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1 Introduction 

We examine various counting measures on space 
bounded nondeterministic auxiliary pushdown ma- 
chines. Hitherto, counting measures on nondeter- 
ministic time bounded [Val 79,KST 891 and space 
bounded [AJ 901 machines have been studied. 

In the main theorem, we show how a NAuxPDA 
may be simulated efficiently by a uniform fam- 
ily of boolean circuits, which preserve the number 
of accepting paths in the NAuxPDA as the num- 
ber of accepting subtrees in the boolean circuit. 
Our techniques simulate the NAuxPDA in novel way 
by considering the height and reversal bounds of 
an AuxPDA. Reversal bounded AuxPDA have been 
studied previously [BH 881. 

One of the highlights of this paper is an exact 
characterization of the important class, DET.  We 
show that DET is exactly class of functions that 
can be computed as the difference between the out- 
puts of two counting logspace machines! The proof 
is easy but inexplicably has gone unnoticed in the 
complexity theory. 

The main theorem have several applications in 
proving known results in a simple and direct way. 

We list some implications of our results. 

0 Venkateswaran [Ve 871. 

We charac- 
terize #AuxPDA SPACE,TIME(log n, po/y(n))  in 
terms of certain arithmetic circuits. The re- 
sult strengthens the semi-unbounded fan-in 
circuit characterization of LOGC3L due to 
Venkateswaran [Ve 871. 

0 Venkateswaran [Ve 881. 
Venkateswaran [Ve 881 gave a characteriza- 
tion of N P  using semi-unbounded Boolean 
circuits. The arithmetic circuits correspond- 
ing t o  the circuit characterization of N P  lead 
to  an alternative characterization of #P. This 
characterization was recently discovered inde- 
pendently by Babai and Fortnow [BF 901 in 
a different form. In the light of the similar- 
ity between LOGC3L and N P  [JK 88,VC 90, 
VVV 901, our results may also be regarded as 
a polynomial analogue of certain straight line 
programs which capture #P [Ve 881. 

0 Valiant, et al [VSBR 831. 
Valiant et al [VSBR 831 showed how arith- 
metic circuits of polynomial size and degree 
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d over {+,A, -} can be reduced to semi- 
unbounded arithmetic circuits of polynomial 
size, and depth O(1og n+logd). The resulting 
circuits are P- uniform. We give a structural 
proof of this result. In the interesting case of 
polynomial degree, we demonstrate VLOG- 
uniform log n depth circuits. 

0 Alvarez and Jenner [AJ 901. 

They studied counting space classes. They 
prove that the counting and optimizing ver- 
sions of NLOG, #LOG and OptLOG, are in 
NC2. We show counting versions and op- 
timizing versions of LOGC3L) #SAC1 and 
OptSAC’, are in NC2. This is an improve- 
ment over their result as NLOG is contained 
in LOGC3L. Moreover, our proof requires 
different techniques from theirs, as LOGC3L 
is not known to be in D&I. Also, many 
of their other results generalize naturally to  
the AuxPDA classes. Among them, we show 
SpanSACl is Turing hard for P7-t. 

0 Ladner [Lad 891. 

He introduced the notion of “natural” 
PSPdC& counting class: hPSPdC&. 
It is shown there that this class corre- 
sponds to  3PSPdC&(poly).  We explore 
the counting versions of the class P as 
NAuxPDA SPACE,TIME(log n, ezp(n)) [Co 711; 
we shall refer to this class by #SAC”. Our 
investigation into its “natural” counter-part, 
hSAC“, shows that this class coincides with 
3P! 

0 Huynh [Huy 901. 

This paper proves ranking languages in 
lUAuxPDA SPACE,TIME(log n,  poly(n), i ) s  
in NC2. We prove this ranking function 
is complete for #SAC’ , which immediately 
shows that the rank function is in NC2. 
We also prove that ranking languages in 

0 Krentel [Kre 881. 

Krentel introduced the notion of OptP  and 
studied it in great detail. We show a natural 
circuit characterization for the classes OptP  , 
OptSAC’ and OptSAC”. 

These apart, we introduce the notion of P- 
optimizable sets as a generalization of P-printable 
sets. We prove P is P-optimizable if and only if 
P= OptP. We show that context free languages 
are P- optimizable whereas it is unlikely that they 
to be P-rankable. 

2 Definitions and Notations 

We assume that the reader is familiar with ATMs 
and the definitions of the standard complexity 
classes such as NC’, VLOG, NLOG, L0GC3L7 
NC2, P etc. 

2.1 Nondeterministic Auxiliary Push- 
down Automata 

By an AuxPDA we mean an nondeterministic Tur- 
ing machine with an additional pushdown store. 
The space used by the machine is corresponds to 
the space on the worktape only. For a more formal 
definition the reader is referred to  [Co 71,Ru 801. 

Surface Configuration: By a surjuce configu- 
ration, v, of an AuxPDA machine M on input x, we 
mean v = (q,i,aj,z) where q is the current state of 
M ,  i is the input head position, a is the worktape 
contents, j is the worktape head position and z is 
the top of stack symbol. A surface configuration 
has information only about the stack top rather 
than the whole pushdown. 
We shall often say Configuration to mean surface 
configuration when there is no ambiguity. 

lUAuxPDA SPACE,TIME(log 71, 2P0’Y(n),p~1y(n)) 
is in 3P- making it the “largest)) known 
class to  be P-rankable. 

Acceptance: We make the following assump- 
tions about the AuxPDA machine, M .  
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M accepts on a unique accepting configura- 
tion, on an empty pushdown store. We as- 
sume there is a unique bottom stack marker 
that the machine pops to  accept. 

M pushes or pops in units of S ( n ) ,  where S ( n )  
is the space bound of the machine M .  

M pushes or pops at every move. 

Realizable Pairs:A pair (P,Q) is said to be 
realizable pair if 

there is a computation 
started on P leads to Q. 

The pushdown height at 
Cal. 

The pushdown height in 

of M which when 

P and Q are identi- 

any of the interme- 
diate step never goes below the pushdown 
height at  P. 

Profile: A profile of a computation sequence, 
is a graph depicting the behavior of the pushdown 
height over time for that computation sequence. 

Valley Configuration: A configuration in a 
profile is called a valley configumtion if its previous 
step was a pop and the next step is a push. 

Slice: Suppose(P,Q) is a realizable pair. Fix 
a computation sequence that witnesses the realiz- 
able pair. The slice of (P,Q) with respect to the 
computation sequence is the number of configu- 
rations, 2, inclusive of Q, along the computation 
sequence such that ( P , Z )  is realizable. We shall 
denote this quantity by sZ(P, Q) where the compu- 
tation sequence should be clear from the context. 

2.2 Semi-unbounded Alternating Tur- 
ing Machine 

By a Semi- Unbounded Alternating Turing Ma- 
chine we mean a ATM wherein there exists an ac- 
cepting subtree with at most a constant number 
of universal configurations between any successive 
pair of existential configurations. 

2.3 Circuits 

We will assume the reader is familiar with the basic 
Boolean Circuit model where either all gates have 
bounded fan-in or unbounded fan-in. Wlog as- 
sume that the gates are of two types, {AND , OR }. 

Semi-unbounded  Fan-in Circuits:  A cir- 
cuit family, {Cn}, is called semi-unbounded if, for 
any member of the family, the OR gates of the 
circuit have unbounded fan-in and the AND gates 
have bounded fan-in. 

Ar i thmet ic  Circuits:  By an arithmetic cir- 
cuit we usually mean a circuit where the OR gates 
and AND gates are interpreted over some suitable 
(semi-) ring. The interpretations we use in this pa- 
per are (1) PLUS , MULT (2) MAX , CONCAT and 
(3) U , CONCATover appropriate (semi-) rings. 
The notion of semi-unboundedness can be ex- 
tended to  a natural way to  arithmetic circuits with 
MULT and CONCAT taking the role of AND . 

In  general, we use circuits to mean either 
Boolean or Arithmetic circuits. 

All of these circuit family needs uniformity con- 
ditions. We use logspace uniform circuits. In only 
one simulation (OptPin terms of arithmetic cir- 
cuits) do we need P-uniform circuits. 

2.4 The New Classes: 

We are now ready to  define the new classes. For 
more details see [AJ 901. We shall define the 
counting classes as operators. All these operators 
may be applied on any nondeterministic (mource 
bounded) machines 

Count ing  Opera to r ,  #: By # of a nondeter- 
ministic machine, we mean the function which 
takes the input string, 2, to  a natural number de- 
noting the number of accepting paths of the ma- 
chine on input x. 

Opt: By Opt of a nondeterministic transducer, 
we mean the function which takes the input string, 
5, to another string denoting the lex-maximum 
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string output by the transducer over all accepting 
paths of the transducer on input 2. 

Span: By Span of a nondeterministic transducer, 
we mean the function which takes the input string, 
2, to a natural number denoting the number of 
distinct strings output by the transducer over all 
accepting paths of the transducer on input 2. 

Of course, any of the operator applied on a class 
of machines is a collection of all functions gotten 
by applying the operator on each machine of the 
class. 

The counting operator may also be defined on 
boolean circuits. Here the function will return the 
number of accepting subtrees in the circuit. It is 
well-known that the number of such accepting sub- 
trees is the output of the corresponding arithmetic 
circuit where OR gate and AND gates are replaced 
by PLUS gates and MULT gates respectively. We 
shall u s e  this d u a l i t y  relationship to prove o u r  re- 
sults. We also exploit this correspondence to use a 
single notation; fl on boolean circuits to correspond 
to the corresponding arithmetic circuit (over 0, 1 
inputs). 

2.5 Notation 

By NAuxPDA SPACE,TIME(S(n),  T(n ) ) ,  we mean 
set of languages accepted by a AuxPDA that runs 
within space S ( n )  and time T(n) .  

By #AuxPDA SPACE,TIME(S(n),  T ( n ) ) ,  we mean 
set of functions computed by applying the # oper- 
ator on an AuxPDA that runs within space S ( n )  
and time 
T(n) .  The classes OptAuxPDA SPACE,TIME(*, *) 
and SpanAuxPDA SPACE,TIME( t, *) is similarly de- 
fined. 

By USemi-Unbounded ASPACE,ALT( S ( n ) ,  A ( n ) ) ,  
we mean the set of functions computed by ap- 
plying the #operator on a semi-unbounded ATM 
within space S(n)  and alternation depth A ( n ) .  

By Semi-Unbounded USIZE,DEPTH(S(n),  D ( n ) ) ,  
we mean set of languages accepted by uniform 

families of semi-unbounded circuit that have size 
S(n )  and depth D(n) .  

By ftSemi-Unbounded USIZE,ALT( S( n), A ( n ) ) ,  we 
mean set of functions output by computed by 
uniform family of semi-unbounded circuits of size 
S(n )  and alternation D(n) .  The context will make 
the interpretation of the gate operators clear. 

By ~ ~ U S I Z E , D E P T H ( S ( ~ ) ,  D ( n ) ) ,  we mean set of 
functions output by computed by uniform family 
of bounded circuits of size S ( n )  and depth D ( n ) .  
The context will make the interpretation of the 
gate operators clear. 

By flSemi-Unbounded USIZE,DEPTH(S(n),  D(n) ) ,  
we mean set of functions output by computed by 
uniform family of semi-unbounded circuits of size 
S ( n )  and depth D ( n ) .  The context will make the 
interpretation of the gate operators clear. 

Finally, additional parameter of the form {b(n} 
conveys that the number of output bits of the 
transducer is limited to O ( b ( n ) )  and parameter of 
the form [b(n)] conveys that the number of accept- 
ing paths of the transducer is bounded by a'@(")). 

2.6 Abbreviations 

We shall use the following interchangeably. 

tAuxPDA SPACE,TIME(log n, 2'(logk "I). 
#SAC"= #AuxPDA SPACE,TIME(log n, 2po'y(n)) .  
Similarly for Opt and Span operators. 

- #SACk - 

3 The Main Theorem 

Ruzzo [Ru 801 was the first to show the close cor- 
respondence between NAuxPDA time and alternat- 
ing treesize. In the same paper , using what now 
is known to  be a standard pebbling argument on 
trees, he shows the relationship between alter- 
nating treesize and alternations. Venkateswaran 
[Ve 871 noticed that the alternations were actually 
semi-unbounded alternations. This was used as a 

21 3 

I 



first step by Venkateswaran in showing the semi- 
unbounded characterization of LOGCFL. Unfor- 
tunately, RUZZO'S simulation does not preserve the 
number of proofs. This is due to  the fact that 
the pebbling argument may not result in a unique 
decomposition of an accepting subtree. 

To design a simulation that preserves proofs, we 
need to  decompose a proof in a unique way. We 
show how to do this in a simple way. In fact, 
we give a simulation which takes us directly from 
an AuxPDA to  Semi-unbounded alternating Turing 
machine. As we shall see, the notion of a slice plays 
an important role in the simulation. The other 
containments are similar t o  [Ve 871, with minor 
modifications. 

We start with a few simple but important lem- 
mas. We assume that the AuxPDA halts on all 
paths, either accepting or rejecting. 

Lemma 3.1 For T ( n )  - - 2 O ( W ) ,  
~AUXPDA SPACE,TIME( S( n), T (  n)) 
iAuxPDA SPACE,HT( s( n), log T(  n)) 

E 
I 

Lemma 3.2 For an NAuxPDA running in space 
~ ( n ) ,  any slice is bounded by 2°(S(n) ) .  

Proof: Otherwise the NAuxPDA would have a non- 
terminating path as some two configurations have 
to repeat. I 

Lemma 3.3 flLOGg #SAC1. 

Proof: It is actually sufficient to  know an upper 
bound on the length of the path. It is then not 
difficult to  modify the familiar divide and conquer 

I argument to  prove the inclusion. 

Lemma 3.4 Consider a PLUS circuit with inputs 
2 1 , 2 2 ,  ..., xn  and output 0. Then the output of the 
circuit, #o, is xi=;" c;*x;, where c; is the number of 
paths from the input x; to the output 0. When the 
PLUS gates are replaced by  OR gates, 80 denotes 
the number of accepting paths in the circuit. I 

Theorem 3.5 
flAuxPDA SPACE,TIME, HT(S(n),T(n),logT(n)) 
ftSemi-Unbounded ASPACE,ALT( s( n), s( n) * log T (  n)) 

$Semi-Unbounded USTZE,ALT( 2'('(")), s( n) * log T(  n)) 

flSemi-Unbounded USIZE,DEPTH( 2O('(")), s( 71,) * log T (  n 
EjAuxPDA SPACE,TIME, 
H T ( S ( ~ ) , T ( ~ ) ~ ( ~ ( ~ ) ) ,  S ( n )  * logT(n)). Further- 
more, the S(n) factor in S(n) * logT(n) may be 
removed when T(n)  = 2°(S(n)) (and hence all in- 
clusions become equality). 

2 

E 

Proof: 
(1) flAuxPDA SPACE,TIME, HT( s( n), T(  n), log T( n)) 
c 
itsemi-unbounded ASPACE,ALT(S( n), S(n)  * log T(n)) .  

Clearly, it is adequate to  show 

Semi-unbounded ASPACE,ALT( S(n) ,  S(n)  * log T(n)) .  
Fix an accepting path. Wlog assume the 
AuxPDA M,pushes or pops at every move. We will 
show how an ATM can verify this path uniquely. 
From lemma 3.2, it is clear that any slice of the 
profile of this accepting path may be represented 
within O ( S ( n ) )  bits. 

Initially, the ATM starts with the realizable pair 
(Gin, CaCc). At some intermediate step, let the pair 
be (P,Q).  If P and Q are identical, the ATM 
accepts. Otherwise, it does one of two things: 

~ ~ A ~ ~ P D A  SPACE,HT(S(~), log T(n) )c  

1. existentially guesses a pair (P',Q') and a 

and Q' '3) Q. It continues with (P',Q') if 
verification holds. Otherwise it rejects. 

string b of S ( n )  bits. It verifies P push(,) PI 

2. existentially guesses the slice, s l (P ,Q) ,  be- 
tween P and Q. It then guesses a configu- 
ration 2 such that sZ(P, 2)  = LsZ(P, Q)/2J. 
The computation universally branches to 
(P ,Z ,s l (P ,Z))  and (Z,Q,sZ(Z,Q)). This 
halving process is repeated until there are no 
valley configurations (slice takes the value one 
) between any pair. In order to  verify the 
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claim that there are no valley configurations, 
(1) is forced in the next iteration. 

That the above simulation results in a unique de- 
composition of the accepting path and the simula- 
tion is semi-unbounded is easy to  see. 

Analysis: From lemma 3.2 ,  any slice is bounded 
by 2'('(")). Note that (1) decreases the height of 
the pushdown by one, whereas (2) decreases the 
height of the pushdown by one within O ( S ( n ) )  al- 
ternations. On the whole, the pushdown height 
comes down by one within every O ( S ( n ) )  semi- 
unbounded alternations. The result follows as the 
height of the stack is bounded by logT(n). 

We now show how to modify the construc- 
tion in the case of S(n)  space and 2'('(")) time 
NAuxPDA's. As the number of reversals cannot ex- 
ceed the time bound, the ATM can guess the num- 
ber of reversals in a profile. With any realizable 
pair (P,Q)  we also maintain the exact number of 
reversals between them; instead of pairs, we store 
triples, (P,Q,rev) .  When P = Q, the ATM ac- 
cepts if rev = 0 but rejects if rev > 0. In choice 
(1) above, the number of reversals remain the same 
but the pushdown height comes down by one. We 
modify choice (2) to  the following: 

0 guess consecutive configurations, 21 , 2 2  and 
numbers T I , T ~ , T ~  such that ( q , r 3  < 
rev/2),rl + r2 2 rev/2,r2 + r3 2 rev/2 and 
T I  + 7-2 t 7-3 = rev - 2 (make appropriate 
changes in boundary conditions when 2, = P 
or 2 2  = Q). The ATM then guesses 2; , 24, b 
and universally verifies (P, 2 1  , r1 ), ( 2 3  , Q , 7-3) 
and (Zi, 2;) where 21 push(b) 2; and 2; '3) 
2 2 .  The additional guessing is necessary to 
make sure that there are no valley configura- 
tions between 21 and 2 2 .  

We claim that such a 21 and 2 2  are unique. To 
see this, note that if r2 2 rev /2 ,  21 and 2 2  are 
unique. Otherwise, imagine a vertical line cutting 
the number of reversals between P and Q into two 
equal halves. Then 2 1  (resp. 2 2  ) is the nearest 

valley configuration to  the left (resp. right ) of the 
imaginary line away from P (resp. Q ). 

Analysis: Consider the potential function @ = 
log(rev)+h, where h is the height of the pushdown 
needed to  prove (P,Q)  is a realizable pair. When 
(1) is used, the height of the pushdown comes 
down by one. When the modified form of (2) is ex- 
ecuted, either the number of reversals come down 
by half (as in the case of ( P , Z 1 )  and ( 2 2 , Q ) )  or 
the pushdown height comes down by one (as in the 
case of ( 2 1  , 2 2 ) ) .  Either way @ decreases by one. 
As the height of the pushdown is O(1ogn) and the 
number of reversals is poZy(n), the result follows. 

(2) 
usemi-Unbounded ASPACE,ALT( s( n), s(n) * log T( n)) 

r L 
usemi-Unbounded USIZE,ALT( 2'('(")) , s( n)  * log T( n)) .  

The inclusion is immediate from standard tech- 
niques [Ru 81,Ve 871. 

(3) 
usemi-Unbounded USIZE,ALT( 2'('(,)) , s( n) * log T(  n ) )  

#Semi-Unbounded USIZE,DEPTH(2°(S(n)), s( n) * log T(  n 

This result follows from the techniques of [Ve 871 
in conjunction with lemmata 3 . 3  and 3.4 .  Let 
{C,} be a uniform circuit family meeting the 
above resource constraints. We will show how 
to construct a uniform family {Gn} of semi- 
unbounded fan-in circuits, such that {C,} and 
{G,} have the same number of accepting subtrees 
on any input. The key idea is to  make all inputs to 
an OR gate be non-OR gates. As the AND gates 
are semi-unbounded, they may be retained with- 
out any changes. Fix a parameter d(n) = [cS(n)l , 
where the size of the n-th circuit of {C,} is 2"'(") 
for some constant c. 

We use the following notation. By g,gl ,g2 ,h 
we refer to  gates in C,. These shall figure as 
[g] ,  [ g l ] ,  [ g 2 ] ,  [h] in G, with the same gate type. Let 
the output gate of G, be [o] where o is the output 
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gate of C,. Given a gate [g], the inputs to the gate 
are defined as follows. ened. 

sults of Venkateswaran [Ve 871 have been strength- 

- 0 [g] is an AND gate. Let the inputs to g be g1 Theorem 4.1 ISAC' - 
and 92. Then the inputs to [g] are [gi] and jSemi-Unbounded USIZE,DEPTH(poly(n),logn) I 

The proof of the main theorem yields techniques 
b21. 

0 [g] is an input gate. Then there is nothing to 
be done except remembering the input bit to  

that characterize OptSACi and O p t P .  

- be wired. Theorem 4.2 (a) Opt SAC' - 
ISemi-Unbounded USIZE,DEPTH(poly(n), log n), 

#Semi-unbounded USIZE,DEPTH(2"0(1) , log n)  where 

as CONCAT. 

Proof: The proof is similar to  that of the main 
theorem. we have to be careful about the order 

I 
We now show how SpanSAC' may be computed 

- o p t  P - (b)  
0 [g] is an OR gate. The inputs to the gate [g] 

are all gates of the form [g,h], where h is a 
non-OR gate. A [g,  h] gate is an AND gate 

to  the gate [h] are constructed recursively. 
The gate [07 97 h1 is the output gate of a reach- 
ability sub-circuit that verifies that there is 

OR gates, This may be checked within depth 
d(n) by using lemma 3.3. This construction 
with lemma 3.4, guarantees that the number 
of accepting paths at [g] is identical to  the 
number of accepting paths at  g. 

with two inputs [ ~ , ~ , h ]  and [h]. The inputs OR is interpreted US MAX and AND is P'nteFpEted 

indeed a path from g to  h in c, using only of the inputs to it gate. 

with circuits. 

Theorem 4.3 SpanSACl 

flSemi-Unbounded USIZE,DEPTH(poly(n), log n), 

preted as CONCAT. 

Proof: The concatenation operator is taken over 
sets. Actually, it is the cardinality of the output 

I 

c 

The construction is clearly logspace uniform. where OR is interpreted QS U and AND is inter- 
The depth of the resulting circuit is O ( S ( n )  * 
logT(n)). This proves the inclusion. 

(4) 
jSemi-Unbounded USIZE,DEPTH(2°(s(")), s( n )  * log T ( n ) )  that is the span. 

r 
L 
IAuxPDA SPACE,TIME, HT( s( TI ) ,  T (  n)s(n) , s( n )  * 
1% T(n) 1- 

Use nondeterminism at an OR gate and always 
evaluate the left child of an AND gate first by 
pushing the right child of the AND gate onto the 
pushdown. This ensures that an accepting tree is 
mapped to  a unique accepting path in the AuxPDA 
computation. I 

4 Structural Results 

We begin by noting some implications of the main 
theorem. The theorem tells us exactly how the re- 

We now prove, similar to  [AJ 901 , that 
SpanSAC' is Turing-equivalent t o  #P. 

Lemma 4.4 SpanSAC' C #P.  

Proof: Let f be a function in SpanSAC'. Let the 
function be witnessed by an NAuxPDA transducer 
N .  Consider the following language L .  

L = {z#y I y is an output of N on input z}. 
Clearly, this language is in LOGC3L and there- 

fore in P. As the length of y is polynomially 
bounded, an NP machine guesses all y's bounded 
by that length and verifies the guess using the P 
machine. I 

The following result is known 
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Lemma 4.5 ([AJ 901) # P c  P (SpanLOG). I 

We need the following result due to Toda. For a 
simpler proof see [RVVY 90,BF 90,Tr 90,RR 901. 

Theorem 4.6 ([To 891) P7-f c BP.$Pc P (  
#P)* 

From the observation that SpanLOG is con- 
tained in SpanSAC' , we get 

Theorem4.7 P7-f c P( SpanLOG) = P( 
SpanSACl) = P( SpanP) = P (  # P )  = P( PP).  

Proof: Follows from standard results connecting 
PP and #P , lemmata 4.4 and4.5, and Toda's the- 
orem . I 

Though SpanSAC' is very hard, we neverthe- 
less can show a restriction of the class is in NC2. 

Corollary 4.8 1. #SAC' E NC2 

2. OptSAC' NC2. 

3. SpanSAC'/log n] c NC2. 

Proof: Replace all "+" and "*" gates by appro- 
priate NC'circuits. I 

Apparently, it is unlikely that #SACContains 
#SAC'( similar results hold for Opt also) as the 
following lemma demonstrates. 

Lemma4.9 #SAC' = #LOG 
LOGC3L - 

iff NLOG = 
I 

Can OptSAC' be contained in #LOG? Again, 
it seems unlikely. 

Lemma 4.10 If OptSAC' c NLCOG then ULOG 
= LOGCFL = NLOG . 

Proof: The characteristic function of any 
LOGC3L language is in OptSAC'. By hypoth- 
esis, it is in #LOG. Therefore, this fact has to be 

I 
At the other ex- 

treme, #SAC",OptSACOO ,SpanSACmhave huge 
outputs whose length may exceed polynomial 
space. It is therefore reasonable to  restrict these 
machines to  polynomial length outputs - with the 
hope that such a restriction is fruitful. 

witnessed by a ULOG machine. 

We look at a "natural" restriction first consid- 
ered by Ladner [Lad 891. Nondeterminism along 
any path is restricted to  a polynomial number of 
moves. This naturally forces the number of paths 
in the computation tree of the NAuxPDA to be 
bounded by an exponential in the input length. 
We will denote such a class by hSAC". Sur- 
prisingly, this class coincides with 3 P .  Again, 
this result is made possible by the main theorem. 
That computing functions in 3 P  are equivalent to 
counting the number of accepting subtrees in cer- 
tain boolean circuits demonstrates the richness of 
the counting paradigm. 

Theorem 4.11 3 P =  bSAC"= 
ftSemi-Unbounded USIZE(poly( n))[poly( n)] . 

Proof: (1) 3 P c  bSACm. The proof is similar to 
that in [Lad 891. Consider a polynomial time com- 
putable function, f .  The language defined below 
is then in P. 
L = {(x,i): the ith bit of f (x )  is a 1). By virtue 
of being in P ,  there is a DAuxPDA accepting it in 
space log n and no(') pushdown height. Let m be 
a polynomial bound on the length of f's output. 

Start with the least significant bit . In general, 
if the ith bit is a "1" then do one of three things. 

1. accept 

2. check if (2, i + 1) E L.  

3. check if (x, i + 1) E L. 
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If the i th bit is a “0” then do one of ( 2 )  or ( 3 )  
above. 

(2) bSAC‘C 

It follows from the main theorem and the fact 
that the number accepting paths may be repre- 
sented using polynomial number of bits. 

3 P .  

As the number of output bits of the arithmetic 
circuit is polynomially bounded, the PLUS and 
MULT gates may be replaced by NC1 circuits. As 
polynomial size circuits with polynomially many 
outputs is precisely F P ,  the result follows. I 

flSemi-Unbounded USIZE(poly(n))[pol y (  n)] . 

( 3 )  jSemi-Unbounded USIZE(poly(n))[poly(n)] 

5 Arithmetic Circuits 

In this section, we show how our main result can 
be used to  convert small degree arithmetic circuits 
to  small depth arithmetic circuits. 

Valiant et al [VSBR 831 showed how circuits 
with small algebraic degree may be converted into 
circuits of small depth, without substantial in- 
crease in the size of the circuits. Their result may 
be restated in the following form. We state the 
results for polynomial size circuits for simplicity. 

Theorem 5.1 Let {C,} be Q uniform family of 
arithmetic circuits of polynomial size and degree 
d .  Then there is an equivalent P-uniform family of 
semi-unbounded arithmetic circuits of polynomial 

I sire and O(1og n + log d) depth. 

We prove a slightly weaker version of the above 
theore with improvements in certain cases. The 
proof of Valiant et al is complicated, whereas our 
proof is reasonably straight forward. We show 
how negative-numbers can be handled by AuxPDA. 
This idea turns out to  be crucial in characterizing 
D € 7  (see next section). 

Theorem 5.2 Let {C,} be an uniform family of 
arithmetic circuits of polynomial size and degree d. 
Then there is an equivalent P -  uniform family of 
semi-unbounded arithmetic circuits of polynomial 
size and O(logn(1ogn + logd)) depth. Further- 
more, when the degree of the arithmetic circuit is 
polynomial, the equivalent semi-unbounded arith- 
metic circuit has O(1ogn) depth and is DOCOG- 
uniform. 

Proof: Without loss of generality, we assume that 
the input to  the circuit is one of 0 ,+1 or - 1 .  
From lemma 5.3 below, it is clear that there is 
a non-uniform special AuxPDA, N ,  with three final 
states (0, + 1 ,  -1) such that the output of the cir- 
cuit,say f ,  is identical with the difference between 
the number of paths leading to  a +1 and the num- 
ber of paths leading t o  a -1. It is a simple matter 
now to construct two NAuxPDA’s,N+1andN-1, so 
that N+l(resp.N-1) accept iff the path leads to  a 
+l ( re sp .  - 1). Letting # ( N ; , z )  denote the number 
of accepting paths in the machine N; ,  we see that 
f ( z )  = # ( N + l , z )  - # ( N - l , z ) .  By lemma 5.4, the 
running time of each of these machines is bounded 
by logn + logd. By combining the main theo- 
rem, and the fact that the non-uniform advice to 
the special AuxPDAcan be computed in P ,  each of 
these machines may be faithfully simulated by a P 
uniform (instead of a DOCCOG- uniformity) family of 
arithmetic circuits of depth O(logn(logn+logd)). 
The difference between the outputs of these cir- 
cuits give the required answer. With a bit more 
effort, the output gate may be changed from a SUB 
gate to  a PLUS gate by forcing the second machine 
to  output a negative number without affecting the 
resources. The improvement for polynomial de- 
gree also follows similarly from the main theorem 

When the algebraic degree of the polynomial is 
a polynomial in the length of the input, it is clear 
that our simulation is an improvement over theirs. 

To complete the proof, we need the two lemmas 

and 3.1. I 

below. 

By a special jAuxPDA we mean one with three 
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final states (0, +1, -1). The output of such a ma- 
chine is the difference between the number of paths 
with final state as +1 and the number of paths 
with final state as -1. 

Lemma 5.3 Let {Cn} be a uniform family of 
bounded arithmetic circuits. Then there is a non- 
uniform special gAuxPDA such that on any input, 
the output of the arithmetic circuit is identical to 
to output of the special IAuxPDA . 

Proof: The proof is by induction on the depth of 
the circuit. There is nothing to  prove at the input 
level . Assume the result holds for all circuits of 
depth D- 1. We will show that it holds for circuits 
of depth D as well. 

Consider a depth D arithmetic circuit. The ad- 
vice on the tape is the algebraic degree of each 
gate. Let its output gate be out. Let its inputs 
be inpl and inp2. By hypothesis, there exists two 
special gAuxPDA N1, N2. Let the number of paths 
leading to a +l ( -1 )  in Ni be z;(y;) .  Then the 
value output by the gate inpi is val(inp;) = x i - y i ,  
by induction hypothesis. 

out is an PLUS gate. Then the AuxPDA exis- 
tentially simulates either N1 or N2. Then 
val(out) = ( 2 1  - Y l )  + ( 2 2  - y2) .  

out is a MULT gate. In this case the output, 
ual(out) should be ( 2 1  - y 1 )  * (z2 - y2) .  The 
AuxPDA simulates the circuit in the following 
way. From the advice tape, it know the de- 
gree of the inputs. Wlog assume inp2 is the 
heavier input. It pushes inp2 onto the push- 
down and simulates N1. When it completes 
simulating N1, the AuxPDA is in some path 
with a value form (0, +1, -1} and with inp2 
on top of stack. Call the value of that path 
p .  Pop top of stack and if p # 0 then simu- 
late N2. The simulation of N2 terminates in 
some final state v. The AuxPDA enters the fi- 
nal state p * u.  So all that has been done is to  
look at the parity of the final states of the two 
accepting paths. Now the number of paths in 

AuxPDA that are in state +l(resp. - 1)  are 
21 * 22 + Y I  * yz(resp.zl * y2 + 2 2  * y l ) .  So the 
output of the AuxPDA is z1 * 22 + y1* y2 - 21 * 
y2 - 2 2  * y1, which completes the induction. 

This completes the proof. I 

Lemma 5.4 Let {Cn} be a bounded arithmetic 
circuit of depth D and degree d .  Then the running 
time T ,  of an AuxPDA simulating the circuit as in 
the above lemma is bounded by D * d  + 1. Also, the 
pushdown height is bounded by  O(1og D + logd) 

Proof: The proof is by induction on depth. A 
similar lemma is proved in [Ve 881 to  bound tree- 
size of boolean circuits. At the input level, the re- 
sult is trivially true. So assume the lemma holds 
for all circuits of depth D - 1. Let T1,Tz be the 
running time of the two children i np l ,  inp2 respec- 
tively. Also, let their respective algebraic degrees 
be d l ,  dZ. 

0 out is an PLUS gate. Then , 
T 5 ~ u z { T ~ , T ~ }  + 1. 
< d*(D - 1 ) +  1 
z D * d + l .  

0 out is an MULT gate. Then, 
T I Ti + 7'2 + 1 
- < (d l  + d2)  * (D - 1 )  + 3 
5 d * ( D  - 1 )  + 3 
< D * d + l .  

The induction is complete. 

To complete the proof, note that only inputs to  
MULTgates are pushed onto the pushdown. But 
machine always explores the lighter child first. I 

6 V I 7  is as easy as counting 
paths in a DAG! 

Consider the problem of matrix powering (rais- 
ing an order n matrix to  its nth power, where 
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all interers are n bits in length). This problem 
is known t o  be complete for V & 7  [Co 851. Since 
matrix multiplication can be computed by semi- 
unbounded depth two arithmetic circuits over in- 
teregs, it is clear that matrix powering has poly- 
nomial size and O(1og n )  depth semi-unbounded 
arithmetic circuits. From lemma 5.3 we have 

Theorem 6.1 The determinant of an order n 
matrix over integer entries of length at most n can 
be computed as the dinerence of two # S A C 1  func- 
tions. I 

Note that this result is not implied by theorem 
5.1 due to  the uniformity condition. 

It is surprising that this result can be vastly 
improved- in fact to give an exact characterization 
of D & 7 !  This result has also been independently 
observed by Damm [Damm 911 via different tech- 
niques. 

We will show how to do matrix powering using 
a special NCOG machine with three final states 
(0, +1, -1}. The output of such a machine is the 
difference between the number of paths with final 
state as +1 and the number of paths with final 
state as -1. 

Lemma 6.2 MATPOW can be simulated in such 
a way that the i j t h  entry of Am,m 5 n is the out- 
put of a special NCOG machine. 

Proof: The proof is by induction on the index m. 
Clearly there is nothing to prove when m = 1. So 
assume the result is true for rn - 1. Noting A" = 
A * Am-1, we design a special NCOQ machine 
with the required properties for entry a:. 

0 existentially guess a k, l  5 k 5 n. This re- 
quires only log n bits. 

0 Look at a ; k .  If 

- a;k = 0, the machine halts in the final 
state 0. 

- ajk 2 0, the machine branches into -a;k 
paths and along any such path simu- 
lates the special NCOG machine for en- 
try a;-' guaranteed to  exist by induc- 
tion hypothesis. 

- ajk 5 0, the machine branches into a;k 
paths and simulates the special NLCOG 
machine for entry a;-' guaranteed to 
exist by induction hypothesis. When any 
of the paths reach a final state, the final 
state is toggled from 1 to  -1 and vice- 
versa. 

Branching into strictly I a;k I paths and then sim- 
ulating a;-' has the effect of multiplying them. 
The nondeterministic machine is easily seen to  use 
O(1og n )  space. The induction is complete. I 

A special NLOG machine may be thought of 
as outputting the difference of two #COG machine 
in the following manner; one of the machine ac- 
cepts along a path iff it reaches a +1 final state, 
whereas the other machine accepts along a path iff 
it reaches a -1 state. Combining this observation 
with the previous lemma, we get 

Theorem 6.3 1 .  V & 7  C_ VoZFF(#COG). 

2. MATPOW over non-negative integers is com- 
plete for  #COG. I 

The following result is proved in [BDLM 911. 

Theorem 6.4 COGflcoG C D&7. I 

Putting them together, we get an exact charac- 
terization of V&7. 

Theorem 6.5 V&T = LOGflccOG 
VozFFflCOG). 

As a corollary, we prove the main result 
[Damm 90,BDLM 911. 

Corollary 6.6 ([Damm 90,BDLM 911) 
MATPOW over Z, is complete for  MOV,COG, 
where p is fixed prime. 
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Proof: Since (f - g )  = (f + ( p  - l)g)(mod p ) ,  
VZ3F(MOVpCOG)= MC3VpCOG. I 

Remarks: 

0 The problem of ( s , t )  path in a DAG may be 
generalized to  (s , t l , t2)  paths in a DAG, i.e., a 
path from s to t l  and s to t2. Clearly, the spe- 
cial NLOG machine is reducible to  ( s , t l , t ~ )  
path. As a decision problem, this problem is 
easily seen to  be NCOG- complete. But as a 
counting version, they are powerful enough to 
capture D € 7 !  

0 The matrix product must be undertaken in 
a linear fashion. Note that the familiar dou- 
bling argument does not seem to work. It does 
not pay to  be greedy! 

0 Note that the same proof works for iterated 
matrix product (ITMATPROD) as well. 

0 It is however not clear to give a direct and 
clean proof starting from the determinant it- 
self. 

0 It is trivial to  see that iterated integer product 
is in jLc3G. 

7 Complete Problems, Ranking 
and Optimizing 

We present some natural functions complete 
for the counting classes that we have de- 
fined. These functions are (variations of) 
ranking functions for certain class of lan- 
guages. We show ranking VC3C’s is complete 
for #AuxPDA SPACE,TIME(log n, poly( n ) ) ,  ranking 
C 3 C ’ S  is com- 
plete for SpanAuxPDA SPACE,TIME(log n, poly( n ) ) ,  
and max-word function for ranking CFC’s is com- 
plete for OptAuxPDA SPACE,TIME(log n,poly(n)). 
Using these with the results from the previous sec- 
tions, we prove several results on the complexity 
of ranking. We also note a natural complete prob- 
lem for #AuxPDA SPACE,TIME(log n, poly( n)) ;  the 

problem of computing the output of a polynomial 
size and polynomial degree arithmetic circuit over 
non-negative inputs. 

qvcFc 
Inpu t :  An encoding of a (one way) deterministic 
pushdown automata and a string 5 .  

O u t p u t :  The number of strings lexicographically 
smaller than 5 in the language accepted by the 
pushdown automata. 

rgcFc : 
Inpu t :  An encoding of a (one way) nondetermin- 
istic pushdown automata and a string 5 .  

O u t p u t :  The number of strings lexicographically 
smaller than 2 in the language accepted by the 
pushdown automata. 

moptc3c : 
Inpu t :  An encoding of a (one way) nondetermin- 
istic pushdown automata and a string 5. 

O u t p u t :  The largest string lexicographically 
smaller than 2 in the language accepted by the 
pushdown automata. 

Theorem 7.1 1. Evaluating polynomial size 
and polynomial degree arithmetic circuits over 
non-negative integer inputs is complete for 
fiAuxPDA SPACE,TIME(log n, poly(n)). 

2. qvc3c is complete for 
#AuxPDA SPACE,TIME(log n, poly(n)). 

3. Ranking languages accepted 
by  lNAuxPDA SPACE,TIME(log n,poly(n)) is 

#AuxPDA SPACE,TIME(log n, poly(n)).  
complete for 

4. r n c ~ c  is complete for 
SpanAuxPDA SPACE,TIME(log n,poly( n)) .  

5. Ranking languages accepted 
by  lNAuxPDA SPACE,TIME(log n,poly(n)) is 

SpanAuxPDA SPACE,TIME(hg n, p d y (  n)) .  
complete for 
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6. moptc3‘C is complete for the notion of P-printability, just as P-rankability 
is. It is therefore interesting to  explore how these 
classes differ. It is a well known fact that Pis  P- 

7. Optimizing languages accepted rankable if and only if P= #P[Hem 871. We show 

complete f o r  unless P= O p t P .  Clearly, this collapse is milder, 
OptAuxPDA SPACE,TIME(log n ,  poly(n)) .  

OptAuxPDA SPACE,TIME(log n,  poly( n ) ) .  

by lNAuxPDA SPACE,TIME(log n,  p o l d n ) )  is that it is unlikely that Pis  p-optimizable either - 

in the light of Toda’s theorem. 

Proof: The proofs are not difficult and they are 
deferred to  the final version of the paper. Theorem 7.5 P is P- optimizable iff P =  O p t P .  

Theorem 7.1 when combined with Corollory 4.8 
yield simple and structurally strong proofs (in the 
light of the completeness result) of 

Theorem 7.2 ([Huy 901) 1 .  Languages 
accepted by 
lUAuxPDA SPACE,TIME(log n ,  poly(n) ,  c)an be 
ranked within NC2. 

2. Languages accepted 
by lNAuxPDA SPACE,TIME(log n ,  poly( n ) )  are 

I P- rankable i# P = #P.  

Combining Theorem 7.1 with Theorem 4.6 and 
Corollary 4.8 we also get 

Theorem 7.3 1. Languages accepted 
by  lNAuxPDA SPACE,TIME(log n ,  po/y( n ) )  are 
NC2- optimizable. 

2. Sparse C3L’s are rankable in NC2. I 

We now show a “larger” P- rankable set. 

Theorem 7.4 
lUAuxPDA SPACE,TIME(log n ,  eap(n) ,  poly(n))  
P- mnkable. 

is 

Proof: ( s )  Suppose P is P optimizable. Consider 
the language 
L = {F#ass ign : assign is a vector that satisfies 
the formula F } .  
Then L belongs to  P. Also the problem of finding 
the lex-maximum assignment is complete for OptP 
[Kre 881. The result follows. 
( 2 )  Easy. I 

8 Open Problems 

The relationship between uniformity and ambigu- 
ity is puzzling. It is straight forward to  show any 
language accepted by an AuxPDAis also accepted 
by an AuxPDAwithin height logarthmic in time. 
However, in the resulting machine, the number of 
accepting paths increase. What then the relation 
between uniformity and ambiguity? And between 
uniformity and nondeterminism? 

Can Valiant et.al’s [VSBR 831 result be made 
DLC(36-uniform? Note that in our simulation, we 
need the degree of each gate as an advice. So the 
circuit need to  be evaluated once for degree. This 
is similiar to  the case of iterated integer multipli- 
cation where it need to  be evaluated once [IL 891. 
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