) < nlogn+ (1 —loge + loglog e)n.

The lower bound on g(n) was also proven by Pippenger,
[19], using an information theoretic argument. There
the reader can find additional references to the source
of the problem and its solutions. We shall give a short
Kolmogorov complexity proof for the following.

Theorem 6
9(n) > logn + O(loglogn).
n

Proof. Use the notation above. For each z € N,
there is a y = 91 .. .Yj, and a binary sequence z of an
exactly sufficient number of bits for the construction
below, with C(z|n,z) > 1(2).

1. fz € A;, then y; = 0.
2. Ifz € B;, theny; = 1.
3. Ifz € N — C;, then y; = next unused bit of z.

Denote y and z associated with z by ¥° and z®. Given
n, we can reconstruct C as the lexicographically least
minimal covering family. Therefore, we can recon-
struct z from y® and n, by exhaustive matching of
all elements in N with y® under C. Namely, suppose
distinct z and z' match. By the covering property,
{z,2'} € K(Ai B;) for some . But then yf # e
Hence, C(z|n,y%) = O(1). Then, by Equation 4, we
have:

def z -
R(z) ¥ C(y°In) - C(¥"In,2) - Clzn)
O(log C(z|n)). (20)
Given n and z, we can reconstruct y* from 2% and C,
first reconstructing the latter item from n as above.
Thus, up to an O(n) additive term, Y ,cn C(y®|n,z)

can be evaluated, from the number of bits in the 2%,
as follows.

Y iz e N-C} Y He:zeN-C}

zeN 1<igy

= nj-— Z c;. (21)

1<i<y

For each z, by Equation 2,

C(y®In) < I(y®) +0(1) =5 + O(1), (22)

and C(z|n) < logn+0(1). Estimating the lower bound
on ¥ C(z|n) by Equation 3,

Z C(z|n) = nlogn + O(n). (23)
z€N
By Equations 20, 2, 21, 22, and 23 we have
Z c; —nlogn+0(n) > Z R(z)

1<i<y zeN
O(nloglogn),

from which the theorem follows. O

One may wonder whether we can remove the
O(loglogn) error term. Recall that the prefix vari-
ant of complexity K(zly), (13, 7, 1] or [15] and Sec-
tion 2, is the length of the shortest self-delimiting de-
scription from which z can be reconstructed, given the
shortest self-delimiting description for y (rather than
y literally). A description is ‘self-delimiting’ if the in-
terpreter can determine the end of it without looking
at additional bits. This K complexity is more precise
for some applications. In its K version, Equation 4
holds to within an O(1) additive term, rather than the
O(loglog n) one, [7]. Then, in Equation 20, the K ver-
sion of R(z) = O(1). A straightforward, somewhat
tedious, analysis shows that estimates of the quantities
in Equations 21, 23, and 22, still hold in K-version.
Together, it follows that g(n)/n > logn + o(1).
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