Bounding the complexity
of advice functions

Ricard Gavalda

Report LSI-92-17-R

A0 T AT DI IS TN
FAC%&!.(H] L‘:;,ilr.ﬁ;;.‘;‘:.u.‘k
BiSLIOTES

R.AXDE -8 SFT jam

¢ )Nooo 13290
(c\(\Q 4



Bounding the Complexity of Advice Functions

Ricard Gavalda
Department of Software (L.S.1.)

Universitat Politécnica de Catalunya
08071 Barcelona, Spain

gavalda@lsi.upc.es

August 1992

Abstract. It was known that every set A in P/poly has an advice func-
tion in PF(Z5(A)). This note shows that A also has an advice function in
PF(NP(A) ® £%). From this new bound, it is shown that separating A} and
Y% relative to a set in P/poly is as hard as obtaining the same separation,

unrelativized.

Suggested running title: Complexity of advice functions

This research was supported by the National Science Foundation under grant CCR89-
13584 while the author was visiting the University of California at Santa Barbara, and
by the ESPRIT Basic Research Actions Program of the EC under contract No. 7141
(project ALCOM II).



1. Introduction

1.1. Statement of the problem

Complexity theory studies the resources needed to solve problems. These resources
may be measured uniformly, that is, on a single device that solves every instance of the
problem, or nonuniformly, that is, allowing the computing device to change with the
size of the instance.

This paper deals with problems whose nonuniform complexity is low. Karp and
Lipton [12] proposed a framework for the study of these sets in terms of machines that
take advices. Roughly speaking, an advice for a set is a string encoding some information }
that allows to decide membership to the set quickly, for all strings of some fixed length.
The class P/poly is the class of all sets with advices of polynomial length that allow to
decide the set in polynomial time.

An advice function for a set A4 is a function f : 0* — =* such that, for every n,
f(0™)is a correct advice for 4 and length n. Hence, every set in P/poly has some advice
function whose length increases only polynomially.

(Formal definitions for all these concepts will be given in Section 2.2. Since P/poly
equals the class of sets accepted by families of polynomial-size boolean circuits [18], we
may assume during this discussion that advices are always encodings of circuits. That
is, if f is an advice function for 4, f(0™) encodes a circuit accepting exactly the strings
of length n in A4.)

We study the complexity of computing advice functions for sets in P/poly. How-
ever, P/poly contains sets of arbitrarily high complexity, even nonrecursive ones, and
therefore their advice functions must also have arbitrarily high complexity. For this rea-
son, we do not study the absolute complexity of these functions but that of computing

.advice functions for a set 4 in P/poly, relative to A.

We ¢an show that this is a nontrivial problem, in the sense that even polynomial

time does not always suffice. Let PF(X) denote the class of functions that can be

computed in polynomial time relative to oracle X.
Proposition 1. There is a set 4 in P/poly (in fact, sparse) with no advice function in
PF(4).

The proposition can be proved by diagonalization over all polynomial-time oracle

transducers, and it also follows indirectly from the work of several authors on self-

printable sets and lowness properties of sparse sets [1,7,15]. With a more complex

2



construction, this lower bound can be improved to NPSV(A) [10], where NPSV is the
class of functions computed by single-valued NP transducers.

Using the techniques of Ko and Schéning [13] and Schéning [19] one can obtain a
general upper bound for the complexity of this problem. Roughly, it is always possible

to compute advice functions within the functional version of relativized A}.

¥

Proposition 2 [13,19]. Every set 4 in P/poly has an advice function in PF(Z2(A4)).

To prove it, observe that the set of correct advices for 4 is in coNP(A4). Close this
set under prefixes, obtaining a set in £)(A4). Finally use prefix search over this oracle
to obtain a correct advice for a given length.

Thus, the complexity of computing advices for A € P/poly ranges between PF(A)

and PF(X5(A)). Here we are interested in narrowing this gap. Can we always compute
some advice function for A in PF(NP (4))?

1.2. Motivation

This question is interesting for two main reasons. The first one concerns the power of
P/poly sets when used as oracles. The second one comes from computational learning
theory and, more precisely, from the study of query learning.

The power of sets with low nonuniform complexity as oracles has been intensely
studied in the last decade. In particular, whether sparse or tally sets are powerful
enough to separate relativized complexity classes has been an important research theme.
See [11] for a recent survey.

Two important results in this line are due to Balcézar, Book, and Schéning [8] and
Long and Selman [16]: They showed that the polynomial-time hierarchy (PH) is infinite
if and only if it is infinite relative to some sparse set, and if and only if it is infinite
relative to every sparse set. In fact, this holds not only for sparse sets but also for the

class of sets <E-reducible to sparse sets, P/poly.

A more precise statement about each level of PH is shown in [13,19).

Theorem 3 [13,19].
(i) Forevery k > 2, PH = ¥ if and only if PH(A4) = 2 (A) for every A € P/poly.
(ii) Forevery k > 3, PH = A} if and only if PH(A) = AP(A) for every 4 € P/poly.

Hence, we cannot currently prove that, relative to some set in P/poly, PH is proper up

to X} or higher.



On the other hand, Baker, Gill, and Solovay [6] describe a sparse oracle S that
separates NP from coNP. Thus, relative to S, PH is proper up to at least AL

This leaves a gap open at the second level of the polynomial-time hierarchy: We
would like to show some set in P/poly that separates PH from AY. Or, alternatively,
show that the existence of such set implies PH # AP (unrelativized); in other words,

prove Theorem 3, part (ii), for the case k = 2.

Proving the second of the alternatives requires an improvement on the techniques
in [13,19]. To discuss why, let us sketch the proof of Theorem 3, part (ii). Direction
from right to left is trivial. To prove the implication from left to right, solve any PH(A)
predicate as follows: compute first a correct advice for a sufficiently large initial segment
of A, and give it t6 a non-oracle PH machine that simulates the PH (A) computation us-
ing the advice to decide queries to A. The first part of the computation is in PF(X3(4))
by Proposition 2, and the second one can be solved in A} assuming that PH = AP, If
k > 3, this is a AY(A) computation.

To extend this proof to the case k = 2 we must be able to compute advice functions
with an oracle in NP(A4) (or even in NP(A4) @ PH) instead of Y2(A), precisely the

problem we are interested in.

A more important reason for the study of this problem is given by computational
learning theory. Query learning or learning via queries is currently one of the most
important formal models of learning. It was introduced by Angluin [3,4] to study the
process by which some learning agent infers a concept by actively asking questions about
it.

In this paper we do not explain Angluin’s model. The reader is referred to (3]
for the basic paradigm and some examples, and to [4] for a discussion of the types of
queries that may be reasonable in the design of learning algorithms. A more formal

approach and some extensions to Angluin’s model can be found in the recent work of
Watanabe [22,23].

In order to study the complexity of learning problems, Watanabe and Gavalda [24]
have recently formulated of query learning as some type of oracle computation relative
to unknown oracles. In particular, they consider the notion of “bounded learning in
polynomial time”, as defined and discussed in (22,28]. It turns out that, for some
important classes, learnability under this notion can be related to the complexity of

computing advice functions for sets in P/poly.

4



For example, for the class of boolean circuits, learnability depends on whether such

functions can be computed in a relativized version of PF(NP).

Theorem 4 [24]. If boolean circuits are learnable using the query types discussed in [4]
then every set in A € P/poly has an advice function in PF(NP (A[1])).

Here, NP (A[1]) is a restriction of NP(4). It is defined by allowing machines of
type NP to query oracle A at most once in each nondeterministic computation path.

In some cases even tighter relations are provable. By considering only circuits with

rep

a particular structure, one can define a subclass of the boolean circuits, named R

in [24], that has the following property.

Theorem 5 [24]. R[3} is learnable using the query types in [4] if and only if every set

in A € P/poly has an advice function in PF(NP (4[1])).
From this and other examples in [24] one can argue that determining the exact

complexity of computing advice functions is of relevance to learning theory.

1.3. Results of this paper

Theidea used to prove Proposition 2 seems to require a Y2 (A4) oracle to compute advices.
We show, using a very different approach, that access of type NP to A4 is enough, if the

oracle provides some additional but unrelativized computational power.

Theorem 6. Every set 4 in P/poly has an advice function in PF(NP (A[1]) ® XB).

Thus, proving that the class of circuits R’ mentioned above is not learnable
requires proving P % NP or more.

Note that this theorem does not subsume the PF(X5(A)) upper bound, because of
the additional X7 oracle. But it gives a way to compute advice functions in PF(NP (4))

~from the assumption PH = A}.
Corollary 7. If PH = A}, then every set A in P/poly has an advice function in
PF(NP (A4[1])).
This is all we need to prove the following theorem, using the argument sketched for
Theorem 3.

Theorem 8. PH = A} if and only if PH(A) = A2(A) for every 4 € P/poly.

Together with Theorem 3, this characterizes precisely which levels of PH can be
separated with oracles in P/poly: We can separate NP from AJ, but any relativized

separation beyond A} is as hard to prove as the same separation for unrelativized PH.

5



The rest of the paper is organized as follows:

¢ Section 2 is devoted to the proof of our main result.

¢ In Section 3 we discuss a related but different problem: Since sets in P/poly are
also those that can be <R-reduced to sparse sets, it makes sense to study the
complexity of recognizing such sparse sets relative to the original sets. We apply
our proof technique to improve the known bounds on this complexity.

o In Section 4 we discuss some related work and state some open questions.

2. Proof of Theorem 6

2.1. Outline of proof

Rather than the sketching the actual proof given later, it may be clearer to sketch the
three ideas that lead to the proof. Consider an arbitrary set 4 in P/poly, and let A="
denote AN X",

First, show that A has an advice function in PF(NP (4 @ PP) @ Z2(PP)). This
is done using Angluin’s “majority vote strategy” [4], developed in the context of query
learning: Suppose we want to find an advice for A=", Initially, we consider all strings
within a polynomial length bound as candidates to be correct advices; we use an oracle

in NP(A @ PP) to find a string w; that has length n and

— either is in A but is rejected by the majority of advices, or

— is not in A but is accepted by the majority of advices.

If wy exists, we (implicitly) discard half of the candidate advices by keeping w;. Repeat
this procedure while possible, obtaining w;, wa, ..., wm, and halving the number of
remaining advices at each round. Since the initial number of candidates is exponential
in n, the process must stop after polynomially many rounds. At that point, w;, w,,
+++y W exactly identify A=": to know whether a string is in 4=", take a majority vote
among the advices that have not been discarded. Then some additional queries to an
oracle in £3(PP) provide a correct advice for 4=",

Second, use Stockmeyer’s result [21] by which we can approximate any #P function
in A§. With this approximate counting, each round discards a constant fraction of the
advices, possibly smaller than one half, but still enough to achieve polynomial time.
Thus, A has an advice function in PF(NP(A @ A}) ® =%), and some work shows that
¥} can be replaced with 5. Notice that with this bound we can already show that
AP(A) # Z5(A) implies NP # coNP.



Third, get rid of the A} in NP (A4 @ A}), used to approximate the size of sets of
advices that accept/reject a string. We observe the following: the strategy above does
not really need this approximation. It is enough to know that the set of advices that
accept/reject a word is “large”, so that many advices are discarded at every round. As
in the proof of Stockmeyer’s Theorem, we can know that a set is large by checking that it
cannot be hashed with a hash family of suitable size (see the ’deﬁnitions in Section 2.3).
This turns out to be a II7 predicate, so we must consult an oracle in NP (A @ II%) where
IT3 is used only positively. If we manage to extract the V quantifier implicit in 11}, the 3
one can be absorbed in NP (4).

We do this as follows: Before each round, we precompute a hash family that hashes -
all sufficiently small sets of advices. The precomputation can be done in PF (£%). Then,
to know that the set of advices that accept/reject a guessed word is “large”, it is enough

to test that this particular hash family does not hash the set. And this propertyisin NP.

2.2. Definitions

All the languages we consider are defined over the alphabet £ = {0,1}. Let {(.,.) denote
any standard pairing function £* x ©* — ¥*, that is naturally extended to more than
one argument.

Fix two sets I and A. We say that string y is a correct advice for A=™ with respect
to I if, for every z of length n, z € 4 if and only if (z,y) € I.

A set 4 is in the class P/poly if there exist a set I € P and a polynomial p such
that for every n there is some correct advice for A=" with respect to I that has length
at most p(n). Any set I € P with this property is called an advice interpreter for A.

An advice function for a set A is a function f: 0* — T* such that for some advice
interi;reter I for A and every n, f(0") is a correct advice for A=" with respect to I.

‘ Consider a set A € P/poly and fix an advice interpreter I for 4. For a string C,
we say that advice C accepts string z if (z,C) € I. A sample for ™ is (the encoding'
of) a set of pairs of the form (z,b), where ¢ has length n and b € {0,1}. We say that
advice C is consistent with sample | when, for each pair (z,b) in I, C accepts z if and
only if b = 1. We will use a sample as a compact representation of the set of advices

that are consistent with it.

2.3. Hashing and approximation

We recall from Sipser [20] the definitions and properties of hashing that we will need in
the proof.



Definitions [20]. 1) Let M be a m X p matrix with entries in . M defines a linear
transformation h : £? — £™ as explained in [20].

2) A hash family of size s is a collection of s linear transformations with the same
domain and range.

3) A hash family H = h,,.. cyhs : X2 — B™ hashes a set X C ¥Pifforeveryw € X
there is an < € {1...s} such that for every w' € X different from w, hi(w) # hi(w').

It is easy to show that small hash families cannot hash large sets.

Lemma 9 [20]. If a hash family H = hy,...,h, : £ — 5™ hashes the set X, then
1X) < 5 2m.

Proof. Each h; can hash at most 2™ different words without collisions, and there are s

transformations h;. |

Sipser shows that every set is hashed, with high probability, by a hash family whose

size and range are small compared to the size of the set.

Coding Lemma [20]. Let X C X? be a set, k > |X|l, and m = 1 + logk. Then the
probability that H hashes X is at least 1/2, when the hash family H = hy,...,hy, :

¥? — ¥™ is chosen uniformly at random.

Note that m defines both the size and the range of H.
We need an extension of the Coding Lemma: Not only a particular set can be
hashed but, for any collection of sets, there is some hash family with small size and

range that hashes all sets simultaneously.

Lemma 10. Let X;,..., X+ C P be a collection of 2™ sets, k be such that k > 1 Xl
for every 1, and m = 1 4 logk. Then the probability that H hashes every X; is at least
"1/2, when the hash family H = hiyeooshint1)m + B2 — T™ is chosen uniformly at
random.

Proof. Split H into n + 1 families Hj, «++y Hpyy of size m. For fixed 7 and j, the
probability that H; does not hash X; is at most 1/2 by the Coding Lemma. Since all
H; are independently chosen, the probability that no H; hashes X; is at most 2~(n+1),

for fixed i. Then,
Prob{ 3¢ (no H; hashes X;) }

< ZProb{ no H; hashes X; }
<on.27(n41) = q /9,

8



Finally, if each X; is hashed by some subfamily H; of H it is also hashed by H itself.
|

We will also use a theorem by Stockmeyer which allows us to approximate any #P

function within the polynomial-time hierarchy.

Definition [21]. For two functions f, g : ¥* — IN, we say that g is a (n)-approximation

of f if for every z € T*

g(z) - r(le]) < f(=) < g(z)/r(|zl).

Theorem 11 ([21], Theorem 3.1). For every function f € #P and every € > 0 there
is some function g € PF(X}) that is a (1 + n¢)-approximation of f.

2.4. Proof of Theorem 6

Fix a set A € P/poly. Let I € P be an advice interpreter for A and ¢ a polynomial
such that every A=" has some advice of length at most g(n). Modifying I if needed,
we may assume that every A" has some advice of length ezactly g(n). We describe an
algorithm of type PF (NP (A[1]) @ £}) that finds one such advice given 0™ as input.

For each n, each sample [ for £, and each string w € £*, define the sets

Cons(0™,1): strings of length g(n) that are consistent with I,
Ace(0™,1,w): strings in Cons(0™,1) that accept w, and
Rej(0™,1,w): strings in Cons(0™,1) that reject w.

We will be interested in finding a hash family H that hashes all sufficiently small sets
of the form Acc or Rej. Define the polynomial p(n) = n? . ¢?(n) and the predicate
-hashes_all(0™,1, H), where [ is a sample for " and H is a hash family:

“for every w € L7,
= if || dee(0™, 1, w)|| < ||Cons(0™,1)||/p(n) then H hashes Acc(0™,1,w), and
— if ||Rej (0™, I, w)|| < || Cons(0™,1)||/p(n) then H hashes Rej(0™,1,w).”

Finally, define the algorithm in Figure 1.

We argue the following in a series of claims: a) the algorithm can be implemented
with an oracle in NP (A[1]) @ £%; b) it runs in polynomial time; and c) on input 07, it
prints an advice that accepts A=". Clearly, the theorem holds if we prove all this.

Claim a. The algorithm can be implemented with an oracle in NP (A[1]) @ Z2.

9



input 07;
l:=0; (*!lisasample for Z" *)

repeat
(1) find a hash family H such that hashes_all(0®,1, H);
(2) find any string w of length n such that

~w € A and H does not hash Rej(0",1,w), or
—-w ¢ A and H does not hash Acc(0™, 1, w);

(* w is the counterezample for this iteration *)

if such w exists then
Ui=1U {(w,Xa(w))}

‘else

exit the repeat loop

endif
endrepeat;
(* At this point, ! and H are such that for every w € n,*)
(* -ifw € A then H hashes Rej(0™,1,w), and *)
(*  -ifw ¢ A then H hashes dcc(0™,1,w) *)

(3) find any string C in Cons(0",1) such that for every w € L™,
~ if € accepts w then H hashes Rej(0™,1,w), and
- if C rejects w then H hashes dcc(0,1,w);
output C;

Figure 1. An algorithm to find advices.

Proof. We discuss how to implement steps marked (1), (2), and (3) in the algorithm.
Observe first that the predicate “H hashes the set Ace(0™,l,w)” is in coNP, as
noted in [20]: it is defined in a form V3V, but the 3 quantifier has polynomial range and

can be replaced by a deterministic search.

Step (1) is the most involved. Note that the function that associates | Cons(0™,1)]|
to each input (07,1) is in #P. By Stockmeyer’s Theorem, there is some 2-approximation

g € AF of this function. That is, ¢(07,!) is between 1/2 and 2 times || Cons(0™,1)]|.
Fix n and [, and let G be g(0",1). Whenever ||4dcc(0™,1,w)|| < || Cons(0™,1)||/p(n)
we also have ||Acc(0",,w)|| < 2G/p(n). By the Coding Lemma, every set of size

10



2G/p(n) is hashed by some hash family of size 1 + log(2G/p(n)). Then, any H that
satisfies the following predicate (*) also satisfies hashes_all(07,1, H):

(*) “for every w € T, and for t = 1 + log(2G/p(n))
— if some H' of size ¢ hashes Acc(0™,!,w), then H hashes Acc(0™,!,w), and
— if some H' of size t hashes Rej(0”,!,w), then H hashes Rej(0™,1,w),

where the linear transformations in H’ have domain £9(*) and range X*.”

Furthermore, we show that some H exists that satisfies (*) and has polynomial size. Let
w have length n. If, for example, Acc(0™,!,w) is hashed by some H' of size ¢, then it is )
not too large: By Lemma 9, ||4dcc(0”,1,w)|| < ¢- 2! < g(n) - 4G/p(n) = 4G/(n? - g(n)).
We now apply Lemma 10: Consider the collection of sets of the form Acc(0%,1,w) and
Rej(0™,1,w) that are hashed by some hash family of size ¢. There are at most 2" of
these, and we have just shown that each of them has size at most 4G/(n?-g(n)). Define
m =1 +41log(4G/(n? - g(n))). Then this collection of sets is hashed by some hash family
H of size (n 4+ 1) - m, consisting of transformations £9(®) — %™, In other words, this
H satisfies (*).

Now, step (1) is implemented as follows: given n and I, compute G = g(0",1);
compute ¢t and m as defined above; then find H of size (n + 1) - m satisfying (*). We
have shown that this H exists and satisfies hashes_all(0™,1, H). Furthermore, predicate
(*) has the form “V ((3V) = V)”, that can be rewritten in II¥ form. Hence, H can be
found by prefix search over an oracle in NP (II}) C ZP.

Remark. The size of the H computed will be important again in Claim c.

Recalling that the predicate “H does not hash a fixed Acc (or Rej) set” is in NP, an
"oracle in NP (A[1]) is enough to implement step (2). By a similar argument, step (3) can
be implemented by prefix search over an oracle in ¥3. Therefore, the whole algorithm

can be implemented with an oracle in NP(4) @ 5. m Claim a

Claim b. The algorithm halts in polynomial time, if steps (1), (2), and (3) are solved

as explained in Claim a.

Proof. It is enough to prove that the number of iterations in the main loop is polyno-
mial. Let us say that a certain iteration “kills” an advice C if the counterexample w for
that iteration proves that C is a wrong advice; that is, C and A disagree on w. We will

show that each counterexample kills a substantial part of the advices not killed before.

11



Let w be the counterexample for an iteration, and assume w € A. At this iteration,
all advices that reject w are killed. Also, by the way w is chosen in step (1), H does not
hash Rej(0™,1,w). Since hashes_all(0™,1, H), ||Rej(0™,l,w)| > | Cons(0™,1)||/p(n), so
a fraction 1/p(n) of advices in Cons(0™,1) are killed. The symmetrical argument works

when w & A.

The initial number of advices of length g(n) is 29(®), so after each iteration,

| Cons (0™, 1) < 24 . (1 — 1/p(n))"!
< 24(n)  o=llUl/p(n)

Hence, if the loop has not finished after p(n) - g(n) iterations then || Cons(0™,1)|| has L
been reduced to 1. On the other hand, we are assuming that A=™ has at least one
correct advice of length g(n); this advice is never killed because it agrees with every
possible counterexample. So when only one advice is alive, no counterexample is found

and the algorithm exits the loop. m Claim b

Claim c. For all but finitely many n, the algorithm on input 0® outputs an advice

that accepts A=7.

Proof. We must show that the algorithm always produces an output and that this
output is correct. For the first part, consider any advice accepting A=". If this correct
advice accepts w, then w must be in A. By the comment included in the algorithm, H
must hash Rej(0",l,w). Similarly, if the advice rejects w then H hashes Acc(0™,1,w).
Thus, at least one C satisfying the conditions can be found in step (3).

To prove that the output is correct, we show first that at the end of the loop,
H hashes 4cc(0%,l,w) = H does not hash Rej(0™,1,w)

for every w € X7,

As H has size (n 4+ 1) - m, by Lemma 9, H hashes no set of cardinality greater
than (n + 1) .m - 2™, Some routine calculations show that this is less than 9G/n for
all sufficiently large n, recalling that m = 1 + log(4G/(n? - g(n))) and observing that
G < 2.21n),

Suppose that H hashes Acc(0",l,w). Because G is a 2-approximation of
| Cons(07, D),

| Acc(0™, 1, w)|| < 9G/n < 18| Cons(0™,1)||/n.

12



Therefore,
|Bej (07,1, w)]| > || Cons(0™, 1) - (1 — 18/n) > (G/2) - (1 — 18/m).

This is greater than 9G/n for all sufficiently large n. Therefore H cannot hash
Rej (0™, 1, w).

Finally, let C' be the output of the algorithm, and |w| = n. If C accepts w then
H hashes Rej(0™,!,w) (by definition of C), H does not hash Acc(0™,1,w) (by the fact
above), so w € A (by the comment in the algorithm). Similarly, if C rejects w, then
w ¢ A m Claim ¢ -

This concludes the proof of the theorem.

3. Complexity of sparse set descriptions

We move now to a slightly different type of problems. We have studied the complexity
of advice functions for sets in P/poly. Recall that P/poly is also the class of sets <E-
reduéible to sparse sets (this observation is attributed to Meyer in [9]). Thus, a parallel
question that has received some attention is the complexity of sparse sets to which sets
in P/poly can be <%-reduced. Note that this problem is naturally formulated as a set
recognition problem, instead of a functional problem.

As in the case of advice functions, upper and lower bounds were known for this

problem. The upper bound follows directly from Proposition 2.

Proposition 12 [13,19]. Every set A € P/poly is <E-reducible to some sparse set
in A}(A).

More tightly, such a sparse set can be expressed as the difference of a 22(A) set
and a II5(A4) set (O. Watanabe pointed this fact to the author).

The best lower bound up to now is due to Gavalda and Watanabe.

Theorem 13 [10]. There is a set B in P/poly that is reducible to no sparse set in
NP(B) N coNP (B).

Again, we would like to shrink the gap between the NP N coNP lower bound and
the A} upper bound. For example, is it the case that every A € P/poly is <X-reducible
to some sparse set in NP (4)?

Mahaney [17] showed that this is the case when A is <P -reducible to some sparse
set, and his proof is easily extended to 1-tt and conjunctive reducibilities. For 2-tt,

3-tt, and disjunctive reducibilities some weaker results are known [2,5]. The question

13



for general <F-reducibility remains open, but with a further refinement of our proof

technique we can prove the following theorem.
Theorem 14. Every set A in P/poly is <R-reducible to a tally set in NP (Ao Xh).

Corollary 15. If NP = coNP then every set A in P/poly is <E-reducible to a tally set
in NP (4).

Therefore, improving the NP N coNP lower bound in [10] to NP is at least as hard
as showing NP # coNP.

Proof of Theorem 14. Again, let A be an arbitrary set in P/poly and g(n) the
length of the advices for A=". Modify the algorithm in Figure 1 into a nondeterministic ..
transducer M as follows: M expects inputs of the form (0™,7), and makes at most
J iterations of the loop. At each iteration, M guesses the hash family H and the
counterexample w, instead of computing them deterministically. Then it verifies using
its oracle that they satisfy the conditions in steps (1) and (2) respectively. If any of
these checks fails during the process, M halts without output. Otherwise, after at
most j iterations, M executes step (3) as in the original algorithm, finding an advice C.
Finally, M computes the lexicographically smallest C’ accepting exactly the same set
as C and outputs C'.

Now, H and w can be verified with oracles in II} and A ® NP respectively. Recall
that step (3) was implemented with an oracle in 2%, and note that the computation of
C’ from C can also be made with a 3% oracle. Hence we can assume that to do this
task M queries oracle A @ K, for some K € £5.

Define the tally set T4 as:

Ty = { 0348 | some computation of MA®K (07 )

prints an advice whose ith bit is b }.

Since M is of type NP, T4 can be decided in NP (4 @ K)C NP(A®XE). We also show

that oracle T4 allows to find correct advices for 4 in polynomial time, so 4 € P(T4):

(i) Given 0", obtain the maximum j such that 0¢™#1%) € T, for some b € {0,1}.
(ii) Then obtain each bit of an advice for A=™, by querying to T, all words of the form
0(mdviad) for all 5 < g(n).

To see why this works, note that the j obtained in (i) is the maximum number of

elements that the sample I can have, taken over all sequences of counterexamples. We

14



have shown when proving Theorem 6 that this maximum is polynomial in n. It is
easy to see that every nondeterministic path of M that guesses a maximal sequence
of counterexamples must print a correct advice, that is, an advice accepting A=". On
the other hand, recall that when M outputs an advice C, no lexicographically smaller
advice accepts the same language as C. Therefore, all computations of M that guess
maximal sequences of counterexamples output the same a.dv,ice, namely, the smallest
advice accepting A=". Then, for every 7, exactly one of 0{®7#0) and 0(m4i1) is in T},
and step (ii) reconstructs a correct advice for A=,

Therefore, A € P(T4) and T4 € NP (4 @ X3). [

4. Conclusions and open questions

Very recently, Kébler [14] has refined our proof technique and shown that in Theorem 6

one can replace X7 with ¥3. His result is the first real improvement of Proposition 2.

An obvious open question is whether the £} oracle can be eliminated, that is,
whether every 4 € P/poly has some advice function in PF(NP (4)). Or, one might try
to show that this improvement is not possible from some reasonable assumption, such

as the infiniteness of PH.

Acknowledgements

I have had recurrent discussions with José Balcizar on whether Proposition 2 could be
improved. I am grateful to Ronald Book for his hospitality in UCSB. I thank them as
well as Elvira Mayordomo for detailed comments on drafts of the paper. I also thank
Osamu Watanabe for teaching me the connections between these problems and learning

theory.

References

(1] E. Allender and L. Hemachandra: “Lower bounds for the low hierarchy”. Journal
of the ACM 39 (1992), 234-251.

[2] E. Allender, L. Hemachandra, M. Ogiwara, and O. Watanabe: “Relating equivalence
and reducibility to sparse sets”. STAM Journal on Computing 21 (1992), 521-539.

[3] D. Angluin: “Learning regular sets from queries and counterexamples”. Information

and Computation 75 (1987), 87-106.
[4] D. Angluin: “Queries and concept learning”. Machine Learning 2 (1988), 319-342.

15



(5] V. Arvind, Y. Han, L. Hemachandra, J. Kobler, A. Lozano, M. Mundhenk, M. Ogi-
wara, U. Schéning, R. Silvestri, and T. Thierauf: “Reductions to sets of low infor-
mation content”. In Proceedings of the 19th International Colloguium on Automata,
Languages, and Programming, 162-173. Lecture Notes in Computer Science 623.
Springer-Verlag, 1992. ’

[6] T. Baker, J. Gill, and R. Solovay: “Relativizations of the P=?NP question”. STAM
Journal on Computing 4 (1975), 431-442.

[7] J. Balcdzar and R. Book: “Sets with small generalized Kolmogorov complexity”.
Acta Informatica 23 (1986), 679-688.

[8] J. Balcdzar, R. Book, and U. Schéning: “The polynomial-time hierarchy and sparse
oracles”. Journal of the ACM 33 (1986), 603-617.

[9] L. Berman and J. Hartmanis: “On isomorphisms and density of NP and other
complete sets”. STAM Journal on Computing 6 (1977), 305-322.

[10] R. Gavaldd and O. Watanabe: “On the computational complexity of small descrip-
tions”. In Proceedings of the 6th Annual Conference on Structure in Complezity
Theory, 89-101. IEEE Computer Society Press, 1991.

[11] L. Hemachandra, M. Ogiwara, and O. Watanabe: “How hard are sparse sets?”,
In Proceedings of the 7th Annual Conference on Structure in Complezity Theory,
222-238. IEEE Computer Society Press, 1992.

[12] R. Karp and R. Lipton: “Some connections between nonuniform and uniform com-
plexity classes”. In Proceedings of the 12th Annual ACM Symposium on Theory of
Computing, 302-309. ACM Press, 1980.

[13] K. Ko and U. Schéning: “On circuit-size complexity and the low hierarchy in NP”,
SIAM Journal on Computing 14 (1985), 41-51.

[14] J. K&bler, personal communication. |

[15] T. Long: “On restricting the size of oracles compared with restricting access to
oracles”. STAM Journal on Computing 14 (1985), 585-597.

[16] T. Long and A. Selman: “Relativizing complexity classes with sparse oracles”. Jour-
nal of the ACM 33 (1986), 618-627.

[17] S. Mahaney: “Sparse complete sets for NP: solution of a conjecture by Berman and
Hartmanis”. Journal of Computer and System Sciences 25 (1982), 130-143.

[18] N. Pippenger: “On simultaneous resource bounds”. In Proceedings of the 20th An-
nual Symposium on Foundations of Computer Science, 307-311. IEEE Computer

16



Society Press, 1979.

[19] U. Schéning: Complezity and Structure. Lecture Notes in Computer Science 211.
Springer-Verlag, 1986.

[20] M. Sipser: “A complexity theoretic approach to randomness”. In Proceedings of
the 15th Annual ACM Symposium on Theory of C’omput,ing, 330-335. ACM Press,
1983.

[21] L. Stockmeyer: “On approximation algorithms for #P”. SIAM Journal on Com-
puting 14 (1985), 849-861.

[22] O. Watanabe: “A formal study of learning via queries”. In Proceedings of the 17th
International Colloquium on Automata, Languages, and Programming, 139-152. *
Lecture Notes in Computer Science 443. Springer-Verlag, 1990.

[23] O. Watanabe: “A framework for polynomial time query learnability”. Technical Re-
port 92TR~0003, Department of Computer Science, Tokyo Institute of Technology,
april 1992.

[24] O Watanabe and R. Gavalda: “Structural analysis of polynomial time query learn-
ability”. Technical Report 92TR-0004, Department of Computer Science, Tokyo
Institute of Technology, april 1992.

17



