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We establish the truth of the "instance complexity conjecture" in the 

case of DEXT-complete sets over polynomial time computations, and 

r.e. complete sets over recursive computations. Specifically, we obtain 
for every DEXT-complete set A an exponentially dense subset C and a 
constant k such that for every nondecreasing polynomial t( n) = Q( nk), 

ic'(x: A);;,, K'(x) - c holds for some constant c and all XE C, where 

ic' and K' are the t-bounded instance complexity and Kolmogorov 
complexity measures, respectively. For any r.e. complete set A we 
obtain an infinite set C sA such that ic(x: A) ""K(x) - c holds for some 

constant c and all XE C, where ic and K denote the time-unbounded 
versions of instance and Kolmogorov complexities, respectively. The 
proofs are based on the observation that Kolmogorov random strings 
are individually hard to recognize by bounded computations. 
C 1996 Academic Press, lnc. 

I. INTRODUCTION 

The notion of "instance complexity" was introduced in 
[ 6] to quantify the complexity of solving individual instances 
of decision problems. The basic idea here is to measure the 
complexity of each individual problem instance by the size 
of the simplest "special case" algorithm applicable to it. An 
instance is then "inherently hard" if even the simplest 
applicable algorithm essentially requires table look-up on 
that instance. 

In [ 6, 11] it was conjectured that any problem not 
decidable in a given time bound will have infinitely many 
such inherently hard instances with respect to that time 
bound. In the present paper, we establish this result for 
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DEXT-complete problems over polynomial time compu­
tations, and for r.e. complete problems over recursive 
computations. The basic observation underlying the 
proofs is that random strings are guaranteed to have no 
distinguishable features, and hence to be inherently hard to 
recogmze. 

To make these ideas more precise, let A be a set of binary 
strings to be recognized, and let t be some time bound 
function. Consider Turing machines that run in time t, and 
on each input x output either 1 ("yes"), 0 ("no") or .l 
("don't know"). Say that a machine M decides string x if 
M(x) =I= .1. Machine Mis consistent with a set A if on each 
input x that M decides, M(x) = 1 if and only if x EA. The 
t-bounded instance complexity of a string x with respect to A 
is then defined as 

ic'(x: A)= min {I Ml: Mis a /-time bounded machine 

consistent with A and deciding x}. 

(We are being somewhat sloppy here, as the notion of 
"the size of Turning machine M" is encoding-dependent. 
The proper definition, in terms of programs to a fixed 
universal machine, is given below in Section 2.) 

A table look-up argument shows that the !-bounded 
instance complexity of any string x is upper bounded 
(roughly) by its !-bounded Kolnwgorm· complexity, 

K'(x) = min{ IMI: M(A) = x in time t( Ix!)}. 

The "instance complexity conjecture" proposed in [ 6, 11] 
states that for any set A ii DTIME(t) this upper bound is 
reached infinitely often, i.e., for some constant c there are 
infinitely many strings x such that ic'(x: A)~K'(x)-c. 
(For AEDTIME(t), the instance complexity is constant­
bounded.) Some partial results supporting the conjecture 
were obtained in [6, 11, 12] for NP- and DEXT-hard sets. 
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Specifically, it was shown that for every set A that is DEXT­
hard with respect to honest :::;; f _ 11-reductions it is the case 
that (i) for any polynomial t there exist another polynomial 
t' and a constant c such that ic1(x: A)~ K''(x)-c holds for 
infinitely many x; and (ii) there is an exponentially dense set 
C such that for every polynomial t and some constant 
c,ic'(x:A)~K0'P'(x)-2logK""-P'(x)-c holds for all 
x EC, with exp'(n) =en 22n +c. (A simpler proof for result 
(i) was recently given by Fortnow and Kummer in a paper 
[ 4] which includes also many other interesting results on 
resource-bounded instance complexity.) 

In this paper, we prove a strong version of the conjecture 
in the case of many-one complete sets for DEXT over poly­
nomial time computations: we show that every DEXT­
complete set A has an exponentially dense subset C such 
that for some constant k and every nondecreasing polynomial 
t(n) = Q(nk), the lower bound ic'(x: A)~ K'(x)- c holds 
for some constant c and all x E C. Besides being a 
considerable improvement to both of the results (i) and (ii) 
above, the proof of this theorem is astonishingly simple, as 
compared to the complicated diagonalizations required 
earlier. The fundamental observation underlying the proof 
is that all the 22"-bounded Kolmogorov random strings are 
hard to recognize as such in polynomial time, i.e., given any 
polynomial t there is a constant c such that the inequality 
ic'(x: R"'P) ~ K'(x) - c holds for all x in W"P = { x: K22"(x) 
~ lxl}. The main theorem follows from this by a simple 
reducibility argument. 

In [ 11, 12] it was also conjectured that for any r.e., non­
recursive set A there is a constant c such that ic(x: A)~ 
K(x) - c holds for infinitely many x, where ic and K (or ic« 
and K"") are the time-unbounded versions of instance 
and Kolmogorov complexity, respectively. An analogous 
argument as in the time-bounded case, this time based 
on considering the set of recursive random strings 
R = { x: K(x) ~ lxl}, proves this conjecture in the case of 
the r.e. complete sets. 

The connection between instance complexity and 
(pseudo-)randomness was studied earlier by Ko in [ 5], but 
in that case in the context of pseudorandom sequences, not 
individual Kolmogorov random strings. 

Very recently, Kummer.[8] has shown that the instance 
complexity conjecture is not valid for the r.e. incomplete 
sets, by constructing an r.e., nonrecursive set A for which 
ic(x: A):::;; log K( x) + c holds for some constant c and all x. 
On the other hand, Fortnow and Kummer [ 4] have proved 
that the time-bounded version of the conjecture holds, with 
small "slack factors" in the time bounds, for all sets not in 
DEXT. 

2. PRELIMINARIES 

We shall consider decision problems for languages over 
the alphabet I:= { 0, 1}. The length of a string x EI* is 

denoted lxl; Jc denotes the empty string. Given strings x, y, 
we represent the pair (x, y) as the string .XIOy, where x 
denotes x with each of its characters doubled. Note that for 
all x andy, l(x, y)I =2 lxl + IYI + 2. 

Complexity classes of languages are defined in the 
standard manner [ 1 ]; we shall study specifically the class 
DEXT = U"~o DTIME(2"n). 

The completeness notion we use is the one induced by 
many-to-one reductions. 

An interpreter is a deterministic Turing machine M with 
two input tapes (a "program" tape and a "real input" tape) 
and an arbitrary number of work tapes, one of which is 
a designated output tape. The input and output tape 
alphabets of Mare I u {blank}. M accepts its input if at the 
end of a computation, the output tape contains the string 
"l ", rejects if the output tape contains a "O", and is 
undecided ifthe computation does not halt or if at its end the 
output tape contains something else-we denote both of 
these outcomes generically as ".l". The partial mapping 
from I:* x I* to I* computed by Mis denoted M(p, x), 
and the time requirement of Mon input (p, x) is denoted 
timeM(p, x). Given any function ton the natural numbers, 
an (M, t)-program is a string p such that timeM(p, x):::;; 
t( lxl) for all strings x. 

For a set of strings A, A(x) denotes the characteristic 
function of A, i.e., A(x) = 1 if x EA and A(x) = 0 if x rf. A. 
For be{O, l}, we denote M(p,x)::::::.b (read M(p,x) is 
consistent with b) if M(p, x) = b or M(p, x) = .l. An ( M, !)­

program p is consistent with A if M(p, x)::::::. A(x) for all x. 

Program p decides string x if M( p, x) i= ..L. 

DEFINITION 2.1. Let t be a function on the natural 
numbers. The t-bounded instance complexity of a string x 
with respect to set A using interpreter Mis defined as 

ic~(x: A)= min{ lpl: p is an (M, f)-program that is 

consistent with A and decides x}. 

If no (M, t)-program consistent with A decides x, ic'.v(x: A) 
is taken to be infinite. 

DEFINITION 2.2. Let t be a function on the natural 
numbers. The !-bounded Kolmogorov complexity of string x 
using interpreter Mis defined as 

K~(x) =min{ IPI: M(p, A) =x and timeM(p, ).) :::;; t( lxl) }. 

If no M-program produces x in time t( lxl ), K'.v(x) is taken 
to be infinite. 

As is well known [7, 12][9, p. 91], such notions can be 
defined robustly by means of a universal interpreter. 

THEOREM 2.1 (Invariance). There exists an interpreter 
U such that correJponding to any other interpreter M there 
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is a constant c, such that for all sets A, time bounds t and 
strings x, 

icG(x: A)::::;ic'.u(x:A)+c, 

K 1'( ) K1 ( ) u X ::::; M X +c, 

where t'(n) = ct(n) log t(n) +c. 

This invariance enables us to define the (absolute) 
t-bounded instance complexity of x with respect to A as 
ic1(x: A)=icL(x: A), and the (absolute) t-bounded 
Kolmogorov complexity of x as K 1(x) = K~1(x). We also 
call a ( U, t )-program p simply a t-program, and denote 
timep(x) = timeu(p, x). 

We shall also refer to the time-unbounded versions of 
instance and Kolmogorov complexity. Let us say that a 
program p is total if U(p, y) halts on ally, and define: 

ic(x: A)= min{ JpJ: p is a total program that 

is consistent with A and decides x}, 

K(x) = min{ JpJ: U(p, A.) =x}. 

The Kolmogorov complexity of a string is easily seen to 
be an upper bound on its instance complexity with respect 
to any set [ 6, 12]. 

PROPOSITION 2.2. For any time constructible function t, 
there exists a constant c such that.fbr any set A and string x, 

ic 1'(x: A)::::; K 1(x) + c, 

where t'(n) = ct(n) log t(n) +c. 

Proof Given a time constructible t, consider an inter­
preter M that works as follows: on input ( < b, p >, y ), where 
b EI, p E £*, ye£*, simulates V(p, it) for t( JyJ) steps. If 
U( p, A.) halts in this time with output y, M outputs b and 
halts, otherwise M halts with output L Clearly there is a 
constant d such that for any b, p, and y, M halts in time 
bounded by t( JyJ) +d. Let then A be any set, and x a string. 
Let b = A(x), and let p be a minimal length t-program for 
producing x. Then < h, p > is an ( M, t +d)-program for A 
deciding x, and so 

By invariance (Theorem 2.1 ), then, there is a constant c, 
independent of A and x, such that 

ic 1'(x: A) ::::;K1(x)+c, 

where t'(n) = ct(n) log t(n) +c. I 
The analogous result naturally holds for the time­

unbounded versions of the measures. 

3. RANDOM STRINGS ARE HARD TO RECOGNIZE 

In this section we establish our main lemma showing that 
all exponential time Kolmogorov random strings are hard 
to recognize in polynomial time. 

DEFINITION 3.1. Let T be a function on the natural 
numbers. The set of T-bounded Kolmogoroc random strings 
is defined as 

In the following, we specifically consider the set R~'P, 
where exp(n) = 21". 

By a simple counting argument [ 7] [9, p. 96 ], it is easy to 
show that each of the sets RT contains at least one string of 
each length. In fact, if one considers more generally the sets 

R'! = {xe.E*: Kr(x);;;:: JxJ -r}, 

then for each r ;;<: 0 the fraction of strings of each length not 
in R'! is smaller than 2-'. 

Another simple observation, to be used later, is that for 
every time constructible function T, the set R r is in the class 
DTIME(2"T(n) ). In particular, R°'P e DEXT. 

LEMMA 3.1. Let t he a nondecreasing polynomial. Then 
there is a constunt d such that ji1r erery x e R"'P, 

Proof We prove the result by establishing the following 
strong "immunity" property of the set W'P ( cf. [ I 0, p. 265] 
and Definition 3.2 below). 

Claim. Let t be a nondecreasing polynomial. Then any 
t-program p consistent with R•xp accepts only strings x such 
that Jxl :::;; Jpl + d, for some constant d independent of p. 

Observe that the claim implies the statement of the 
lemma: let x be any string in W'P, and let p be a minimal size 
t-program consistent with W'P and deciding x. Then 

To prove the claim, consider an interpreter M that on 
input ( (d, p), it) attempts to find and output the lexico­
graphically first string x of length greater than JpJ + d that 
program p accepts (i.e., for which U(p, x) = 1 ). (If there are 
no strings matching the description, then M need not halt.) 
Clearly M can be implemented so that if p is some t-program 
and M( (d, p), it) =x, then 

K~(x):::;; J(d, p)J =2 JdJ + JpJ +2, 
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where t'(n) = 2"t(n ). By invariance, there is a constant c' 
such that for any x for which K~Ax) is defined, 

where t"(n) = c't'(n) log t1 (11) + c' = O(n 2"t(n) ). 
Choose then a constant d so large that both 

d- 2 ldl -2 ~ c' and 22" ~ t"(d). Assume, contrary to the 
claim, that some !-program p that is consistent with wxp 

accepts a string x such that lxl > IPI +d. Then for the least 
such x, 

~2ldl+lpl+2+c' 

<2 ldl +(lxl-d)+2+c' 

~lxl. 

But this contradicts the assumption that p is consistent 
with Rexp and hence accepts only 2 21'-bounded Kolmogorov 
random strings. I 

THEOREM 3.2. For every nondecreasing polynomial 
t(n) = Q(n log 11) there is a constant c such that for every 
XE Rexp, 

ic'(x: Re'P) ~ K'(x) - c. 

Proof Let t(n) = Q(n log n) be some nondecreasing 
polynomial time bound. Let c' be a constant ( cf. [9, p. 92]) 
such that for any x, 

K'(x) ~ lxl + c', 

and set c = c' + d, where dis chosen as in Lemma 3.1. Then 
for any x E Rexp. 

ic'(x: R"'P ~ lxl - d 

~ KT(x)- c' -d 

=K'(x)-c. I 

We point out two simple modifications of the proofs. 
First, the results can easily be extended to the set R~'P, for 
any constant r ~ 0. by choosing the constant din the proof 
of Lemma 3.1 so large that d- 2 ldl - 2;::::: c' + r. Secondly, 
the analogous results hold also in the time-unbounded case. 
Define 

R = {x EE*: K(x);::::: lxl }. 

Concerning the recursion-theoretic complexity of the set R 
it is known that R is T-complete but not m-complete in the 
class of co-r.e. sets [ l 0, pp. 264-265]. The same proof as in 
Lemma 3.1, but with the time bounds removed, establishes 
the following: 

THEOREM 3.3. There is a constant c such that for every 
XER. 

ic(x: R);::::: K(x)- c. I 

A weaker, but more general version of this result can also 
be proved by the following recursion-theoretic argument. 

DEFINITION 3.2. A set A is strongly effectively immune 
( cf. [ 10, p. 263] ), if A is infinite and there exists a recursive 
function g such that for any total program p consistent with 
A, g(p);::::: max{ lxl: U(p, x) = l}. 

In particular, the proof of Lemma 3.1 establishes (when 
the time bounds are removed) that the set R is strongly 
effectively immune via the function g(p) = IPI +d. 

THEOREM 3.4. Let A be a strongly effectively immune set. 
Then there exist a constant c and infinitely many strings x EA 
such that: 

ic(x: A)~ K(x) - c. 

Proof Let x 0 be some string in A, and let Pxu be a 
program that witnesses the instance complexity of x 0 (i.e., 
p, .. , is a total program consistent with A, U(p_, . .,. x 0 ) = 1, and 
p, 0 is of minimal length). 

Since A is strongly effectively immune, the program p,0 

accepts only finitely many strings. Let x 1 be the maximal 
string (in the lexicographic ordering) that p,0 accepts. Next 
consider similarly the program p, 1 to find the maximal 
string x 2 it accepts, and so forth. Repeat this process until 
for some k, IPxk I= IPxk. J Note that IP'•+ 1 I < IPx, I for all 
i < k, so the process must terminate. 

We claim now that the inequality 

holds, for some constant c independent of xk + 1• By 
construction, x k + 1 is the maximal string accepted by 
program Pxk· Moreover, it can actually be computed from 
p,k using the recursive length bound lxk+ 1 I~ g(p-"k), and 
the recursive test "U(p,k, ·) = l". Thus, for some constant c 
independent of x k + 1, 

K(xk+1l~IPxkl+c 

= IP,k+l I+ c 

= ic(xk + 1 : A)+ c, 

establishing the claim. 
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In order to locate a new string in A satisfying the 
condition of the theorem, we restart the above procedure 
from some string :1;·;1 EA that follows x" + 1 in the 
lexicographic ordering. Since A is infinite, the procedure can 
be repeated infinitely often. I 

4. HARD INSTANCES FOR COMPLETE SETS 

The following lemma, quoted from [ 6, 11, 12], estab­
lishes that instance complexity cannot decrease by more 
than a constant in u ~ ;;, -reduction, i.e., "hard" instances 
cannot be reduced to "easy" ones. This property enables us 
to translate the hardness results of Theorems 3.2 and 3.3 
upwards in the reducibility ordering. (In [ 1 I, 12] the lemma 
was actually formulated in terms of ~ {' 11 -reductions; 
however, we do not need the stronger version here.) 

LEMMA 4.l. Letf be a ~;;,-reductivnfrom a set A to a 
set B. Then for some constant c and any polynomial t there is 
a polynomial t' such that f(Jr all x, 

Proof Let M be an interpreter that on input (q, x) first 
computes the valuef(x), and then simulates the computation 
of interpreter U on input ( qJ(x) ). Assume that the reduction 
f can be computed in time bounded by a nondecreasing 
polynomial r. Let t be any polynomial and x any string; we 
may clearly assume that t is nondecreasing. Now if q is any 
t-program that is consistent with Band decidesf(x), then, 
viewed through the interpreter M, q is also an ( M, t" )­
program consistent with A deciding x where t"(n) =r(n) + 
t(r(n)). Hence ic'.;'Ax: A)~ ic\f'(x): B) for all x. But by 
invariance, there is a constant c, independent oft and I", 

such that for all x, ic''(x: A)~ ic 1"(x: A)+ c, where t'(n) = 

ct"(n)logt"(n)+c. I 
The analogous result again holds in the recursion 

theoretic setting. 

LEMMA 4.2. Let f' be a ~,,,-reduction ff'om a set A to a 
set B. Then there is c; co11sta11t c such thatf{Jr all .Y, 

ic(x:A)~ic(f(x):B)+c. I 

Let l,·1111 denote the set of strings of length at most n. A set 
of strings C is exponentially dmse if there is a constant t: > 0 
such that IC n l,' 1 " 1 1~2 111 holds for all but finitely many 11. 

THEOREM 4.3. Et'erV DEXT-complete set A contains an 
exponentially dense suh\'et of' strings CS A such_ that for 
some constant k and every nondeereasing polynomwl t(n) = 
Q(nk), 

holds fiJr some constant c and all x EC 

Proof: Let A be any DEXT-complete set. and let/ be a 
::::; ;;,-reduction from the exponentially dense set R~'I' to A. 

Because all DEXT-complcte sets are related by one-to-one 
length-increasing reductions [ 3, 13 ], we may assume that 
also the reduction/(::) is one-to-one and length-increasing. 
(If necessary, we may perform the reduction initially via 
some linearly paddable DEXT-complete set to ensure that 
these properties hold [ 2, p. 123].) By simple counting 
[ 2, p. 138]. based on the properties off and the fact that 
IR~xr n1:'1" 1

1 ?:2"" for all n, we know that the set C= 
f( R~'P) s A is exponentially dense. 

Let us then verify that the inequality of the theorem holds 
for all x of the form x = f(::.) for:: E R~'P Let k = r +I be a 
constant such that the reduction./(::) can be computed by 
some interpreter M in time 11' + r, where n = \/(::) 1- Then for 
any :El'*, 

and by invariance, there is for any polynomial t(n) = 

Q(n 1·+ 1) = Q( 1/) a constant c 1 such that for all :: EE*, 

By Lemma 4.1, there exist a nondecrcasing polynomial t" 

and a constant c2 such that for all strings:: El'*, 

On the other hand, by Lemma 3.1, there is a constant d such 

that for all :: E R~'P, 

Combining the inequalities and choosing c = c 1 + c2 + d 
shows that for all :: E R~'P, 

K'(f(:))~ic'(/(.:): A)+c, 

i.e. the desired result. I 

We note that the density of the set C guarantees that, for 
some ;; > O, most of the strings x E C arc of Kolmogorov 
complexity at least K(x)?: lx\ 1 • In summary, one could thus 
say that every DEXT-completc set contain~ a c:ense subset 
of hard instances whose absolute complexity is at least a 
polynomial fraction of the maximum possible. , 

Again, a result analogous to Theorem 4.3 holds tor all r.e. 
complete sets A, although in this case we get no bound on_ 
the density of the set of hard instances. Also, as the class of 
r.e. sets is not closed under complement, the co-r.e. set R 
gets in this case translated into a set of hard instances in the 

complement of the complete set A. 
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THEOREM 4.4. For eue1y r.e. complete set A there exists 
a constant c such that for i1dlnitely many x EA: 

ic(x: A);::: K(x) -c. 

Proof Similar to the proof of Theorem 4.3, using the 
well-known fact (e.g. [ 10, p. 321]) that all r.e. complete sets 
are in fact complete with respect to one-to-one reduc­
tions. I 

5. CONCLUSION AND OPEN PROBLEMS 

We have proved strong versions of the "instance 
complexity conjecture" of [ 6, 11] in the case of DEXT­
complete and r.e. complete sets. Specifically, in the former 
case we have shown that for every DEXT-complete set A, 
there exists a constant k and an exponentially dense subset 
C such that for every nondecreasing polynomial t(n) = 

Q(1h. ic'(x: A)~ K'(x)-c holds for some constant c and 
all x EC. For r.e. complete sets A we have proved the 
analogous result, but without the density and time bounds; 
also in this case the "hard instances" x are located in the 
complement of A. (However, Kummer [ 8] has subsequently 
shown that hard instances also exist in A itself.) 

The proofs of these results use in a fundamental way the 
observation that random strings by definition have no 
distinguishing features, and hence are individually hard to 
recognize. It will be interesting to investigate whether some 
analogue of this idea can be extended to prove the instance 
complexity conjecture in this strong form also in the case of 
NP-complete sets, under the appropriate assumptions. (A 
slightly weaker version of the conjecture for NP-complete 
sets was recently settled by Fortnow and Kummer [ 4] 
using diagonalization.) Furthermore it will be interesting to 

extend the techniques to work for sets that are immune or 
bi-immune for DTIME(2 2") instead of effectively immune. 
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