
Counting Auxiliary Pushdown Automata
and

Semi-unbounded Arithmetic Circuits

V Vinay
Department of Computer Science and Automation

Indian Institute of Science
Bangalore-560 012

India
e-mail :vigyan!csa!vinayGshakti.ernet.in

April 22, 1991

1 Introduction

We examine various counting measures on space
bounded nondeterministic auxiliary pushdown ma-
chines. Hitherto, counting measures on nondeter-
ministic time bounded [Val 79,KST 891 and space
bounded [AJ 901 machines have been studied.

In the main theorem, we show how a NAuxPDA
may be simulated efficiently by a uniform fam-
ily of boolean circuits, which preserve the number
of accepting paths in the NAuxPDA as the num-
ber of accepting subtrees in the boolean circuit.
Our techniques simulate the NAuxPDA in novel way
by considering the height and reversal bounds of
an AuxPDA. Reversal bounded AuxPDA have been
studied previously [BH 881.

One of the highlights of this paper is an exact
characterization of the important class, DET. We
show that DET is exactly class of functions that
can be computed as the difference between the out-
puts of two counting logspace machines! The proof
is easy but inexplicably has gone unnoticed in the
complexity theory.

The main theorem have several applications in
proving known results in a simple and direct way.

We list some implications of our results.

0 Venkateswaran [Ve 871.

We charac-
terize #AuxPDA SPACE,TIME(log n, po/y(n)) in
terms of certain arithmetic circuits. The re-
sult strengthens the semi-unbounded fan-in
circuit characterization of LOGC3L due to
Venkateswaran [Ve 871.

0 Venkateswaran [Ve 881.
Venkateswaran [Ve 881 gave a characteriza-
tion of N P using semi-unbounded Boolean
circuits. The arithmetic circuits correspond-
ing t o the circuit characterization of N P lead
to an alternative characterization of #P. This
characterization was recently discovered inde-
pendently by Babai and Fortnow [BF 901 in
a different form. In the light of the similar-
ity between LOGC3L and N P [JK 88,VC 90,
VVV 901, our results may also be regarded as
a polynomial analogue of certain straight line
programs which capture #P [Ve 881.

0 Valiant, et al [VSBR 831.
Valiant et al [VSBR 831 showed how arith-
metic circuits of polynomial size and degree

CH3022-1/91/0000/0270/$01 .OO Q 1991 IEEE
270

T-

d over {+,A, -} can be reduced to semi-
unbounded arithmetic circuits of polynomial
size, and depth O(1og n+logd). The resulting
circuits are P- uniform. We give a structural
proof of this result. In the interesting case of
polynomial degree, we demonstrate VLOG-
uniform log n depth circuits.

0 Alvarez and Jenner [AJ 901.

They studied counting space classes. They
prove that the counting and optimizing ver-
sions of NLOG, #LOG and OptLOG, are in
NC2. We show counting versions and op-
timizing versions of LOGC3L) #SAC1 and
OptSAC’, are in NC2. This is an improve-
ment over their result as NLOG is contained
in LOGC3L. Moreover, our proof requires
different techniques from theirs, as LOGC3L
is not known to be in D&I. Also, many
of their other results generalize naturally to
the AuxPDA classes. Among them, we show
SpanSACl is Turing hard for P7-t.

0 Ladner [Lad 891.

He introduced the notion of “natural”
PSPdC& counting class: hPSPdC&.
It is shown there that this class corre-
sponds to 3PSPdC&(poly). We explore
the counting versions of the class P as
NAuxPDA SPACE,TIME(log n, ezp(n)) [Co 711;
we shall refer to this class by #SAC”. Our
investigation into its “natural” counter-part,
hSAC“, shows that this class coincides with
3P!

0 Huynh [Huy 901.

This paper proves ranking languages in
lUAuxPDA SPACE,TIME(log n, poly(n), i) s
in NC2. We prove this ranking function
is complete for #SAC’ , which immediately
shows that the rank function is in NC2.
We also prove that ranking languages in

0 Krentel [Kre 881.

Krentel introduced the notion of OptP and
studied it in great detail. We show a natural
circuit characterization for the classes OptP ,
OptSAC’ and OptSAC”.

These apart, we introduce the notion of P-
optimizable sets as a generalization of P-printable
sets. We prove P is P-optimizable if and only if
P= OptP. We show that context free languages
are P- optimizable whereas it is unlikely that they
to be P-rankable.

2 Definitions and Notations

We assume that the reader is familiar with ATMs
and the definitions of the standard complexity
classes such as NC’, VLOG, NLOG, L0GC3L7
NC2, P etc.

2.1 Nondeterministic Auxiliary Push-
down Automata

By an AuxPDA we mean an nondeterministic Tur-
ing machine with an additional pushdown store.
The space used by the machine is corresponds to
the space on the worktape only. For a more formal
definition the reader is referred to [Co 71,Ru 801.

Surface Configuration: By a surjuce configu-
ration, v, of an AuxPDA machine M on input x, we
mean v = (q,i,aj,z) where q is the current state of
M , i is the input head position, a is the worktape
contents, j is the worktape head position and z is
the top of stack symbol. A surface configuration
has information only about the stack top rather
than the whole pushdown.
We shall often say Configuration to mean surface
configuration when there is no ambiguity.

lUAuxPDA SPACE,TIME(log 71, 2P0’Y(n),p~1y(n))
is in 3P- making it the “largest)) known
class to be P-rankable.

Acceptance: We make the following assump-
tions about the AuxPDA machine, M .

27 1

M accepts on a unique accepting configura-
tion, on an empty pushdown store. We as-
sume there is a unique bottom stack marker
that the machine pops to accept.

M pushes or pops in units of S (n) , where S (n)
is the space bound of the machine M .

M pushes or pops at every move.

Realizable Pairs:A pair (P,Q) is said to be
realizable pair if

there is a computation
started on P leads to Q.

The pushdown height at
Cal.

The pushdown height in

of M which when

P and Q are identi-

any of the interme-
diate step never goes below the pushdown
height at P.

Profile: A profile of a computation sequence,
is a graph depicting the behavior of the pushdown
height over time for that computation sequence.

Valley Configuration: A configuration in a
profile is called a valley configumtion if its previous
step was a pop and the next step is a push.

Slice: Suppose(P,Q) is a realizable pair. Fix
a computation sequence that witnesses the realiz-
able pair. The slice of (P,Q) with respect to the
computation sequence is the number of configu-
rations, 2, inclusive of Q, along the computation
sequence such that (P , Z) is realizable. We shall
denote this quantity by sZ(P, Q) where the compu-
tation sequence should be clear from the context.

2.2 Semi-unbounded Alternating Tur-
ing Machine

By a Semi- Unbounded Alternating Turing Ma-
chine we mean a ATM wherein there exists an ac-
cepting subtree with at most a constant number
of universal configurations between any successive
pair of existential configurations.

2.3 Circuits

We will assume the reader is familiar with the basic
Boolean Circuit model where either all gates have
bounded fan-in or unbounded fan-in. Wlog as-
sume that the gates are of two types, {AND , OR }.

Semi-unbounded Fan-in Circuits: A cir-
cuit family, {Cn}, is called semi-unbounded if, for
any member of the family, the OR gates of the
circuit have unbounded fan-in and the AND gates
have bounded fan-in.

Ar i thmet ic Circuits: By an arithmetic cir-
cuit we usually mean a circuit where the OR gates
and AND gates are interpreted over some suitable
(semi-) ring. The interpretations we use in this pa-
per are (1) PLUS , MULT (2) MAX , CONCAT and
(3) U , CONCATover appropriate (semi-) rings.
The notion of semi-unboundedness can be ex-
tended to a natural way to arithmetic circuits with
MULT and CONCAT taking the role of AND .

In general, we use circuits to mean either
Boolean or Arithmetic circuits.

All of these circuit family needs uniformity con-
ditions. We use logspace uniform circuits. In only
one simulation (OptPin terms of arithmetic cir-
cuits) do we need P-uniform circuits.

2.4 The New Classes:

We are now ready to define the new classes. For
more details see [AJ 901. We shall define the
counting classes as operators. All these operators
may be applied on any nondeterministic (mource
bounded) machines

Count ing Opera to r , #: By # of a nondeter-
ministic machine, we mean the function which
takes the input string, 2, to a natural number de-
noting the number of accepting paths of the ma-
chine on input x.

Opt: By Opt of a nondeterministic transducer,
we mean the function which takes the input string,
5, to another string denoting the lex-maximum

212

string output by the transducer over all accepting
paths of the transducer on input 2.

Span: By Span of a nondeterministic transducer,
we mean the function which takes the input string,
2, to a natural number denoting the number of
distinct strings output by the transducer over all
accepting paths of the transducer on input 2.

Of course, any of the operator applied on a class
of machines is a collection of all functions gotten
by applying the operator on each machine of the
class.

The counting operator may also be defined on
boolean circuits. Here the function will return the
number of accepting subtrees in the circuit. It is
well-known that the number of such accepting sub-
trees is the output of the corresponding arithmetic
circuit where OR gate and AND gates are replaced
by PLUS gates and MULT gates respectively. We
shall u s e this d u a l i t y relationship to prove o u r re-
sults. We also exploit this correspondence to use a
single notation; fl on boolean circuits to correspond
to the corresponding arithmetic circuit (over 0, 1
inputs).

2.5 Notation

By NAuxPDA SPACE,TIME(S(n), T(n)) , we mean
set of languages accepted by a AuxPDA that runs
within space S (n) and time T(n) .

By #AuxPDA SPACE,TIME(S(n), T (n)) , we mean
set of functions computed by applying the # oper-
ator on an AuxPDA that runs within space S (n)
and time
T(n) . The classes OptAuxPDA SPACE,TIME(*, *)
and SpanAuxPDA SPACE,TIME(t, *) is similarly de-
fined.

By USemi-Unbounded ASPACE,ALT(S (n) , A (n)) ,
we mean the set of functions computed by ap-
plying the #operator on a semi-unbounded ATM
within space S(n) and alternation depth A (n) .

By Semi-Unbounded USIZE,DEPTH(S(n), D (n)) ,
we mean set of languages accepted by uniform

families of semi-unbounded circuit that have size
S(n) and depth D(n) .

By ftSemi-Unbounded USIZE,ALT(S(n), A (n)) , we
mean set of functions output by computed by
uniform family of semi-unbounded circuits of size
S(n) and alternation D(n) . The context will make
the interpretation of the gate operators clear.

By ~ ~ U S I Z E , D E P T H (S (~) , D (n)) , we mean set of
functions output by computed by uniform family
of bounded circuits of size S (n) and depth D (n) .
The context will make the interpretation of the
gate operators clear.

By flSemi-Unbounded USIZE,DEPTH(S(n), D(n)) ,
we mean set of functions output by computed by
uniform family of semi-unbounded circuits of size
S (n) and depth D (n) . The context will make the
interpretation of the gate operators clear.

Finally, additional parameter of the form {b(n}
conveys that the number of output bits of the
transducer is limited to O (b (n)) and parameter of
the form [b(n)] conveys that the number of accept-
ing paths of the transducer is bounded by a'@(")).

2.6 Abbreviations

We shall use the following interchangeably.

tAuxPDA SPACE,TIME(log n, 2'(logk "I).
#SAC"= #AuxPDA SPACE,TIME(log n, 2po'y(n)) .
Similarly for Opt and Span operators.

- #SACk -

3 The Main Theorem

Ruzzo [Ru 801 was the first to show the close cor-
respondence between NAuxPDA time and alternat-
ing treesize. In the same paper , using what now
is known to be a standard pebbling argument on
trees, he shows the relationship between alter-
nating treesize and alternations. Venkateswaran
[Ve 871 noticed that the alternations were actually
semi-unbounded alternations. This was used as a

21 3

I

first step by Venkateswaran in showing the semi-
unbounded characterization of LOGCFL. Unfor-
tunately, RUZZO'S simulation does not preserve the
number of proofs. This is due to the fact that
the pebbling argument may not result in a unique
decomposition of an accepting subtree.

To design a simulation that preserves proofs, we
need to decompose a proof in a unique way. We
show how to do this in a simple way. In fact,
we give a simulation which takes us directly from
an AuxPDA to Semi-unbounded alternating Turing
machine. As we shall see, the notion of a slice plays
an important role in the simulation. The other
containments are similar t o [Ve 871, with minor
modifications.

We start with a few simple but important lem-
mas. We assume that the AuxPDA halts on all
paths, either accepting or rejecting.

Lemma 3.1 For T (n) - - 2 O (W) ,
~AUXPDA SPACE,TIME(S(n), T (n))
iAuxPDA SPACE,HT(s(n), log T(n))

E
I

Lemma 3.2 For an NAuxPDA running in space
~ (n) , any slice is bounded by 2°(S(n)) .

Proof: Otherwise the NAuxPDA would have a non-
terminating path as some two configurations have
to repeat. I

Lemma 3.3 flLOGg #SAC1.

Proof: It is actually sufficient to know an upper
bound on the length of the path. It is then not
difficult to modify the familiar divide and conquer

I argument to prove the inclusion.

Lemma 3.4 Consider a PLUS circuit with inputs
2 1 , 2 2 , ..., xn and output 0. Then the output of the
circuit, #o, is xi=;" c;*x;, where c; is the number of
paths from the input x; to the output 0. When the
PLUS gates are replaced by OR gates, 80 denotes
the number of accepting paths in the circuit. I

Theorem 3.5
flAuxPDA SPACE,TIME, HT(S(n),T(n),logT(n))
ftSemi-Unbounded ASPACE,ALT(s(n), s(n) * log T (n))

$Semi-Unbounded USTZE,ALT(2'('(")), s(n) * log T(n))

flSemi-Unbounded USIZE,DEPTH(2O('(")), s(71,) * log T (n
EjAuxPDA SPACE,TIME,
H T (S (~) , T (~) ~ (~ (~)) , S (n) * logT(n)). Further-
more, the S(n) factor in S(n) * logT(n) may be
removed when T(n) = 2°(S(n)) (and hence all in-
clusions become equality).

2

E

Proof:
(1) flAuxPDA SPACE,TIME, HT(s(n), T(n), log T(n))
c
itsemi-unbounded ASPACE,ALT(S(n), S(n) * log T(n)) .

Clearly, it is adequate to show

Semi-unbounded ASPACE,ALT(S(n) , S(n) * log T(n)) .
Fix an accepting path. Wlog assume the
AuxPDA M,pushes or pops at every move. We will
show how an ATM can verify this path uniquely.
From lemma 3.2, it is clear that any slice of the
profile of this accepting path may be represented
within O (S (n)) bits.

Initially, the ATM starts with the realizable pair
(Gin, CaCc). At some intermediate step, let the pair
be (P,Q). If P and Q are identical, the ATM
accepts. Otherwise, it does one of two things:

~ ~ A ~ ~ P D A SPACE,HT(S(~), log T(n))c

1. existentially guesses a pair (P',Q') and a

and Q' '3) Q. It continues with (P',Q') if
verification holds. Otherwise it rejects.

string b of S (n) bits. It verifies P push(,) PI

2. existentially guesses the slice, s l (P ,Q) , be-
tween P and Q. It then guesses a configu-
ration 2 such that sZ(P, 2) = LsZ(P, Q)/2J.
The computation universally branches to
(P ,Z ,s l (P ,Z)) and (Z,Q,sZ(Z,Q)). This
halving process is repeated until there are no
valley configurations (slice takes the value one
) between any pair. In order to verify the

274

claim that there are no valley configurations,
(1) is forced in the next iteration.

That the above simulation results in a unique de-
composition of the accepting path and the simula-
tion is semi-unbounded is easy to see.

Analysis: From lemma 3.2 , any slice is bounded
by 2'('(")). Note that (1) decreases the height of
the pushdown by one, whereas (2) decreases the
height of the pushdown by one within O (S (n)) al-
ternations. On the whole, the pushdown height
comes down by one within every O (S (n)) semi-
unbounded alternations. The result follows as the
height of the stack is bounded by logT(n).

We now show how to modify the construc-
tion in the case of S(n) space and 2'('(")) time
NAuxPDA's. As the number of reversals cannot ex-
ceed the time bound, the ATM can guess the num-
ber of reversals in a profile. With any realizable
pair (P,Q) we also maintain the exact number of
reversals between them; instead of pairs, we store
triples, (P,Q,rev) . When P = Q, the ATM ac-
cepts if rev = 0 but rejects if rev > 0. In choice
(1) above, the number of reversals remain the same
but the pushdown height comes down by one. We
modify choice (2) to the following:

0 guess consecutive configurations, 21 , 2 2 and
numbers T I , T ~ , T ~ such that (q , r 3 <
rev/2),rl + r2 2 rev/2,r2 + r3 2 rev/2 and
T I + 7-2 t 7-3 = rev - 2 (make appropriate
changes in boundary conditions when 2, = P
or 2 2 = Q). The ATM then guesses 2; , 24, b
and universally verifies (P, 2 1 , r1), (2 3 , Q , 7-3)
and (Zi, 2;) where 21 push(b) 2; and 2; '3)
2 2 . The additional guessing is necessary to
make sure that there are no valley configura-
tions between 21 and 2 2 .

We claim that such a 21 and 2 2 are unique. To
see this, note that if r2 2 rev /2 , 21 and 2 2 are
unique. Otherwise, imagine a vertical line cutting
the number of reversals between P and Q into two
equal halves. Then 2 1 (resp. 2 2) is the nearest

valley configuration to the left (resp. right) of the
imaginary line away from P (resp. Q).

Analysis: Consider the potential function @ =
log(rev)+h, where h is the height of the pushdown
needed to prove (P,Q) is a realizable pair. When
(1) is used, the height of the pushdown comes
down by one. When the modified form of (2) is ex-
ecuted, either the number of reversals come down
by half (as in the case of (P , Z 1) and (2 2 , Q)) or
the pushdown height comes down by one (as in the
case of (2 1 , 2 2)) . Either way @ decreases by one.
As the height of the pushdown is O(1ogn) and the
number of reversals is poZy(n), the result follows.

(2)
usemi-Unbounded ASPACE,ALT(s(n), s(n) * log T(n))

r L
usemi-Unbounded USIZE,ALT(2'('(")) , s(n) * log T(n)) .

The inclusion is immediate from standard tech-
niques [Ru 81,Ve 871.

(3)
usemi-Unbounded USIZE,ALT(2'('(,)) , s(n) * log T(n))

#Semi-Unbounded USIZE,DEPTH(2°(S(n)), s(n) * log T(n

This result follows from the techniques of [Ve 871
in conjunction with lemmata 3 . 3 and 3.4 . Let
{C,} be a uniform circuit family meeting the
above resource constraints. We will show how
to construct a uniform family {Gn} of semi-
unbounded fan-in circuits, such that {C,} and
{G,} have the same number of accepting subtrees
on any input. The key idea is to make all inputs to
an OR gate be non-OR gates. As the AND gates
are semi-unbounded, they may be retained with-
out any changes. Fix a parameter d(n) = [cS(n)l ,
where the size of the n-th circuit of {C,} is 2"'(")
for some constant c.

We use the following notation. By g,gl ,g2 ,h
we refer to gates in C,. These shall figure as
[g] , [g l] , [g 2] , [h] in G, with the same gate type. Let
the output gate of G, be [o] where o is the output

215

gate of C,. Given a gate [g], the inputs to the gate
are defined as follows. ened.

sults of Venkateswaran [Ve 871 have been strength-

- 0 [g] is an AND gate. Let the inputs to g be g1 Theorem 4.1 ISAC' -
and 92. Then the inputs to [g] are [gi] and jSemi-Unbounded USIZE,DEPTH(poly(n),logn) I

The proof of the main theorem yields techniques
b21.

0 [g] is an input gate. Then there is nothing to
be done except remembering the input bit to

that characterize OptSACi and O p t P .

- be wired. Theorem 4.2 (a) Opt SAC' -
ISemi-Unbounded USIZE,DEPTH(poly(n), log n),

#Semi-unbounded USIZE,DEPTH(2"0(1) , log n) where

as CONCAT.

Proof: The proof is similar to that of the main
theorem. we have to be careful about the order

I
We now show how SpanSAC' may be computed

- o p t P - (b)
0 [g] is an OR gate. The inputs to the gate [g]

are all gates of the form [g,h], where h is a
non-OR gate. A [g, h] gate is an AND gate

to the gate [h] are constructed recursively.
The gate [07 97 h1 is the output gate of a reach-
ability sub-circuit that verifies that there is

OR gates, This may be checked within depth
d(n) by using lemma 3.3. This construction
with lemma 3.4, guarantees that the number
of accepting paths at [g] is identical to the
number of accepting paths at g.

with two inputs [~ , ~ , h] and [h]. The inputs OR is interpreted US MAX and AND is P'nteFpEted

indeed a path from g to h in c, using only of the inputs to it gate.

with circuits.

Theorem 4.3 SpanSACl

flSemi-Unbounded USIZE,DEPTH(poly(n), log n),

preted as CONCAT.

Proof: The concatenation operator is taken over
sets. Actually, it is the cardinality of the output

I

c

The construction is clearly logspace uniform. where OR is interpreted QS U and AND is inter-
The depth of the resulting circuit is O (S (n) *
logT(n)). This proves the inclusion.

(4)
jSemi-Unbounded USIZE,DEPTH(2°(s(")), s(n) * log T (n)) that is the span.

r
L
IAuxPDA SPACE,TIME, HT(s(TI) , T (n)s(n) , s(n) *
1% T(n) 1-

Use nondeterminism at an OR gate and always
evaluate the left child of an AND gate first by
pushing the right child of the AND gate onto the
pushdown. This ensures that an accepting tree is
mapped to a unique accepting path in the AuxPDA
computation. I

4 Structural Results

We begin by noting some implications of the main
theorem. The theorem tells us exactly how the re-

We now prove, similar to [AJ 901 , that
SpanSAC' is Turing-equivalent t o #P.

Lemma 4.4 SpanSAC' C #P.

Proof: Let f be a function in SpanSAC'. Let the
function be witnessed by an NAuxPDA transducer
N . Consider the following language L .

L = {z#y I y is an output of N on input z}.
Clearly, this language is in LOGC3L and there-

fore in P. As the length of y is polynomially
bounded, an NP machine guesses all y's bounded
by that length and verifies the guess using the P
machine. I

The following result is known

216

Lemma 4.5 ([AJ 901) # P c P (SpanLOG). I

We need the following result due to Toda. For a
simpler proof see [RVVY 90,BF 90,Tr 90,RR 901.

Theorem 4.6 ([To 891) P7-f c BP.$Pc P (
#P)*

From the observation that SpanLOG is con-
tained in SpanSAC' , we get

Theorem4.7 P7-f c P(SpanLOG) = P(
SpanSACl) = P(SpanP) = P (# P) = P(PP).

Proof: Follows from standard results connecting
PP and #P , lemmata 4.4 and4.5, and Toda's the-
orem . I

Though SpanSAC' is very hard, we neverthe-
less can show a restriction of the class is in NC2.

Corollary 4.8 1. #SAC' E NC2

2. OptSAC' NC2.

3. SpanSAC'/log n] c NC2.

Proof: Replace all "+" and "*" gates by appro-
priate NC'circuits. I

Apparently, it is unlikely that #SACContains
#SAC'(similar results hold for Opt also) as the
following lemma demonstrates.

Lemma4.9 #SAC' = #LOG
LOGC3L -

iff NLOG =
I

Can OptSAC' be contained in #LOG? Again,
it seems unlikely.

Lemma 4.10 If OptSAC' c NLCOG then ULOG
= LOGCFL = NLOG .

Proof: The characteristic function of any
LOGC3L language is in OptSAC'. By hypoth-
esis, it is in #LOG. Therefore, this fact has to be

I
At the other ex-

treme, #SAC",OptSACOO ,SpanSACmhave huge
outputs whose length may exceed polynomial
space. It is therefore reasonable to restrict these
machines to polynomial length outputs - with the
hope that such a restriction is fruitful.

witnessed by a ULOG machine.

We look at a "natural" restriction first consid-
ered by Ladner [Lad 891. Nondeterminism along
any path is restricted to a polynomial number of
moves. This naturally forces the number of paths
in the computation tree of the NAuxPDA to be
bounded by an exponential in the input length.
We will denote such a class by hSAC". Sur-
prisingly, this class coincides with 3 P . Again,
this result is made possible by the main theorem.
That computing functions in 3 P are equivalent to
counting the number of accepting subtrees in cer-
tain boolean circuits demonstrates the richness of
the counting paradigm.

Theorem 4.11 3 P = bSAC"=
ftSemi-Unbounded USIZE(poly(n))[poly(n)] .

Proof: (1) 3 P c bSACm. The proof is similar to
that in [Lad 891. Consider a polynomial time com-
putable function, f . The language defined below
is then in P.
L = {(x,i): the ith bit of f (x) is a 1). By virtue
of being in P , there is a DAuxPDA accepting it in
space log n and no(') pushdown height. Let m be
a polynomial bound on the length of f's output.

Start with the least significant bit . In general,
if the ith bit is a "1" then do one of three things.

1. accept

2. check if (2, i + 1) E L.

3. check if (x, i + 1) E L.

211

1

If the i th bit is a “0” then do one of (2) or (3)
above.

(2) bSAC‘C

It follows from the main theorem and the fact
that the number accepting paths may be repre-
sented using polynomial number of bits.

3 P .

As the number of output bits of the arithmetic
circuit is polynomially bounded, the PLUS and
MULT gates may be replaced by NC1 circuits. As
polynomial size circuits with polynomially many
outputs is precisely F P , the result follows. I

flSemi-Unbounded USIZE(poly(n))[pol y (n)] .

(3) jSemi-Unbounded USIZE(poly(n))[poly(n)]

5 Arithmetic Circuits

In this section, we show how our main result can
be used to convert small degree arithmetic circuits
to small depth arithmetic circuits.

Valiant et al [VSBR 831 showed how circuits
with small algebraic degree may be converted into
circuits of small depth, without substantial in-
crease in the size of the circuits. Their result may
be restated in the following form. We state the
results for polynomial size circuits for simplicity.

Theorem 5.1 Let {C,} be Q uniform family of
arithmetic circuits of polynomial size and degree
d . Then there is an equivalent P-uniform family of
semi-unbounded arithmetic circuits of polynomial

I sire and O(1og n + log d) depth.

We prove a slightly weaker version of the above
theore with improvements in certain cases. The
proof of Valiant et al is complicated, whereas our
proof is reasonably straight forward. We show
how negative-numbers can be handled by AuxPDA.
This idea turns out to be crucial in characterizing
D € 7 (see next section).

Theorem 5.2 Let {C,} be an uniform family of
arithmetic circuits of polynomial size and degree d.
Then there is an equivalent P - uniform family of
semi-unbounded arithmetic circuits of polynomial
size and O(logn(1ogn + logd)) depth. Further-
more, when the degree of the arithmetic circuit is
polynomial, the equivalent semi-unbounded arith-
metic circuit has O(1ogn) depth and is DOCOG-
uniform.

Proof: Without loss of generality, we assume that
the input to the circuit is one of 0 ,+1 or - 1 .
From lemma 5.3 below, it is clear that there is
a non-uniform special AuxPDA, N , with three final
states (0, + 1 , -1) such that the output of the cir-
cuit,say f , is identical with the difference between
the number of paths leading to a +1 and the num-
ber of paths leading t o a -1. It is a simple matter
now to construct two NAuxPDA’s,N+1andN-1, so
that N+l(resp.N-1) accept iff the path leads to a
+l (re sp . - 1). Letting # (N ; , z) denote the number
of accepting paths in the machine N; , we see that
f (z) = # (N + l , z) - # (N - l , z) . By lemma 5.4, the
running time of each of these machines is bounded
by logn + logd. By combining the main theo-
rem, and the fact that the non-uniform advice to
the special AuxPDAcan be computed in P , each of
these machines may be faithfully simulated by a P
uniform (instead of a DOCCOG- uniformity) family of
arithmetic circuits of depth O(logn(logn+logd)).
The difference between the outputs of these cir-
cuits give the required answer. With a bit more
effort, the output gate may be changed from a SUB
gate to a PLUS gate by forcing the second machine
to output a negative number without affecting the
resources. The improvement for polynomial de-
gree also follows similarly from the main theorem

When the algebraic degree of the polynomial is
a polynomial in the length of the input, it is clear
that our simulation is an improvement over theirs.

To complete the proof, we need the two lemmas

and 3.1. I

below.

By a special jAuxPDA we mean one with three

278

final states (0, +1, -1). The output of such a ma-
chine is the difference between the number of paths
with final state as +1 and the number of paths
with final state as -1.

Lemma 5.3 Let {Cn} be a uniform family of
bounded arithmetic circuits. Then there is a non-
uniform special gAuxPDA such that on any input,
the output of the arithmetic circuit is identical to
to output of the special IAuxPDA .

Proof: The proof is by induction on the depth of
the circuit. There is nothing to prove at the input
level . Assume the result holds for all circuits of
depth D- 1. We will show that it holds for circuits
of depth D as well.

Consider a depth D arithmetic circuit. The ad-
vice on the tape is the algebraic degree of each
gate. Let its output gate be out. Let its inputs
be inpl and inp2. By hypothesis, there exists two
special gAuxPDA N1, N2. Let the number of paths
leading to a +l (-1) in Ni be z;(y;) . Then the
value output by the gate inpi is val(inp;) = x i - y i ,
by induction hypothesis.

out is an PLUS gate. Then the AuxPDA exis-
tentially simulates either N1 or N2. Then
val(out) = (2 1 - Y l) + (2 2 - y2) .

out is a MULT gate. In this case the output,
ual(out) should be (2 1 - y 1) * (z2 - y2) . The
AuxPDA simulates the circuit in the following
way. From the advice tape, it know the de-
gree of the inputs. Wlog assume inp2 is the
heavier input. It pushes inp2 onto the push-
down and simulates N1. When it completes
simulating N1, the AuxPDA is in some path
with a value form (0, +1, -1} and with inp2
on top of stack. Call the value of that path
p . Pop top of stack and if p # 0 then simu-
late N2. The simulation of N2 terminates in
some final state v. The AuxPDA enters the fi-
nal state p * u. So all that has been done is to
look at the parity of the final states of the two
accepting paths. Now the number of paths in

AuxPDA that are in state +l(resp. - 1) are
21 * 22 + Y I * yz(resp.zl * y2 + 2 2 * y l) . So the
output of the AuxPDA is z1 * 22 + y1* y2 - 21 *
y2 - 2 2 * y1, which completes the induction.

This completes the proof. I

Lemma 5.4 Let {Cn} be a bounded arithmetic
circuit of depth D and degree d . Then the running
time T , of an AuxPDA simulating the circuit as in
the above lemma is bounded by D * d + 1. Also, the
pushdown height is bounded by O(1og D + logd)

Proof: The proof is by induction on depth. A
similar lemma is proved in [Ve 881 to bound tree-
size of boolean circuits. At the input level, the re-
sult is trivially true. So assume the lemma holds
for all circuits of depth D - 1. Let T1,Tz be the
running time of the two children i np l , inp2 respec-
tively. Also, let their respective algebraic degrees
be d l , dZ.

0 out is an PLUS gate. Then ,
T 5 ~ u z { T ~ , T ~ } + 1.
< d*(D - 1) + 1
z D * d + l .

0 out is an MULT gate. Then,
T I Ti + 7'2 + 1
- < (d l + d2) * (D - 1) + 3
5 d * (D - 1) + 3
< D * d + l .

The induction is complete.

To complete the proof, note that only inputs to
MULTgates are pushed onto the pushdown. But
machine always explores the lighter child first. I

6 V I 7 is as easy as counting
paths in a DAG!

Consider the problem of matrix powering (rais-
ing an order n matrix to its nth power, where

279

all interers are n bits in length). This problem
is known t o be complete for V & 7 [Co 851. Since
matrix multiplication can be computed by semi-
unbounded depth two arithmetic circuits over in-
teregs, it is clear that matrix powering has poly-
nomial size and O(1og n) depth semi-unbounded
arithmetic circuits. From lemma 5.3 we have

Theorem 6.1 The determinant of an order n
matrix over integer entries of length at most n can
be computed as the dinerence of two # S A C 1 func-
tions. I

Note that this result is not implied by theorem
5.1 due to the uniformity condition.

It is surprising that this result can be vastly
improved- in fact to give an exact characterization
of D & 7 ! This result has also been independently
observed by Damm [Damm 911 via different tech-
niques.

We will show how to do matrix powering using
a special NCOG machine with three final states
(0, +1, -1}. The output of such a machine is the
difference between the number of paths with final
state as +1 and the number of paths with final
state as -1.

Lemma 6.2 MATPOW can be simulated in such
a way that the i j t h entry of Am,m 5 n is the out-
put of a special NCOG machine.

Proof: The proof is by induction on the index m.
Clearly there is nothing to prove when m = 1. So
assume the result is true for rn - 1. Noting A" =
A * Am-1, we design a special NCOQ machine
with the required properties for entry a:.

0 existentially guess a k, l 5 k 5 n. This re-
quires only log n bits.

0 Look at a ; k . If

- a;k = 0, the machine halts in the final
state 0.

- ajk 2 0, the machine branches into -a;k
paths and along any such path simu-
lates the special NCOG machine for en-
try a;-' guaranteed to exist by induc-
tion hypothesis.

- ajk 5 0, the machine branches into a;k
paths and simulates the special NLCOG
machine for entry a;-' guaranteed to
exist by induction hypothesis. When any
of the paths reach a final state, the final
state is toggled from 1 to -1 and vice-
versa.

Branching into strictly I a;k I paths and then sim-
ulating a;-' has the effect of multiplying them.
The nondeterministic machine is easily seen to use
O(1og n) space. The induction is complete. I

A special NLOG machine may be thought of
as outputting the difference of two #COG machine
in the following manner; one of the machine ac-
cepts along a path iff it reaches a +1 final state,
whereas the other machine accepts along a path iff
it reaches a -1 state. Combining this observation
with the previous lemma, we get

Theorem 6.3 1 . V & 7 C_ VoZFF(#COG).

2. MATPOW over non-negative integers is com-
plete for #COG. I

The following result is proved in [BDLM 911.

Theorem 6.4 COGflcoG C D&7. I

Putting them together, we get an exact charac-
terization of V&7.

Theorem 6.5 V&T = LOGflccOG
VozFFflCOG).

As a corollary, we prove the main result
[Damm 90,BDLM 911.

Corollary 6.6 ([Damm 90,BDLM 911)
MATPOW over Z, is complete for MOV,COG,
where p is fixed prime.

280

Proof: Since (f - g) = (f + (p - l)g)(mod p) ,
VZ3F(MOVpCOG)= MC3VpCOG. I

Remarks:

0 The problem of (s , t) path in a DAG may be
generalized to (s , t l , t2) paths in a DAG, i.e., a
path from s to t l and s to t2. Clearly, the spe-
cial NLOG machine is reducible to (s , t l , t ~)
path. As a decision problem, this problem is
easily seen to be NCOG- complete. But as a
counting version, they are powerful enough to
capture D € 7 !

0 The matrix product must be undertaken in
a linear fashion. Note that the familiar dou-
bling argument does not seem to work. It does
not pay to be greedy!

0 Note that the same proof works for iterated
matrix product (ITMATPROD) as well.

0 It is however not clear to give a direct and
clean proof starting from the determinant it-
self.

0 It is trivial to see that iterated integer product
is in jLc3G.

7 Complete Problems, Ranking
and Optimizing

We present some natural functions complete
for the counting classes that we have de-
fined. These functions are (variations of)
ranking functions for certain class of lan-
guages. We show ranking VC3C’s is complete
for #AuxPDA SPACE,TIME(log n, poly(n)) , ranking
C 3 C ’ S is com-
plete for SpanAuxPDA SPACE,TIME(log n, poly(n)) ,
and max-word function for ranking CFC’s is com-
plete for OptAuxPDA SPACE,TIME(log n,poly(n)).
Using these with the results from the previous sec-
tions, we prove several results on the complexity
of ranking. We also note a natural complete prob-
lem for #AuxPDA SPACE,TIME(log n, poly(n)) ; the

problem of computing the output of a polynomial
size and polynomial degree arithmetic circuit over
non-negative inputs.

qvcFc
Inpu t : An encoding of a (one way) deterministic
pushdown automata and a string 5 .

O u t p u t : The number of strings lexicographically
smaller than 5 in the language accepted by the
pushdown automata.

rgcFc :
Inpu t : An encoding of a (one way) nondetermin-
istic pushdown automata and a string 5 .

O u t p u t : The number of strings lexicographically
smaller than 2 in the language accepted by the
pushdown automata.

moptc3c :
Inpu t : An encoding of a (one way) nondetermin-
istic pushdown automata and a string 5.

O u t p u t : The largest string lexicographically
smaller than 2 in the language accepted by the
pushdown automata.

Theorem 7.1 1. Evaluating polynomial size
and polynomial degree arithmetic circuits over
non-negative integer inputs is complete for
fiAuxPDA SPACE,TIME(log n, poly(n)).

2. qvc3c is complete for
#AuxPDA SPACE,TIME(log n, poly(n)).

3. Ranking languages accepted
by lNAuxPDA SPACE,TIME(log n,poly(n)) is

#AuxPDA SPACE,TIME(log n, poly(n)).
complete for

4. r n c ~ c is complete for
SpanAuxPDA SPACE,TIME(log n,poly(n)) .

5. Ranking languages accepted
by lNAuxPDA SPACE,TIME(log n,poly(n)) is

SpanAuxPDA SPACE,TIME(hg n, p d y (n)) .
complete for

28 I

6. moptc3‘C is complete for the notion of P-printability, just as P-rankability
is. It is therefore interesting to explore how these
classes differ. It is a well known fact that Pis P-

7. Optimizing languages accepted rankable if and only if P= #P[Hem 871. We show

complete f o r unless P= O p t P . Clearly, this collapse is milder,
OptAuxPDA SPACE,TIME(log n , poly(n)) .

OptAuxPDA SPACE,TIME(log n, poly(n)) .

by lNAuxPDA SPACE,TIME(log n, p o l d n)) is that it is unlikely that Pis p-optimizable either -

in the light of Toda’s theorem.

Proof: The proofs are not difficult and they are
deferred to the final version of the paper. Theorem 7.5 P is P- optimizable iff P = O p t P .

Theorem 7.1 when combined with Corollory 4.8
yield simple and structurally strong proofs (in the
light of the completeness result) of

Theorem 7.2 ([Huy 901) 1 . Languages
accepted by
lUAuxPDA SPACE,TIME(log n , poly(n) , c)an be
ranked within NC2.

2. Languages accepted
by lNAuxPDA SPACE,TIME(log n , poly(n)) are

I P- rankable i# P = #P.

Combining Theorem 7.1 with Theorem 4.6 and
Corollary 4.8 we also get

Theorem 7.3 1. Languages accepted
by lNAuxPDA SPACE,TIME(log n , po/y(n)) are
NC2- optimizable.

2. Sparse C3L’s are rankable in NC2. I

We now show a “larger” P- rankable set.

Theorem 7.4
lUAuxPDA SPACE,TIME(log n , eap(n) , poly(n))
P- mnkable.

is

Proof: (s) Suppose P is P optimizable. Consider
the language
L = {F#ass ign : assign is a vector that satisfies
the formula F } .
Then L belongs to P. Also the problem of finding
the lex-maximum assignment is complete for OptP
[Kre 881. The result follows.
(2) Easy. I

8 Open Problems

The relationship between uniformity and ambigu-
ity is puzzling. It is straight forward to show any
language accepted by an AuxPDAis also accepted
by an AuxPDAwithin height logarthmic in time.
However, in the resulting machine, the number of
accepting paths increase. What then the relation
between uniformity and ambiguity? And between
uniformity and nondeterminism?

Can Valiant et.al’s [VSBR 831 result be made
DLC(36-uniform? Note that in our simulation, we
need the degree of each gate as an advice. So the
circuit need to be evaluated once for degree. This
is similiar to the case of iterated integer multipli-
cation where it need to be evaluated once [IL 891.

Acknowledgments
This paper owes much to the influence and work

git Jenner. Venkateswaran’s fundamental work
on semi-unboundedness and Birgit’s work (with
Alvarez) on counting space classes are instrumen-
tal in starting this research.

Proof: The ranking func-

’ Theorem 4.11 completes the proof.

The results above seem to imply that in some
sense, optimizing is easier than ranking. The no-
tion of P-optimizable sets is a generalization of

is in flSemi-Unbounded uslzE(PolY(n))[PorY(n)I. of two wonderful persons, Venkateswaran and Bir-

282

I thank Venkateswaran for initially drawing my at-
tention to the link between D&7 and LcOGC3L)
as a possible application of my results in [V goal.
I thank Bir‘git Jenner for drawing my attention to
[BDLM 911 and encouraging me to add section 6.
I thank Peter Rossmanith for drawing my atten-
tion to an error in an earlier draft. I thank Ashok
Subramaniam for pointing out certain simplifica-
tions to the proof of the main theorem and more
importantly for bringing [Damm 901 to my notice.
The idea in theorem 5.2 is due to a chance remark
by Ravi Kannan made in a entirely different con-
text. I thank Veni Madhavan for his guidance and
encouragement.
I thank Rengarajan and Laxmi for listening to the
many wrong proofs and ideas without ever losing
their patience (or sanity)!

References

[AJ 901

[BDLM

[BF 901

Alvarez, C., and Jenner, B., A Very Hard
Log Space Counting Problem, Proc. 5th
Structure in Complexity Theory Confer-
ence,(1990)) 154-168.

911 Buntrock, G., Damm, C., Hertrampf,
U., and Meinel, C., Structure and Impor-
tance of Logspace-MOD-Classes, STACS
91, LNCS 480, 360-371.

Babai, L., and Fortnow, L., A Character-
ization of #Pby Straight Line Programs of
Polynomials, with Applications to Inter-
active Proofs and Toda’s Theorem, Proc.
31st annual FOCS Symposium.

[Co 851 Cook, S.A.,
A Taxonomy of Problems with Fast Par-
allel Algorithms,Information and Control
64, (1985), 2-22.

[Damm 911 Indirect communication via Birgit
Jenner.

[Damm 901 Damm, C., Problems complete for
$LOG, Information Processing Letters
36, (1990), 247-250

[Hem 871 Hemachandra, L., The Complexity of
Ranking, Proc. 2nd Structure in Com-
plexity Theory Conference,(1987), 103-
117.

[Huy 901 Huynh, D. T., The complexity of Rank-
ing Simple Languages, Mathematical Sys-
tems Theory 23,(1990),1-20.(also in 3rd
Structure Conference, 1987)

[IL 891 Immerman, N., and Landau, S., The
Complexity of Iterated Multiplication,
Proc. 4th Structure in Complexity The-
ory Conference,(1989), 104-111.

[JK 881 Jenner,B. and Kersig,B., Characterizing
the polynomial hierarchy by alternating
Auxiliary pushdown automata RAIRO
theoretical Informatics and Applications
23, (1989)) 91-99.

[KST 891 Kobler, J., Schoning, U., and Torin, J.,
On Counting and Approximation, Acta
Informatica 26, (1989), 363-379.

[Kre 881 Krentel, M., The Complexity of Opti-
mization Problems. Journal of Computer
and System Sciences 36,(1988),490-509.

[BH 881 Buntrock, G., and Hoene, A., On Re-
versa1 Complexity of Auxiliary Pushdown

Universitat, Berlin.

[Lad 891 Ladner, R., Polynomial Space Counting
Problems, SIAM Journal of computing

Automata, Tech. Rep 88-11, Technische 18,(1989), 1087-1097.

[RVVY 901 Ravi Kannan, Venkateswaran, H.,
[Co 711 Cook,S.A., Characterizations of push- Vinay, V., and Yao, A. C., A Circuit-

Based Proof of Toda’s Theorem, to ap-
pear Information and Computation.

down machines in terms of time-bounded
computers, JACM 18 ,(1971), 4-18.

283

[RR 901 Regan, K. W., Royer J. S., A Simpler
Proof of P'Rs BP.$P. Draft, May 1990.

[V 90a] Vinay, V., Counting Auxiliary Pushdown
Automata and Semi-unbounded Arith-

[Ru 801 Ruzzo,W.L., Tree-size bounded alterna-
tion, JCSS 21(1980), 218-235.

[Ru 811 RUZZO, W. L., On uniform circuit com-
plexity, Journal of Computer and System
Sciences 22 , (1981),

[To 891 Toda, S., On the computational power
of PP and $P, Proc. 30th annual FOCS
symposium, (1989), 514-519.

[Tr 901 Toran, J . , Counting the Number of Solu-
tions, Tech rep. LSI-90-17, Department de
Llenguatges i sistemes informatics, Uni-
versitat Politecnica de Catalunya.

[Val 791 Valiant, L. G. , The Complexity of Com-
puting the Permanent, Theoretical Com-
puter Science 8 , (1979), 189-201.

[VSBR83] Valiant, L. G . , Sykum, S., Berkowitz,
S., and Rackoff, C., Fast Parallel Com-
putations of Polynomials using Few Pro-
cessors, SIAM Journal on Computing
12,(1983), 641-644.

[Ve 871 Venkateswaran,H., Properties that char-
acterize Lcc36C3,C, Proceedings lgth An-
nual ACM STOC, (1987), 141-150.

[Ve 881 Venkateswaran,H., Circuit definitions
and nondeterministic complexity classes,
Proc. sth FST & TCS, (1988), LNCS 338,
175- 192.

[VC 901 Vinay, V. and Chandru, V., The Ex-
pressi bili ty of Nondeterministic Auxiliary
Stack Automata and its relation to Tree-
size Bounded Alternating Auxiliary Push-
down Automata, Proc. loth FST & TCS,
(1990), LNCS 472, 104-114.

[VVV 901 Vinay,V.,Venkateswaran, H. and Veni
Madhavan,C.E., Circuits, Pebbling and
Expressibility, Proc. 5th Structure in
Complexity Theory Conference, (1990),
223-230.

metic Circuits. Tech. Rep. Indian Insti-
tute of Science.

284

r-

