Saving Queries With Randomness*

Pankaj Rohatgi

TR 91-1259
December 1991

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*This research was supported in part by NSF Research Grant CCR 88-23053.

Saving Queries with Randomness *

Pankaj Rohatgi

Department of Computer Science
Cornell University
Ithaca, NY 14853

December 20, 1991

Abstract

In this paper, we provide tight bounds on the success probabilities of randomized reduc-
tions between various classes in the Boolean and Bounded Query Hierarchies. The PSATII¥]
<P -complete language randomly reduces to a language in PSATI*~1] with a one-sided error
probability of 1/[k/2]. If two-sided error is allowed, then we show that a much lower error
probability of 1/(k + 1) can be achieved. We prove that both these reductions are almost op-
timal by showing that the error probabilities cannot be reduced by even 1/poly, unless the PH
collapses. These tight bounds precisely characterize the power and limitations of randomness in
saving a query to SAT.

These results can be used to identify optimal probability thresholds which determine when
languages complete under randomized reductions inherit the hardness properties associated
with <P -complete languages. Using these thresholds we prove hardness properties for some
languages in these classes which are not <P -complete in certain relativized worlds.

We also explore the relationship between randomization and functions computable using
bounded queries to SAT. For any function h(n) = O(logn), we show that there is a function f
computable using h(n) nonadaptive queries to SAT, which cannot be computed correctly with
probability 1/2+1/poly by any randomized machine which makes less than h(n) adaptive queries
to any oracle, unless PH collapses.

1 Introduction

Randomness is a useful computational resource due to its ability to enhance the capabilities of
other resources. Its interaction with resources such as time, space, interaction with provers and
its role in areas such as algorithm design, parallel computing and circuit complexity have been
studied extensively. We examine how randomness interacts with another well studied computational
resource - the number of queries allowed to an oracle.

Treating the number of queries to SAT as a computational resource gained acceptance with
Krentel’s work [Kre88] on NP Optimization problems. It is well known that there is a wide variation
in the complexity of typical NP Optimization problems although their decision versions have the
same complexity. Krentel was able to explain these differences by characterizing the complexity of
optimization problems by the number of SAT-queries required to compute the optimal solution.

Often, one is only interested in finding out whether the optimal solution satisfies some predicate.
In complexity theoretic terms, recognizing these languages should be easier than computing the

*This research was supported in part by NSF Research Grant CCR 88-23053.

optimal solution. Wagner [Wag86] extended Krentel’s approach to such languages by characterizing
their complexity by the number of SAT-queries required to evaluate the predicate. This also
extended the work of Papadimitriou and Yannakakis [PY82] who defined the class DF while studying
the complexity of the facets of the TSP polytope. DF is the class of languages expressible as a
difference of two NP languages and a canonical example of a language in DF is { (I,k) | P(I,k) }
where I is an instance of some NP Optimization problem and P(I,k) is the simple predicate
Optimum(I) = k.

An example of a language based on a more complex predicate is CLIQUE(5) defined as follows:
Given a graph G and five integers a4, ..., as, is it the case that the size of the largest clique in G is
one of the a;’s 7 Assuming NP # co-NP, CLIQUE(5) cannot be in NP although it is related to the
NP Optimization problem MAXCLIQUE. Since the predicate P(G, k) = “maxclique in G has size
exactly k” is DP-complete and CLIQUE(5) is based on five instances of this predicate, one would
expect it to be more complex than the DF-complete languages.

The complexity of languages such as CLIQUE(5) can be characterized by the number of non-
adaptive queries to SAT required to recognize them (10 will suffice in this case). Another closely
related way of measuring the complexity of such languages is to see how they can be expressed
as a set theoretic combination of a minimum number of NP languages (CLIQUE(5) is a nested
difference of 10 NP languages). The formulation based on the number of queries gives rise the
Bounded Query Hierarchy and the formulation based on set theoretic operations gives rise to the
Boolean Hierarchy[CGH*88).

Subsequently, the robustness of these two complexity measures was investigated by many re-
searchers [Kre88, Kad88, Bei87, Bei88, ABG90]. Research was also conducted on how the use-
fulness of bounded queries as a resource was affected by the complexity of the oracle itself.
[AG88, Bei, GJY87, Bei87, Cha89, ABG90]. Of particular significance are results that state that,
for all constants k, under usual complexity theoretic assumptions, k nonadaptive (adaptive)
queries to SAT are more powerful than k — 1 nonadaptive (adaptive) queries [Kre88, Kad88]. For
instance, these results imply that CLIQUE(5) is not in PSATI®] unless PH collapses. In light of
these negative results, it is natural to ask whether randomization can be used to bridge this gap
and if so, to what extent. This question was first examined in [CKR91] where nontrivial upper and
lower bounds were provided on the error probability of randomized reductions in the Boolean and
Query Hierarchies. However there was a large gap between these bounds. For instance, the lower
bound on the error in reducing PSATI to PSATIE-1] was roughly 1/ ezp(k) whereas the upper
bound was roughly 1/linear(k).

We extend this work by proving tight bounds on various randomized reductions in the Boolean
and Bounded Query classes. Any language in PSATI¥ randomly reduces to a language in PSATII]
with one-sided error probability of 1/[k/2]. If two-sided error is allowed then we show that the
error probability can be reduced to 1/(k+1). We prove that it is not possible to reduce these error
probabilities even by 1/poly, unless PH collapses. Observe that as k increases, the error bound
decreases, thus giving a precise mathematical justification to our intuition that, for language recog-
nition, the value of an additional nonadaptive query decreases as the number of queries increase.
It was not possible to formalize this intuition without randomness because the deterministic result
states that Vk, PSATIIK £ pSATII(k=1] ' ypless PH collapses[Kad88].

Thus, CLIQUE(5) can be recognized with a two-sided error probability of only 1/11, using
randomness and 9 nonadaptive queries to SAT. The randomized computation of CLIQUE(5) in
PSATI) js simple and elegant and it is surprising that more complex computations can’t decrease
the error significantly, unless PH collapses.

Our proof techniques exploit the rich structure within the Boolean and Query Hierarchies and
rely on the important observation that some structure can be imposed even on arbitrary randomized

reductions between classes in the Boolean Hierarchy.

Our bounds can be used to establish sharp probability thresholds above which languages com-
plete under randomized reductions in these hierarchies inherit most of the hardness properties of
the <F -complete languages. As a consequence we can show that several languages in this hierar-
chy which are not Sf:l -complete in certain relativized worlds, nevertheless, behave almost like the
<P -complete languages.

Finally we explore the relationship between randomization and functions computable using
bounded queries to SAT and we show that randomization is not helpful in this case.

2 Definitions, Notation and Background

We assume familiarity with the classes NP, co-NP, the NP-complete set SAT, the Polynomial time
Hierarchy (PH) and the usual probabilistic and nonuniform classes.

Notation Let {0,1}" denote the set of n-bit strings. For any set A, let A=" denote the set of
n-bit strings in A.

We now define the Bounded Query Hierarchy.

Definition We write PSATHI¥ for the £t* level of the Bounded Query Hierarchy. The class PSATII]
consists of all languages recognized by polynomial time Turing machines which are allowed at most
k parallel (or non-adaptive) queries to the SAT oracle.

In this paper, we work with the finer query hierarchy based on nonadaptive queries; the k’th
level of the query hierarchy based on adaptive queries being exactly PSATI|[2"-1) [Bei87]. Bounded
Query classes lacks structure. Results about these classes often rely on the structural properties of
the closely related Boolean Hierarchy. The Boolean Hierarchy [CGH*88] is a natural generalization
of the class DF. We now define this hierarchy. Let Lq, ..., L, denote arbitrary languages. Define
the operator C as

c(L) ¥
def C(L1y...yLn—1)UL, if nisodd
CLy, -oos Ln) = { C(Ly,y...,Lu—1)N L, otherwise

Definition We write BH(k) and co-BH(k) for the k** levels of the Boolean hierarchy, defined as:

BH(k) %' {L|L=C(Ly,...,Ly,) for some Ly,..., Ly € NP}

def

co-BH(k) = {L|L e BH(k)}

Note that BH(1) corresponds to NP and BH(2) corresponds to DF. A prominent member of
DF is is the set of uniquely satisfiable boolean formulas (USAT). Also, the set of all (G, k) such
that the maximum clique size in graph G is ezactly k, is complete for DF.

Every level of the Boolean Hierarchy has complete languages including languages based on
important NP Optimization problems [CGH*88]. For example, the language CLIQUE(5) defined
earlier is complete for BH(10). From the definition of the classes BH(k) and co-BH(k) it is not
hard to show that the following languages are complete for the respective levels of the Boolean
Hierarchy:

Definition We write Lpyx) for the canonical complete language for BH(k) and Leo-BH(k) for the
complete language for co-BH(k):

def
LBH(I) = SAT
LBH(2lc) = {(xl, N xzk) | <:L‘1, ey 3721:—1) € LBH(2k—1) and Tok € SAT}
Leu2k+1) = {{z1,---,T2k41) | (Z1,- .., Z2x) € LBH(2x) OF T2k41 € SAT}

dof
Lco-BH(l) = SAT
Leo-BH(2K) L {21,z | (21500, 2201) € Leo-BH(2k-1) OT T2k € SAT}

Leo-BH(2k+1) = {{Z1,--,%2k41) | (Z1,-..,%2k) € Leo-BH(2k) and Z2x41 € SAT}

Since NP and co-NP are closed under boolean ANDs and ORs, one can prove the following inter-
esting fact about languages in the Boolean Hierarchy over NP sets.

Fact 1 In the definition of the class BH(k) we can also assume that the NP languages Ly, ..., Li
are such that

Ly C Ly_y C ... C Ly C L.

One of the interesting consequences of Fact 1 is the following:

Notation Let 7; denote jt* projection function, and 7(;,;) denote the function that selects the
itk through j** elements of a k-tuple. For example,

Ti({(z1, ..., 2k)) = 25 and 7w 5H((21,. .., 2k)) = (Ziy .oy Z5).

Fact 2 Let L be any language in BH(k). Then L <P -reduces to LpH(x) via a reduction h which
has the following properties:

e For any z, h(z) is the k-tuple (hy(z),..., hi(z)).
o h(z) € LBH(k) < z€L.
o Vz,i, (2<i<k) hi(z) € SAT = h;_1(z) € SAT

One such h can be obtained by observing that L = C(Ly, ... , L), where Ly, ... , Ly are NP
languages such that

Ly € Lgy € ... C Ly C L.

We can therefore define h;(z) to be the formula obtained by applying Cook’s reduction to the
z € L;? question.

The Bounded Query Hierarchy and the Boolean Hierarchy are closely related[Bei87]. In fact,
BH(k) U co-BH(k) C PSATIKl ¢ BH(k + 1) N co-BH(k + 1)

Figure 1 shows the relationships between the various levels of the Boolean and Query Hierarchies.
Both the hierarchies are proper unless PH collapses [Kad88]

PSAT || [¥]

BH(k) coBH(k)

PSAT || [£-1]

Figure 1: The structure of the Boolean and Query Hierarchies

A beautiful result due to Beigel [Bei87] shows that the <F -complete language for PSATII]
is just the tagged union of the canonical <F -complete languages of the k** level of the Boolean
Hierarchy, i.e., Lgy) and Leo-BH(k)- We shall call the canonical PSATI|[¥] <P _complete language
LeH(k) ® Leo-BH(k) 2nd a formal definition follows:

Definition The canonical PSATIF <P _complete language is denoted by LBH(x) ® Leo-BH(k) and
is defined as

Len(k) ® Leo-Bu(r) = {0y | ¥ € Lpuy)} U {ly | v € Leo-BH(k) }

We now define random reductions between sets. These definitions are generalizations of the defini-
tions given in [AM77] and [VV86].
Definition A <P B with probability 4, if there exists a polynomial time function f such that

r € A= Prob,[f(z,2)€B]>§

r ¢ A=> Prob,[f(z,2)¢ B]=1

where z is chosen uniformly at random from {0, 1}9(#), for some polynomial g.

Definition We say that A <2°~"P B with probability é, if A <P B with probability 4.
<m 'P-reductions are similar to <[P -reductions except that the error occurs on the other side.

Definition A <PPP B with probability é, if there exists a polynomial time function f such that
Prob,[z2 € A < f(z,2)€B]>§

where z is chosen uniformly at random from {0, l}q“’”'), for some polynomial ¢ and § > 1/2.

3 Randomization and Bounded Query Languages

We now examine the power and limitation of randomization in reducing harder languages in the
Query and Boolean Hierarchies to simpler ones. Figure 2 summarizes the results.

BH(2k + 2)

\ pSAT || [2k+1]

T

BH(2k + 1) coBH(2k + 1)

pSAT I [k]
__________ UG
BH(ky === """ . coBH(k)
U T
pSAT || [2k-1] pSAT || [k-1]
——: probability 1 — 1/(k+ 1) <!P-reduction ----- >: probability 1 — 1/(k + 1)

<PPP _reduction
----------- >: probability 1 — 1/k <P -reduction

Figure 2: Almost Optimal <™ and <PPP reductions

3.1 Almost Optimal Randomized Reductions

First we show that randomized reductions can reduce harder languages to simpler ones with the
probabilities shown in Figure 2. The <P -reductions are simpler than the <PPP._reductions but
their success probabilities are lower.

Lemmas 1 and 2 can be used to derive all the <!P-reductions in Figure 2. The basic idea behind
these reductions is to express the harder language as a union of ¢ sets such that excluding any one
of these sets from the union gives rise to a simpler language. Then by randomly excluding one of
the sets from the union we get an <P -reduction to a simpler language with error 1/t.

Lemma 1 [CKR91] For any k > 2, Lpy(ar) <1k LBH(2k—2) With probability 1 — 1/k.

Proof: For all k, it is known that a language L € BH(2k) if and only if it can be expressed as a
union of k D¥ sets[CGH*88]. If we omit one of the k¥ DF sets in the union, we will be left with a
language in BH(2k — 2) which <P -reduces to the complete language LpH(2k-2)- We can therefore
reduce Lpy(2k) to Lph(zk—2) by randomly omitting one of the & DF sets from the union. This type
of reduction has a one-sided error of up to 1/k.

Ezample: The language CLIQUE(5) described earlier is BH(10)-complete. Note that CLIQUE(5)
can be represented as a union of 5 DF sets (Maxcliquesize(G) = a;) for 1 < i < 5. By randomly
excluding one of the 5 sets from this union we can reduce CLIQUE(5) to the simpler language
CLIQUE(4) with one sided error of 1/5.

Lemma 2 For any k > 1, Leo-BH(2k) <m LBH(2k-1) ® Leo-BH(2k-1) With probability 1 —1/(k+1).

Proof: For all k£ > 1, it is known that a language L € co-BH(2k) if and only if it can be expressed
as a union of k — 1 D¥ sets, an NP set and a co-NP set [CGH*88]. Omitting one of these k + 1
sets from the union results in either a language in co-BH(2k —2) (a DF set is omitted) or a
language in BH(2k — 1) (the co-NP set is omitted) or a language in co-BH(2k — 1) (the NP set is
omitted). In all cases, the language will be in PSATII2¥~1] We can therefore reduce Leo-BH(2k) tO
LpH(2k-1) ® Leo-BH(2k-1) by randomly omitting one of the k + 1 sets from the union. This type of
reduction has a one-sided error of up to 1/k + 1.

FEzample: Note that CLIQUE(5) is co-BH(10)-complete. Assuming that the integers ay,...,as
are in increasing order, it is easy to see that CLIQUE(5) is the union of 4 DF sets ([a; <
Maxcliquesize(G) < a1] for 1 < i < 4), an NP set (Maxcliquesize(G) > as) and a co-NP set (
Maxcliquesize(G) < a;). By Lemma 2, CLIQUE(5) can be recognized using randomness and only
9 nonadaptive queries SAT with one-sided error of 1/6.

Some reductions from PSATI2*] are based on the fact that the language Lpn(2k) © Leo-BH(2k) 18
complete for that class [Bei87]. In that case, the reduction would be based on both lemmas.

Randomized reductions with two-sided error (<PPP -reductions) are better at reducing harder
languages to simpler ones because they are less constrained. The following lemma along with
structural properties of the classes can be used to derive the <PPP_reductions in Figure 2.

Lemma 3 LBH(k) Sbmpp LBH(k—l) @ Lco-BH(k—l) with probability 1 — 1/(k + 1).

Proof: Let A denote the language Lppyx) and let B denote Lpyk—1) ® Leo-BH(k-1) The analysis
for odd k£ and even k is slightly different and we will only deal with the even case. The same ideas
are applicable to the odd case.

Case 1: kis even: Let k = 2t. Then by Lemma 1 we know that A <™ B via a reduction R; with
probability 1 — 1/t. Also by Lemma 2 we know that A <P B with probability 1 — 1/(¢ + 1) via a
reduction R,. Since, the class PSATI-1] is closed under complementation, this also means that
A<®B, je., A<L ™ B with probability 1 — 1/(t + 1) via some reduction Rs.

Now the <PPP.reduction R from A to B will work as follows: On input z, with probability
t/(2t+ 1), R uses the reduction R; on z and with the remaining probability [(¢t +1)/(2t+1)], R
uses R3 on z.

Analysis: If x € A then the R can make an error only when it chooses to use R;. If it chooses R;,
then it will err with probability at most 1/¢. So the probability of error is at most ¢/(2t+1)*1/t =
1/(2t+1). If z ¢ A, then R can only make an error if it chooses to use R3. So the error probability is
at most (t+1)/(2t+1)*1/(t+1) = 1/(2¢t+1). Thus R is a probability 1—1/(k+1) <EPP .reduction.

Case 2: k is odd. Similar to Case I, details omitted. m]

Ezample: Consider the language CLIQUE(5) which is a union of 5 DF sets. We can obtain five
simpler languages by removing a set from this union. We can form six more simpler languages
by “adding” to CLIQUE(5) one of the six sets whose union constitutes CLIQUE(5). The <Epp.
reduction from CLIQUE(5) to a language in PSATI®) would be to randomly choose one of these
eleven languages.

3.2 Proofs of Optimality

We now prove that the reductions presented earlier are almost optimal. By almost optimal we
mean that there cannot exist reductions whose correctness probability is better by 1/poly, unless

the PH collapses. Minor variants of the same technique and the relationships between the various
classes can be used to to derive all the 25 bounds in Figure 2. Therefore, we only prove the result
for <P -reductions from languages in BH(2k) to languages in co-BH(2k). As shown earlier, it is
possible to reduce any language in BH(2k) to a language in co-BH(2k) via a probability 1 — 1/k
<P -reduction. The following theorem shows that the probability bound is almost optimal.

Theorem 4 Let L be any language in co-BH(2k). If LpH(2k) <t L with probability 1-1/k+1/p(n),
for some polynomial p, then the PH collapses to X¥.

We will need some definitions and lemmas before we can prove this theorem. Note that the
hypothesis of Theorem 4 implies that there ezists a probability 1 — 1/k + 1/p(n) <™ -reduction
from Lpy(2x) to Leo-BH(2k)- Arbitrary <{P-reductions from LBH(2k) t0 Leo-BH(2k) are quite difficult
to work with because, unlike the complete languages in the Boolean Hierarchy, arbitrary reductions
lack structure. However, we can establish that if there is some <P -reduction to a complete language
in the Boolean Hierarchy, then there is a <!P-reduction which has very nice structural properties.
We will call such reductions nested <P -reductions. We define these reductions as follows:

Definition Let & be a reduction from some language A to Lgp) (Leo-BH(¢)) for some £. We
say that h is a nested <{F-reduction from A to Lpp(s) (Leo-BH(e) Tesp.) iff all of the following
conditions hold.

1. For all z, h(z) is an ¢-tuple.
2, Asg LBH(l) (Lco-BH(l) resp.) via h.
3. Vz,i, (2<i<{) m°h(z) € SAT = m;_1°h(z) € SAT

The following lemma based on Fact 2 allows us to work with the much nicer nested <P -
reductions instead of arbitrary <P -reductions.

Lemma 5 Let A be any set and let L be an arbitrary language in BH(£) (co-BH(¢)). If
A <R L with probability 6, then there exists a nested <[P -reduction h such that A <P LpH(y) (
A <I¥ Leo-BH(e) Tesp.) via h with probability 6.

Thus, if the hypothesis of Theorem 4 is true, then there exists a probability 1 — 1/k + 1/p(n)
nested <P reduction from LBH(2k) t0 Leo-BH(2k)-

Notation Henceforth we will refer to this nested reduction from LeH(2k) t0 Leo-BH(2k) as h. Let
r(n) be the size of the random input to h and let g(m) be the size of 2k-tuples of strings in {0,1}™.
Let z denote a randomly & uniformly chosen string of size r(g(m)) and let ¢ denote 1/p(g(m)).

To explain the importance of nested <[-reductions we provide a rough overview of our proof:
The proof is nonuniform; we consider every length. A random reduction between two complemen-
tary classes in the Boolean Hierarchy with the appropriate success probability may either result in
an adverse structural consequence for the given length or induce a weaker randomized reduction
between the two complementary classes one level below. This argument can be used recursively
and terminates when one reaches the lowest level of the hierarchy.

If we start with an arbitrary reduction, then the probability loss while going down the hierarchy
is so great that we need to start with a probability much above the bound (roughly 1—1/ezp(k)+
1/poly instead of 1—1/k+1/poly) in order to cause an adverse structural consequences at the lower
levels of the hierarchy[CKR91]. If we use a nested reduction then the structural properties of the

reduction allows us to use the following lemma (The Probability Recovery Lemma) to recover
some of the probability lost while going down the hierarchy. Also, at intermediate stages of our
proof we deal with induced randomized reductions between lower classes in the Boolean Hierarchy
which work with certain probabilities. In many instances there exist better reductions between these
classes without any assumptions! We can still prove our result because the reductions induced by
the initial nested reduction have the potential to recover large amounts of lost probability as the
proof proceeds whereas the existing reductions between the classes don’t. Thus, by using a nested
reduction we don’t need to start with very high success probability and we can in fact obtain tight
bounds.

Lemma 6 [Probability Recovery Lemma] Suppose LBH(2k) <t Leo-BH(2k) Via h defined above.
Then the following proposition P(j) holds for all j,0 < j <2k - 1:

Proposition P(j): Let z1,...,z; be any collection of j formulas in SAT . Then for all y;,...,y; €
{0,1}™ (where £ = 2k — j):
If 5 is odd:

(y15- -+, 9¢e) € Leo-BH() = Prob.[m1,¢°h((y1,-- ., Y6, 755 ., 21),2) € Lpn(g] = 1
If j is even:

(v1,---,ve) € Lpugy = Prob.[r(1,°h((y1,- .-, ¥e,2j,- -, 21),2) € Leo-BHg)] 2 1 - 1 + ¢
Proof: (by induction on j)

Base Cases P(0) & P(1): These follow trivially from the hypothesis of the lemma and the definition
of LBH(?k)'

Assume P(j), Induction case P(j +2) We divide this proof into two subcases depending on the
parity of j.

Case 1: j is odd. Since P(j) holds we know that for any collection of j formulas z4,...,z; € SA =m
and for all y,...,y, € {0,1}™ where £ = 2k — j:

(Y15 -->Ye) € Leo-BH(e)
= Prob,(m(1,4°h((y1,- - -, Ye, Zj,- - -, 21),2) € Lpn(e) = 1

Therefore, for any given set of formulas z;,...,z;42 € SAT ™, by setting ye—1 = ;42 and
Ye = zj41 we have for all y3,...,y,—2 € {0,1}™

(y1,- - -,yl—2,$j+2,xj+1) € Lco-BH(l)
== Probz(r(lyg)°h((y1, ooy Yp—2,T 42, . .,:L‘l), Z) € LBH([)) =1

Since both z;;2 and z;41 are in SAT, it follows from the definition of Lc,-r(e) (£ is odd) that

(Y15, Ye-2,Tj42,Tj+1) € Leo-BH(e) <= (Y15 -->Ye-2) € Leo-BH(2-2)
and thus we have that for all y;,...,y,-2 € {0,1}™

(y1,-- -, Ye-2) € Leo-BH(t-2) = (1)
Prob,(m(1,0°h({y1,- - -, Ye-2,Tjt2,---,21),2) € Lpy(y)) = 1
We claim that

Ta,0°h((y15- - -, Ye-2,Tj42, .. -, 21), 2) € Lpn)y = (2)

9

T(1,e-2)°h((¥1, - - -, Ye-2,Tj42, . - ., T1), 2) € LpH(e—2)

Proof: Let us denote the £-tuple m(y ¢°h({y1,-..,Ye-2,Tjt2,---,21),2) as (h1,...,h¢). To prove
equation 2, let us assume that (A, ..., hs) € L. We show that this means that (h, ..., he—2) €
LpH(¢-2)- By the definition of Lgy(e) for odd £ we know that since (hy, ..., h¢) € Lpy(e),

(((hl, .. .,h[-z) € LBH((—2)) and hy_; € SAT) or hy € SAT
Now if hy € SAT then we can say that

(((h1y. .., he—2) € LBH(l-z)) and he—q1 € SAT)
0 (hl, ceey hg_g) (S LBH(!—2)

If on the other hand, h, € SAT, then, since h is a nested reduction, we know that h,_, € SAT.
Note that j +2 < 2k = (£ —2) > 1. If ({ — 2) = 1 then that means that

(h1,...,he—2) = (h1) € Lpn(e—2) = BH(1)
since h; € SAT. If, on the other hand, (¢ — 2) > 1 then we know that since

(h1y..., he—2) € LBH(g_g) =4
(h1y...,he—3) € LpH(¢-3) or he—2 € SAT

and since hy_, € SAT, (hl, ceey hz_z) € LBH([_2).

Thus we have proved equation 2. Therefore, by equations 1 & 2 we establish P(j + 2) for odd
j,i.e.,
P(j 4 2):For any collection of j+2 formulas z4,...,2j4+2 € SAT " and forall yq,..., ye—2 € {0,1}™
where £ = 2k — j:

(Y1, - +»Ye—2) € Leo-BH(¢-2)
= Prob,(m(1,¢-2)°h((y1,- - -, Ye-2,Tjt2,---,%1),2) € Lpy(e—z)) = 1

Now let us consider the case when j is even

Case 2: j is even. Since P(j) holds we know that for any collection of j formulas z1,...,z; € SAT "
and for all yy,...,y, € {0,1}™ where £ = 2k — j:

(y1,---,e) € Lpne
= PrObZ(ﬂ.(l,l)oh((yls cees Yl Ty .- .,(171),2) € Lco-BH(l)) =1- l/k +e€

By an analysis very similar to that of Case 1, we can establish from this that P(j + 2) holds for
even j, i.e.,

P(j + 2):For any collection of j+2 formulas z1,...,2j42 € SAT ' and forall yy,..., 5.5 € {0,1}™
where £ = 2k — j:

(Y1,- -, Ye-2) € LBH(e—2)
= Prob,(m(1,0-2)°h((y1,- - - Yt-2,Tj+25- - -, 1), 2) € Leo-BH(e-2)) = 1 — 1/k+ ¢

Hence we have proved the lemma by induction. o
We use a variant of the hard/easy proof technique [Kad88] to prove the main theorem. The

argument extends the technique used in [CKR91]. We first define a hard sequence of formulas.

Definition Suppose Lpy(2k) <1k Leo-BH(2k) Via k. Then, we call (1™, z1,...,z;) a hard sequence

with respect to h if 7 = 0 or if all of the following hold:

10

1.1<j <2 —1.

2. |zl =m.

3. z; € SAT.

4. (1™,zq,...,2;-1) is a hard sequence with respect to h.

5. For all y1,...,y, € {0,1}™ (where £ = 2k — j)
/2 . €
Prob,(mes1°h((y1,. .., Ye, 25, ..., 21),2) € SAT) < U—é" + (7 mod 2) 3

If (1™, zy,...,;) is a hard sequence, then we refer to it as a hard sequence of order j for length
m. Also, we call a hard sequence mazimal if it cannot be extended to a hard sequence of higher
order. The following lemma shows that given a nested < -reduction from LpH(2k) t0 Leo-BH(2k)>
hard sequence of order j for length m induces an asymmetric probabilistic reduction from LBH(2k-j)
to Leo-BH(2k—j) for tuples of strings of length m.

Lemma 7 Suppose Lpy(2x) <k Leo-BH(2k) Via h. Then, the following proposition Q(j) holds for
all j,0< <2 - 1:

Proposition Q(j): If (1™,z4,...,z;) is a hard sequence w.r.t. h, then for all y;,...,y, € {0,1}™
(where £ = 2k — j):
If £ is even:

(¥1,---,9¢) € Lugey => Prob,[rq »°h((y1,- -, e, 5,...,21),2) € LeoBrg) 21— 1 +¢

(1,--->9) € Leo-Bry = Prob;[mq o°h((y1,-- -, ¥, 25, .., 21),2) € Lpng] > 1 - 5
If £ is odd:
(¥1,---,Ye) € Leo-BH(e) => Prob.[m 0°h((y1,...,¥e,2j,...,21),2) € Leny] =1
(y1,---,9e) € Ly => Prob.[ryo°h((y1,..., 90, 2j,...,21),2) € Leo-BH(g)] 2 1 - %*'kl + £
Proof: (by induction on j)
Base Case ((0): This follows trivially from the hypothesis of the lemma.

Induction Case Q(j + 1): Suppose Q(j) holds. Let £ = 2k — j and let (1™, z1,...,;4+1) be a hard
sequence. Consider the cases where £ is even or odd separately.

Case 1: £ is even. Since (1™,xy,...,z;) is also a hard sequence, by the induction hypothesis, for
all y1,...,y¢ € {0,1}™

(15---,Ye) € Lpnye
— Probz(ﬂ'(lylfh((yl, ey Yty Ty .,:171),2) € Lco-BH(l)) >1- % +¢€

In particular, for y, = ;41 we have

(Y1, Ye-1,%j+1) € Lu(e
= Probz(r(1,¢)°h((yl, ey YOy Ty .y T1),2) € Lco-BH(l)) >1- 71; +e

Using the definitions of Lpy () and Leo-BH(e) for even ¢, for all yy,...,y.-1 € {0,1}™

(¥1,--+»Ye-1) € Lpne—1) and z;4; € SAT = (3)

11

71'(1,(—1)°h((y1, ce s Yb-1,Tj41y0 0 0 (L‘]), Z) € Lco-BH(l—l) 1
Prob, or >1—=+¢

- k
Te°h((Y1, .+ -y Ye—1,Tj41,- - -, 1), 2) € SAT
Since (1™, 21, ..., 41) is a hard sequence, we know conditions 1 and 5 of the definition hold. That
is, j41 € SAT and for all y,...,y2k—j-1 € {0,1}™
)+ 1)/2 €
Prob,(mk—;°h({v1,. - ., Y2k—j—1,Tj41,--.,Z1),2) € SAT) < w + 5

ie. for £ =2k -7
i +1)/2
Prob,(meoh((y1,. .-, Ye—1,Tj+1,-..,21), 2) € SAT) < M + %
So, if (¥1,-..,¥¢-1) € LBH(¢-1), then by equation (3) and the fact that z;;; € SAT, we have

T(1,e-1)°h((¥1, - - s Ye-1,Tj41, - - -, T1), 2) € Leo-BH(e-1)

Prob, or >1- % +¢
7fe°h(<3/1, ceesYe-15Tji415. - -, z1)3 Z) € SAT

Moreover, by condition 5 described above, we can say that

Prob,(m(1,e-1)°h({(¥1, - - -, Ye-1,Tj41, - - -, T1), 2) € Leo-BH(e-1))

>i-peeo RIS g oiosg
(since j is even, |(j +1)/2] = j/2).
Let us now consider the case when (y1,...,y,-1) € Leo-BH(¢—1) By conditions 3 & 4 in the

definition of a hard sequence, we know that z,...,2;41 € SAT. Since h is a nested < -reduction,

by a direct application of the Probability Recovery Lemma we know that in this case

Prob.(m(1,¢-1)°h({¥1, - - -, Ye-1,Zj41,. .-, 21), 2) € Lpn(e—1)) = 1
Thus, we have proved Q(j + 1) for the case when £ = 2k — j is even.

Case 2: L = k — j is odd. Using a proof similar to the proof of Case I we can show that Q(j + 1)
holds in this case as well. This completes the proof of the lemma. a

The next lemma states that if Lggax) <ik Leo-BH(2k) Via h, then a mazimal hard sequence for
a given length m allows us to differentiate between the cases y € SAT and y € SAT, where y is a
formula of length m.

Lemma 8 Suppose Lpy(2x) <tk Leo-BH(2k) Via h. Let (1™, zy,...,z;) be a maximal hard sequence
with respect to h. Define £ = 2k — 5. Then,
y € SAT —

| Y15.-.,Ye-1 € {07 1}m7]
Prob, [meoh((§1, - > Ye-1,Y>Tjs - - -, T1), 2) € SAT] > LA L (54 1) mod 2)* £

and

y € SAT =
vyly"'7y€—1€{0a1}ma)
Prob,[meoh((y1,. .., Ye-1,Y,Zj,--.,21),2) € SAT] < J-(%M — (jmod 2)+

12

Proof:
If j =2k—1((y1,...,Ye-1) is the empty sequence), then, by Lemma 7, for all y € {0,1}™

y € SAT = Prob,(m°h((y, zj,...,21),2) € SAT) =1
and

y € SAT => Prob,(m1°h({y,zj,...,71),2) € SAT) > g

Thus, the lemma holds when j = 2k — 1 (i.e. when y1,...,y—1 is the empty sequence).
Consider the case when j < 2k — 1. Let £ =2k — 5

Suppose y € SAT. Since (1™, zy,..., ;) is maximal, (1™, zy,...,Z;,y) is not a hard sequence. How-
ever, j+1 < 2k—1, |y| = m, y € SAT and (1™, z1,..., ;) is a hard sequence. So, (1™, z1,...,2;,y)
must fail to be a hard sequence by failing to satisfy condition 5 of the definition of hard sequences.
Thus,

31/1,---,3/5—16{0,1}’")
Prob,(meoh((y1,. .., Ye-1,Y,25,...,21),2) € SAT) > lﬁ%lﬂl + ((7+1) mod 2) % §

Suppose y € SAT. Let £ = 2k — j. By Lemma 7, for all (y;, ..., ye)
If £ is even:

(¥1,-- -, ¥e) € Leo-BH() _
== Probz(ﬂ’(l,e)%((yl, e YTy, T1),2) € LBH(Z)) >1- -2'%

and if ¢ is odd:

(¥1,---,9e) € Lpnqe .
e PI‘Obz(ﬂ'(lye)oh(<yl7 ey Yo, T4, "$1>3 Z) € Lco-BH(l)) 2 1- % + %

Now let us consider the even and odd cases separately. If £ is even, then by the definition of
Leo-BH(¢), We know that y € SAT = Vy1,..., %1, (¥1,...,Ye-1,Y) € Leo-BH(¢)- Therefore,

Yy, .., yl-—lPrObZ(ﬂ.(l,l)oh((yh e Y-1,Y5 g5 00y zl)v Z) € LBH(Z)) >1- ’;_k

Then, by the definition of Lgy) for even £, we know that (uy,...,us) € Lpu = ue € SAT.
Thus, we get the desired result

Vyl’ <o Ye-1, PrObZ(Wloh((yl7 ceey Y-1,Y,%5, .., $1>, Z) € SAT) Z 1- —2‘%
ie.,
Vyl, ey Yo-1, Probz(m°h((y1, ey Ye—1,Y, T4, ., 2?1), Z) € SAT)
<4 = DAL 4 (Gmod 2)+¢
If £is odd then again by unfolding the definition of Lpy), we know that y € SAT = Vyy,..., 9,1,
(yla coo¥Ye-1,Y) € LBH(g). Therefore,

VY1, Y1 ,
PrObz(ﬂ'(l,Z)oh“yl) cees Ye-1,Y,T5, - - 'v$1)7 Z) € Lco-BH(l)) >1- '2¢kl +

oo

13

By definition of Lc,-pH(¢) for odd £ we have that
7’(1,£)°h((y1, cees Ye-1,Y,Z5, .. -, xl)a Z) € Lco-BH(l)
= 1r£°h(<y1, cees Y-1,Y,%5,. . "zl)a Z) € SAT
Thus, we get the required result for odd ¢:

S j + 1
Yyi,. .., ye—1Prob,(meh((y1,. .., ¥e-1,¥,2j,...,21),2) € SAT) > 1 -]—k +

£
2 2

ie.,
Vyl» L) yl—lPIObZ(Wloh«yla ces Ye-15Y, L5y, 271), Z) € SAT)
>l e = LG L (jmod 2)+ &

This completes the proof of the Lemma. a

Now we are in a position to prove the main theorem:

Theorem 4 Let L be any language in co-BH(2k). If Ly k) <P L with probability 1-1/k+1/p(n),
for some polynomial p, then the PH collapses to X¥.

Proof: By Lemma 5 we know that Lpyar) <i¥ Leo-BH(2k) With probability 1 — 1/k + 1/p(n) via
the nested <[P -reduction h. Thus Lemma 8 is applicable. Given h, let f be the advice function
which on input 0™ outputs the lexically smallest maximal hard sequence for length m.

We define an NP machine N which on input F#a#y#z does the following. Suppose a is of the
form (1™, z,,...,2;) where |z;| = |F| = m and suppose that y is of the form (y1,...,y2x—1) where
|yl = m. Then, N accepts iff mox—;j°h({y1,-..,Y2k—j-1, F, Zj,..., 1), 2) € SAT. It is easy to see
that if @ = f(0/F1) is of order j then by Lemma 8,

F € SAT = 3y, Prob,(N accepts F#a#y#z) > l(]—-{_k—l)—/%l + ((74 1) mod 2) * —;—

and

F € SAT => Vy, Prob,(N accepts F#a#y#z) < —Lw — (7 mod 2) x —;—

This shows that there exists a nonuniform Merlin-Arthur-Merlin game[Bab85] for SAT. The
existence of such games for SAT implies that the PH collapses to £5 [BHZ87, Yap83]. (]

4 Completeness under Randomized Reductions

Randomized reductions were introduced by Adleman and Manders [AM77] in order to show that
certain number theoretic problems are intractable unless NP = RP. Subsequently, randomized
reductions, such as the Valiant-Vazirani reduction [VV86] from SAT to USAT have been widely
used in complexity theory.

The notion of a probability threshold was introduced in [CKR91]. It was argued that for many
complexity classes, there is probability threshold above which languages complete under randomized
reductions inherit most of the hardness properties associated with the <F -complete languages.
Below the probability threshold much simpler languages could also be complete under randomized
reductions.

14

For instance, it was shown that the threshold for co-DF <™ -complete languages is 1/2+1/poly.
For higher levels of the Boolean and Query Hierarchies, a range was provided for the threshold.

By exhibiting tight bounds on the probabilities achievable by randomized reductions between
classes in the Boolean and Query Hierarchies, we have determined the eract values of the thresholds
for these classes. For instance, the threshold probability for BH(2k) <P -complete languages is
1-1/k+1/poly. Any language L which is <IP-complete for BH(2k) with a probability above this
threshold inherits the following hardness properties (assuming PH infinite) usually associated with
<P _complete languages:

e L is not in a simpler complexity class such as PSATII[2k-1]
e L is not in the complementary class co-BH(2k).

e L is not closed under polynomial ORs (or even binary OR if £ > 1). Note that usual
probability amplification techniques require closure under ORs.

For every k > 1, we exhibit a language in BH(2k) which is <[P -complete with probability
above the threshold. Let USAT denote the set of uniquely satisfiable boolean formulas. Define the
languages Lpp(2x—2) V USAT as

def

Lpu(ak-2) V USAT = { (z1,...,22k-2,¥) | (21, .., T2k—2) € Lpn(ar—2) or y € USAT }.

Lemma 9 For any k > 1, the language Lpy(zx-2) V USAT is <[P -complete for BH(2k) via a
probability 1 — 1/k + 1/(4kn) reduction.

Proof: Lpy(ak—2) V USAT € BH(2k) because USAT € DP. The <™-reduction from LpH(2k) to
LpH(2k-2) V USAT can be obtained by combining the <iP-reduction used in Lemma 1 with the
probability 1/4n Valiant-Vazirani[VV86] reduction from the DP <P -complete language to USAT.
a

Thus the languages Lpp(ax—2) V USAT, by virtue of being <IP-complete with the requisite
probability inherit the hardness properties listed above. Note that we can show this without having
to prove that the languages are 5,1; -complete. In fact, we can prove the following Theorem that
shows that non-relativizing techniques will have to be used to decide whether these languages are
<P -complete.

Theorem 10 There is a recursive oracle O such that relative to O, Vk, the relativized language
corresponding to Ly (2x—2) VUSAT is not complete for the relativized class corresponding to BH(2k)
under relativized <F -reductions.

The oracle O can be constructed by combining the technique used to construct an oracle which
separates the Boolean Hierarchy [CGH*88] with the technique used to construct oracle worlds
where USAT is not <P -complete for DF[BG82].

5 Randomization and Bounded Query Functions

In view of the results presented earlier, a natural question to ask is whether similar results hold for
functions computable using bounded queries to SAT, i.e., can randomization be used to reduced
the number of queries required to compute these functions ? In this section we address this issue
and provide strong evidence that this is not the case.

15

In order to make the above question more precise we will first have to define Bounded Query
function classes and the notion of computing function probabilistically using bounded number of
queries.

Definition [AGS88|[Bei87) If A is a set and k € N then PF{_r is the class of functions that can
be computed by a polynomial time oracle Turing machine that can make at most k queries to the
oracle. If the machine is only allowed to query the oracle nonadaptively, i.e., list all queries before
making any of them, then the corresponding class of functions is denoted by PF{._,,

In order to allow for a randomized bounded query function computation we shall define the no-
tion of a polynomial time randomized bounded query (PRBQ) machine and the functions computed
by such machines.

Definition A PRBQ machine is a polynomial time oracle TM which has access to a source of
randomness and can query its oracle A a bounded number of times. On an input z, the machine
first obtains a uniformly chosen, polynomial sized random string r and then based on z and r it
queries the oracle a bounded number of times. At the end of this computation it outputs a string
g(z, 7). Since the output of the machine depends on the random string r, it may not be a function
of z. However, if for every input z, the machine outputs f(z) with probability > 1/2, then we say
that the PRBQ machine computes f.

We say that a given PRBQ machine G' computes a function f with probability § (6§ > 1/2), if
for all inputs z, G outputs f(z) with probability at least é.

Definition For a set A and k € NV, we say that a function f is in RPF£_7[é], if there is a PRBQ
machine with oracle A which computes f with probability § (§ > 1/2) and makes no more than k
queries to the oracle. If, in addition, the PRBQ machine always queries the oracle nonadaptively
then f is also in RPF{_,,[6].

First we show that a PRBQ machine can trivially compute any function in PFAT (PFRAL
with probability 1/2 + 1/exp using only k¥ — 1 adaptive (nonadaptive) queries. Note that k need
not be a constant, it could be any function of the input.

Lemma 11 Any function f in PF3AT (PFRAT) is also in RPF(S,;A_’FI)_T[I /2 4 1/2°(™] (respectively
RPF(S,ﬁrl)_tt[lﬂ 4 1/27("]) where 7 is the input size and p is a polynomial which depends on f.

Proof Outline: We can simulate the machine computing f and instead of making one of the k
queries to SAT we can randomly guess the oracle response. This way we will compute f correctly
with probability > 1/2. To achieve a correctness probability greater than 1/2 by the required

amount we can use the fact that if a query F' € SAT, then with inverse exponential probability we
can randomly guess a satisfying assingment of F.

Theorem 12 Let g be an increasing integer valued function such that g(n) = O(logn) and let p be
any polynomial. Then there is a function in PF?E‘S_“ which is not in RPFé(n)_l)_T[l /24 1/p(n)]
for any oracle X, unless PH collapses.

Proof: Before we prove this theorem we shall need the following definition:
Definition [AGB88]If A is any set and k£ € A then
Ff(21,-.028) = (A(21),-., Al)),

where (...) is the standard pairing function and A(z) is the characteristic function of A, i.e.,
A(z) =1if z € A, 0 otherwise.

In the proof of Theorem 12 we shall be using the following version of a Theorem proved in
[ABG90].

16

Lemma 13 [ABG90]: Let h(n) be any polynomially bounded function of n. If there is a function
w in PF/poly such that on input ¢t = (z1,22,...,Z4(n)), w(t) is a h(n)-bit string such that,
w(t) # F,f(n)(a:l,zg, .-+ ZTh(n)), then A € NP /poly N co-NP/poly.

We now proceed with the proof of Theorem 12 . Suppose, for some g(n) = O(logn), it is the
case that any function computable in PFSA (n) _4 is also computable in RPF%;(”)_I)_T[I /2 + 1/p(n)]
with for some oracle X and polynomial p.

Let h(m) = g(m?). Clearly, for large m, h(m) < m. Thus for sufficiently large m, the size of a
collection of h(m) boolean formulae of size m each, i.e., (z1, ..., Ty(m)), Will always be less than

m?. Let pad(z;, zo, ..., ZTp(m)) denote the collection of formulas (1, ..., Zj(m)) of size m each,
padded up to size m?. Define a function 7, which on input of the form pa.d(:z:l, T2, -+ 5 Th(m))

outputs Fﬁf;:f) (z1, T2, ... 5 Th(m))- It is easy to see that for an n-sized input of the correct form

T can be computed using only h(y/n) = g(n) queries to SAT. Thus 7 € PFS(n) «+ and therefore,
by assumption in RPF(o(n)-1)- _r[1/2 + 1/p(n)] for some oracle X and polynomial p. Let M be the
PRBQ machine computing 7 with probability 1/2 4+ 1/p(n), using only g(n) — 1 queries to X.

On input I = pad(z1, 2, ... , Tp(m)) of size n, M obtains a random string r and it outputs 7(I)
with probability 1/241/p(n) and makes no more than h(m)—1 queries to X. Since h(m) = O(log n),
it is possible to completely explore the entire query/computational tree of M on I and random
string 7. Since there are h(m) — 1 oracle queries in this tree, it has 2*(™)~1 leaves and the value
output by M is one of the 2-(™)=1 possible values which are computed at these leaves.

Let Sy(r)denote the set of values output at the leaves of M’s computation tree on input I and
random string r. Clearly,

vr, |S1(r)| < 2M™1
and
Prob,[T(I) € Si(r)] > 1/2+ 1/p(n).

Choose ¢(n) = 2 x[(p(n))? ¥ n?] 4 1 strings r1,...,7,(,) independently at random. By standard
probability amplification techniques [Sch87], it can be shown that 7 (I) would belong to a majority
of the sets Sy(r1),...,S1(rc(n)) With probability more than 1 — 1/27*. Thus, for every possible
input J of size n, when strings 71, ...,7(n) are chosen independently at random, the probability
that 7(J) belongs to a majority of the sets Sj(r1), .., 81(Te(n)) is more than 1 — 1/2%*. But there
are at most 2" inputs J of size n. Thus there is a sequence of random strings 1, . . ., 7¢(n), such that
for all J of size n, T(J) belongs to a majority of the sets Sy(r1),...,855(rc(n))- Let this sequence
of random strings be encoded into the advice function A, which outputs ry,...,7.») on input 0™.

On input J = pad(21, @2, ... , Tp(m)) of size n and advice A(0") = 7y, .. > Te(n) 2 polynomial
time machine can easily compute the set MAJ of all h(m)-bit strings whlch are in a majority of
the sets Sj(r1),...,S1(Tc(n))- One of the strings in MAJ is 7(J) = h(m) (1, 25 -+ 5 Th(m))-

Notice that MAJ cannot contain all possible h(m)-bit strings. If it did then then it must be
the case that

c(n)
| U Sa(r)l 2 (e(n) + 1) » 22W
i=1
but we know that for each S;(r;), |Ss(r;)| < 2M™)-1 and therefore

¢(n)
| U Ss(ri)| < e(n) + 2h(m)1

i=1

17

Thus there exists at least one h(m)-bit string which is not in MAJ and the lexicographically
least such string L can be output in polynomial time once MAJ has been computed. Clearly
L#T(J).

Thus we have satisfied the hypothesis of Lemma 13. That is, there is a function w in PF/poly
such that given a collection ¢ = (z1,2,...,Zp(m)) of h(m) (h(m) = O(log m)) formulae, w outputs
a h(m)-bit string w(c) such that, w(c) # Ff(‘%(a:l,xz, .+ +sTh(m)). Therefore, from the lemma it
follows that SAT € NP/poly N co-NP/poly and PH collapses to £§ [Yap83).

Acknowledgements

I am grateful to my advisor Juris Hartmanis for his guidance and support. This paper has benefited
greatly from discussions with Richard Chang, Suresh Chari and Desh Ranjan. Special thanks to
Richard for sharing key ideas leading to the first proof of Lemma 3 and Sanjay Gupta for suggesting
Lemma 9.

References

[ABG90] A. Amir, R. Beigel, and W.I. Gasarch. Some connections between bounded query classes
and non-uniform complexity. In Proceedings of the 5th Structure in Complezxity Theory
Conference, pages 232-243, July 1990.

[AG88] Amihood Amir and William I. Gasarch. Polynomial terse sets. Information and Com-
putation, 77:37-56, April 1988.

[AM77] L. M. Adleman and K. Manders. Reducibility, randomness, and intractibility [sic]. In
ACM Symposium on Theory of Computing, pages 151-163, 1977.

[Bab85] L. Babai. Trading group theory for randomness. In ACM Symposium on Theory of
Computing, pages 421-429, 1985.

[Bei] Richard Beigel. Bi-immunity results for cheatable sets. Theoretical Computer Science.
To appear.

[Bei87] R. Beigel. Bounded queries to SAT and the Boolean hierarchy. Technical Report 7,
Department of Computer Science, The Johns Hopkins University, 1987. To appear in
Theoretical Computer Science.

[Bei88] R. Beigel. NP-hard sets are p-superterse unless R = NP. Technical Report 4, Depart-
ment of Computer Science, The Johns Hopkins University, 1988.

[BG82] A. Blass and Y. Gurevich. On the unique satisfiability problem. Information and
Control, 55(1-3):80-88, 1982.

[BHZ87] R. Boppana, J. Hastad, and S. Zachos. Does co-NP have short interactive proofs?
Information Processing Letters, 25(2):127-132, 1987.

[CGH*88] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wagner,
and G. Wechsung. The Boolean hierarchy I: Structural properties. SIAM Journal on
Computing, 17(6):1232-1252, December 1988.

18

[Cha89]

[CKRY1]

[GIY87]

[Kads8s]

[Kre88]

[PY82]

[Sch87]

[VV86)]

[Wag86]

[Yap83]

R. Chang. On the structure of bounded queries to arbitrary NP sets. In Proceedings of
the 4th Structure in Complezity Theory Conference, pages 250258, June 1989.

R. Chang, J. Kadin, and P. Rohatgi. Connections between the complexity of unique
satisfiability and the threshold behavior of randomized reductions. In Proceedings of
the 6th Structure in Complezity Theory Conference, pages 255-269, July 1991.

Judy Goldsmith, Deborah Joseph, and Paul Young. A note on bi-immunity and p-
closeness of p-cheatable sets in p/poly. Technical Report 87-11-05, Department of Com-
puter Science, University of Washington, Seattle, November 1987. To appear in JCSS.

J. Kadin. The polynomial time hierarchy collapses if the Boolean hierarchy collapses.
SIAM Journal on Computing, 17(6):1263-1282, December 1988.

Mark W. Krentel. The complexity of optimization problems. Journal of Computer and
System Sciences, 36(3):490-509, 1988.

C. H. Papadimitriou and M. Yannakakis. The complexity of facets (and some facets of
complexity). In ACM Symposium on Theory of Computing, pages 255-260, 1982.

U. Schoning. Probabilistic complexity classes and lowness. In Proceedings of the 2nd
Structure in Complezity Theory Conference, pages 2—-8, 1987.

L. G. Valiant and V. V. Vazirani. NP is as easy as detecting unique solutions. Theoretical
Computer Science, 47(1):85-93, 1986.

Klaus W. Wagner. More complicated questions about maxima and minima and some
closures of NP. In Proceedings of the 13th International Colloguium on Automata,
Languages, and Programming, pages 434-443, 1986. Volume 226 of Lecture Notes in
Computer Science.

C. Yap. Some consequences of non-uniform conditions on uniform classes. Theoretical
Computer Science, 26(3):287-300, 1983.

19

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif

