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Abstract—Quality of Service (QoS) control is an important
concept in computer networking, as it is related to end-user
experience. While providing QoS guarantees over the Internet has
long been deemed too complicated, the emergence of Software-
Defined Networking (SDN), and OpenFlow as its most popular
standard, may facilitate QoS control.

In this paper, we consider how to enable bandwidth guarantees
with OpenFlow. Our design allows QoS flows to send more than
their guaranteed rates, as long as they do not hinder other
guaranteed and/or best-effort flows.

Furthermore, our design uses OpenFlow’s meter table to
aggregate traffic. Our traffic aggregation functionality only adds
overhead to the first switch, but no other complexity is incurred
at the subsequent switches.

I. INTRODUCTION

Quality of Service (QoS) control typically refers to mech-
anisms used in a network to guarantee a certain service from
the network. By using QoS control, and the related notion of
traffic engineering, network administrators are able to manage
their resources more efficiently and can offer tailor-made
service, without having to over-provision the network. QoS
is of particular importance to applications that, in order for
them to function properly, need specific network guarantees.
For example, applications like voice conversation and video
streaming require small delay and jitter. On the other hand,
data communication is less sensitive to delay and jitter,
but more sensitive to packet loss. Despite its importance,
the adoption of QoS control in the Internet has been slow.
Guaranteed QoS, such as Integrated Service (IntServ) [1] is
deemed too complex and not scalable. On the other hand,
Differentiated Service (DiffServ), [2] with its aggregation
model, is less complex, but does not provide strong QoS
guarantees. Presently, service providers opt to over-provision
their network, even though it is costly and inefficient, simply
because it is less complicated than deploying QoS control.

Software Defined Networking (SDN), as a new paradigm in
networking, offers the opportunity to speed-up the adoption of
QoS control in the Internet. The centralized nature of SDN is
expected to reduce the complexity that is commonly associated
with QoS guarantees. With its backing by leading companies
in the tech industry, SDN is well on its way to become a
de-facto standard. Hence, by having QoS control included in
SDN, the future Internet might have native QoS support.

In this paper, we will demonstrate how to guarantee band-
width with OpenFlow [3], a popular SDN protocol. In Sec. II
we discuss the QoS features of OpenFlow, in Sec. III, we will
present our framework for guaranteeing bandwidth, in Sec. IV

we test our proof-of-concept implementation, and we conclude
in Sec. V.

II. QOS CONTROL IN OPENFLOW

QoS in OpenFlow is supported by two features, namely the
queue and the meter table. A queue is an egress packet queuing
mechanism in the OpenFlow switch port. The queue was first
supported in OpenFlow 1.0 with only a guaranteed minimum
rate property. Later, it was extended in OpenFlow 1.2 with
a maximum rate, which limits the maximum throughput of
a queue. Although it is specified in the OpenFlow switch
specification, the OpenFlow protocol does not handle queue
management. Queue management (creation, deletion, alter-
ation) is handled by the switch configuration protocol, such as
OF-Config or Open vSwitch Database (OVSDB). OpenFlow
itself is only able to query queue statistics from the switch.

The meter table is a feature introduced in OpenFlow 1.3.
Metering allows ingress rate monitoring of a flow and to
perform operations based on the rate of the flow. There are
two operations that can be performed: dropping packets and
remarking DSCP bits of the packets. Unlike a queue, which is
a property of a switch port, a meter is attached to flow entries.

In [4], the authors use OpenFlow queues to provide band-
width guarantees. For each QoS flow, a queue is created in the
ingress switch and intermediate switches with min-rate and
max-rate equal to the guaranteed bandwidth. While correct,
the system does not scale, since the number of queues grows
with the number of flows. In [5], aggregation is proposed.
Instead of using an exclusive queue for every QoS flow, only
one queue is used to forward all QoS flows in a switch port.
The rate of the queue itself is dynamic, equal to the sum of
all QoS flows forwarded via the switch port. However, the
maximum rate of the QoS flows is limited to their guaranteed
rate. If a QoS flow violates this limit, it might contend for
bandwidth with other QoS flows.

III. BANDWIDTH GUARANTEES

To address the scalability and utilization problems of [4]
and [5], we have designed an OpenFlow controller with Ryu
[6]. Our QoS framework contains several elements.

A. Traffic prioritization

We allow for two types of flows: (1) QoS flow and (2)
best-effort flows. QoS flows have a minimum guaranteed
bandwidth, while best-effort flows do not have such guar-
antees. The QoS flows are allowed to send more than their
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Fig. 1. Metering-aggregation concept

guaranteed rates. Conformant QoS flows are QoS flows that
stay within their guaranteed rates, while non-conformant QoS
traffic exceeds the guaranteed rate.

In IntServ Guaranteed Service [7], non-conformant QoS
packets are treated as best-effort packets. In our model, non-
conformant traffic is given lower priority than best-effort
traffic. In case of congestion, the switch will drop the non-
conformant packets before dropping best-effort packets. One
could opt to discard this option and treat non-conformant pack-
ets as best-effort, by simply marking the packets differently.

B. Guaranteeing bandwidth in controller and switch

The system guarantees bandwidth for QoS flows at two
levels. First, the controller conducts an admission test for new
QoS flows. In the admission process, the controller tries to
route the QoS flow via a path that can accommodate the
required rate. If such a path is not available, the flow will
be dropped. Best-effort flows skip the admission procedure
and will always use the shortest path between the end hosts.
The admission process ensures that admitted QoS flows will
not contend for bandwidth with each other.

The controller keeps track of how much bandwidth is
allocated in the network. Using this information, the con-
troller decides where to route the path. In our controller, we
implement the Widest Shortest Path algorithm [8], though
more extensive monitoring and routing algorithms, such as
OpenNetMon [11] and SAMCRA [10] may be applied.

The second level of guaranteeing bandwidth is at the switch.
OpenFlow queue is used to give priority to certain traffic. In
each switch port, three queues are used. Queue 2 has highest
priority and forwards conformant QoS traffic. Queue 0 has
lowest priority and forwards non-conformant QoS traffic. Best-
effort traffic uses queue 1.

Bandwidth reservation happens through the controller, while
at the switch level, available bandwidth can be used by any

type of traffic. By allowing non-conformant QoS flows and
best-effort traffic to use the available bandwidth, the overall
throughput can be maximized.

C. Traffic aggregation

The metering operation dscp remark allows the switch to
split flows by altering the DSCP bits of non-conformant
packets. Each QoS flow is passed through a meter table entry at
its ingress switch with the meter’s rate equal to the guaranteed
rate. A QoS flow with a rate exceeding the meter rate will have
its excess packets’ DSCP bits remarked.

Conformant QoS flows are aggregated and forwarded via
a single queue. Aggregation is also performed for non-
conformant QoS and best-effort traffic. Conformant and non-
conformant packets are distinguished through their distinct
DSCP bits, on whose values hop-by-hop forwarding also
aggregates.

We take advantage of the multi-table pipeline processing
in OpenFlow, which allows the switch to process the packets
multiple times in a sequential order. In this case, the metering
is performed in flow Table 0. Then, flow Table 1 matches
DSCP bits and forwards the packets to the aggregation queue.
With aggregation, every switch port will only need three
queues: one for conformant QoS, one for excess QoS, and
one for best-effort traffic. Figure 1 illustrates the concept.

D. Hard state reservation

One of the drawbacks of IntServ is that it uses RSVP as
its resource reservation protocol [9]. RSVP is a soft-state
reservation that requires periodic exchange (every 30 s) of
refresh messages between end hosts, which leads to significant
overhead. If these messages are not received, the end hosts will
assume that the connection has ended.

In our model, we use hard-state reservation. The QoS
reservation begins when there is a QoS flow request to the con-



TABLE I
TRAFFIC GENERATED FOR ADMISSION TEST

Host pairs Type Requested bandwidth Actual rate
h1 - h5 QoS 70 Mbps 70 Mbps
h2 - h6 QoS 70 Mbps 70 Mbps
h3 - h7 QoS 70 Mbps 20 Mbps
h4 - h8 BE N/A 20 Mbps

Fig. 2. Topology for the admission test

troller. The request is signaled with the OFPT_PACKET_IN
message with appropriate DSCP bits. The resources are
freed from reservation when the flow entry is removed
from the switches, signaled by the OFPT_FLOW_REMOVED
message. Flow removal messages are sent by switches
to the controller after a flow reaches its lifetime limit,
defined by idle_timeout or hard_timeout. Both
OFPT_PACKET_IN and OFPT_FLOW_REMOVED are stan-
dard OpenFlow messages. There is no extra signaling ex-
changed between the switch and the controller.

IV. PROOF OF CONCEPT

The fundamental aspects of our model, the admission-
reservation process and traffic prioritization are demonstrated
using two experiments. The experiments are carried out on
two different testbeds. The admission control experiment is
conducted on our own testbed consisting of Open vSwitch
(OVS) 2.3.2 switches, supporting OpenFlow 1.3. Each switch
runs on a server with Quad Intel(R) Xeon(TM) CPU 3.00GHz
processor and 4 GB memory. Unfortunately, the software
implementation of OVS does not support meter table. For the
prioritization experiment, which has to use meter table for
aggregation, we therefore turn to hardware switches of the
Dutch SURFnet SDN testbed, which do provide meter func-
tionality. The SURFnet testbed uses Pica8 P5101 switches,
running PicOS 2.7.1 with OpenFlow 1.3.

A. Admission control

Our topology is depicted in Figure 2. The network consists
of three switches in a ring topology and eight hosts, with both
switch s1 and switch s2 connected to four hosts. The path via
s3 provides an alternative route between s1 and s2. Each host
in s1 is paired with a host in s2 for traffic generation. The
bandwidth of the links is 100 Mbps.
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Fig. 3. Admission-reservation test result

QoS flows request a minimum bandwidth of 70 Mbps. Best-
effort and QoS packets are differentiated by their DSCP bits.
A flow is identified by a matching field of the tuple <IP source
address, IP destination address, IP DSCP bits>. Three pairs of
hosts (h1-h5, h2-h6, h3-h7) exchange QoS traffic, while h4-h8
exchanges best-effort traffic.

The traffic used in the experiment is UDP, generated with
iperf. Table I shows the actual rate of traffic generated by
sender hosts.

Figure 3 shows the results of the experiment. The first graph
is the rate of traffic generated by the sender hosts. The second
graph reflects the throughput captured at the receiver hosts.

The experiment begins at time t = 0 when host h1 sends
70 Mbps QoS traffic to h5. Since both paths have the same
amount of available bandwidth, this flow is routed using the
shortest path (link s1-s2). The controller reserves 70 Mbps in
this link for flow h1-h5, and updates the link weight. The new
weight is 30 Mbps, equal to the currently available bandwidth.
At time t = 5, host h2 starts a QoS flow to h6. Link s1-s2
no longer has enough available bandwidth to accommodate
the new QoS flow, because it is less than 70 Mbps. Thus, flow
h2-h6 is routed through the alternative path (s1-s3-s2). Host h3
starts QoS flow to h7 at time t = 10. The actual throughput of
this flow may be 20 Mbps, however, as QoS flow, it requests
70 Mbps bandwidth, which exceeds both paths’ availability.
Because no path between sender and receiver can satisfy this
request, the flow is blocked by admission control. Switch s1



Fig. 4. Topology for the aggregation and prioritization test

installs a flow rule to drop subsequent packets that match this
source-destination-DSCP tuple.

On the contrary, a 20 Mbps best-effort flow from h4 to h8
(starting at t = 15) is delivered via link s1-s2 (shortest path).
This flow is allowed, because a best-effort flow does not have
specific bandwidth requirements. The available bandwidth
in this path is 30 Mbps, which is more than this flow’s
throughput. Therefore, the traffic is received at h8 at the full
rate of 20 Mbps. This flow is routed via the shortest path s1-s2.

From the experiment, we see that the admission process
prevents QoS flows from competing with each other. On the
other hand, best-effort flows bypass the admission process and
excess QoS traffic is also allowed; thus, maximizing bandwidth
utilization. Nevertheless, to ensure that this traffic does not
disturb conformant QoS traffic, traffic prioritization at the
switch level is needed.

B. Traffic aggregation and prioritization

The aggregation concept in our model requires pipeline pro-
cessing of meter and queue. The pipeline processing of packets
with meter-remarked DSCP values requires that this rewritten
header value is evaluated in the match filter of the next flow
table. However, we found that the used switches incorrectly
match on the original packet headers in subsequent flow tables
and defer packet rewriting until the packets exit the switch,
a problem introduced by mapping OpenFlow functions to the
fixed-functionality ASIC implemented by the manufacturer. To
replicate the necessary functionality, we created a self-loop at
the ingress switch to simulate packet rewriting between flow
tables. The switch first processes the QoS flow with meter table
and forwards it to the self-loop, the packets then re-enter the
ingress switch, and this time they are forwarded via queues.

Figure 4 shows the network used in our experiment. QoS
flows are generated from vm2, vm3 and vm4, while vm1
generates a best-effort flow. All QoS flows have a guaranteed
rate of 300 Mbps. The packets are UDP, generated with iperf.
The link between the switches has a capacity of 1 Gbps (the
effective usable data rate was a bit lower).

Figure 5 shows our experiment results.
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Fig. 5. Aggregation-prioritization test result

1) 0s to 5s. At time t = 0, vm1 starts a best-effort flow to
vm5 with a rate of 200 Mbps. At vm5, the throughput
measures 200 Mbps.

2) 5s to 10s. vm2 starts its QoS flow with a throughput
of 800 Mbps. Although only 300 Mbps are guaranteed,
it is allowed to send more. The excess traffic is served
as long as link bandwidth is unused. At t = 5, there
is exactly 800 Mbps free bandwidth, and vm5 receives
this flow with a throughput of 800 Mbps.

3) 10s to 15s. vm3 sends a QoS flow of 500 Mbps. The
bandwidth of the links is now insufficient to accommo-
date all flows at their full rate. The total conformant traf-
fic at the moment is 600 Mbps. This traffic is forwarded
via queue 2, which has highest priority, making sure
that the guaranteed rate is satisfied. The bandwidth is
then offered to the best-effort traffic of vm1, which uses
200 Mbps. The remaining 200 Mbps bandwidth is used
by non-conformant QoS traffic. Since the excess traffic
from vm2 is higher than that of vm3, more packets from
vm2 are passed through the queue, resulting in a higher
received rate at vm5.

4) 15s to 25s. At t = 15, 400 Mbps bandwidth is available
(not reserved by QoS flows). However, the links are fully
used by vm1, vm2 and vm3. When QoS flow from vm4
starts (200 Mbps) at t = 15, the switch drops all the non-
conformant packets from vm2 and vm3 to accommodate



Fig. 6. Topology w.r.t. the bandwidth borrowing test

the newly arrived QoS flow. Since vm2 and vm3 now
only have their conformant traffic forwarded, their flows
receive 300 Mbps each. Albeit at a slightly reduced rate,
the best-effort flow from vm1 is still forwarded by the
switch.

5) 25s to 35s. At t = 25, vm4 increases its data rate from
200 Mbps to 300 Mbps. The best-effort flow of vm1
is dropped in favor of the three QoS flows, which now
each receive 300 Mbps, equal to their guaranteed rates.

From the experiment, we observe that the bandwidth guar-
antees still hold when the traffic is aggregated. The aggregation
itself significantly reduces the number of queues needed in
the switches. No matter how many flows are present in the
network, all switches will only need three queues. Other than
the flow entries, there are no additional flow states stored in
the intermediate switches. The flow entries themselves form an
absolute OpenFlow requirement that exists in any OpenFlow
application. Additional complexity is only present in the first
switch in the form of meter table and pipeline processing,
which have to be added for every individual QoS flow.

C. Responsiveness

It is important that the bandwidth “borrowed” by non-
conformant and best-effort traffic is returned whenever con-
formant traffic requires it. Failing to do so might cause packet
loss for conformant traffic. In the following experiment, we
investigate any adverse effect due to bandwidth borrowing.
The experiment is conducted on our own testbed of Open
vSwitch 2.3.2 switches with OpenFlow 1.3.

A linear network with 10 hosts, shown in Figure 6 is used.
QoS flows are generated from host h2 to host h4 and h9.

Flow h2-h4 has 2 hops on its path, while flow h2-h9 has 7
hops. Both of these flows have a guaranteed bandwidth of
30 Mbps. The actual traffic sent is 30 Mbps, equal to the
guaranteed bandwidth. For each QoS flow, 5 MBytes of data
are sent from sender to receiver. Flows h2-h4 and h2-h9 are
generated alternately, one flow at a time, and repeated 1000
times. There is a 5-second interval between flows to make
sure flow entries from the previous flow are already removed.
Table II summarizes the traffic.

We consider several scenarios. In the first scenario, a best-
effort flow is generated between two end nodes, h1 and h10,

TABLE II
TRAFFIC GENERATED FOR BANDWIDTH TEST

Host pairs Traffic type Guaranteed
rate

Actual
rate

Lifetime

h1-h10 Best-effort N/A 100
Mbps

Throughout
the experiment

h2-h4 QoS 30 Mbps 30 Mbps 5 MBytes data
h2-h9 QoS 30 Mbps 30 Mbps 5 Mbytes data
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Fig. 7. Packet loss in traffic shaping

before the QoS flows start. The rate of this best-effort flow
is 100 Mbps, equal to the capacity of the links. This flow is
long-lived. Since the QoS flows use a subset of the best-effort
flow’s path, we expect to see some disturbance in the QoS
flows. We want to see how fast the “borrowed” bandwidth by
the best-effort flow is “returned” to the QoS flows, and how
much it affects their performance. For comparison, in the other
scenarios, the best-effort flow uses 90%, 50% and 0% of the
capacity of the links.

Both best-effort and QoS flows are generated using iperf.
The measurement is performed at the receiver using iperf’s
own statistics report. Figure 7 shows our results.

For the scenario with no initial network load (0% load), the
QoS flow is treated normally with relatively low packet loss.
The loss occurs because of the time needed to install flow
entries in the switches.

During the flow entry installation process, the arriving
packets are buffered in the OpenFlow switch’s buffer. These
packets are waiting for this process to finish, because the
switch does not know how to process this packet. The switch’s
buffer has a limited memory. Because the QoS flow rate is
30 Mbps, which is quite high, the switch’s buffer cannot
accommodate all newly arriving packets. When the buffer is
full, some packets are dropped. Flows with more hops need
to install flow entries in more switches. Consequently, the
switches drop more packets and the packet loss is higher.

Open vSwitch uses the Linux Hierarchical Token Bucket
(HTB) as underlying mechanism for the OpenFlow queue
implementation. In the token bucket filter algorithm, packets
are forwarded using tokens. If no tokens are available, packets
are queued up to the queue size. Tokens are generated at a rate
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that corresponds to the configured rate; in our case 100 Mbps.
The burst size is set to 125 kbytes to accommodate the bursty
traffic from sender hosts.

In the scenario with no best-effort traffic (0% load), all the
generated tokens are conserved, as no other packets use the
HTB instance. As soon as the flow entries are installed, the
packets are dequeued from the buffer and forwarded through
the queue specified in the flow entry. The HTB class has
accumulated enough tokens in HTB to send the queued packets
with minimal loss.

For the scenario with 50% and 90% occupancy, the tokens
are still generated and reserved. But because some of the to-
kens are used by the existing best-effort packets, the conserved
tokens are not as abundant as in the previous scenario. After
the flow entry is installed, the packets are moved from the
switch’s buffer to the queue. Since the queue size is limited,
and there are insufficient tokens to dequeue all the packets
at once, some packets are dropped resulting in higher packet
loss.

For the scenario with 100% link occupancy, no tokens are
conserved, as the token generation rate is equal to the usage
rate. All the packets are moved to the queue after the flow
entry is installed. None of the packets are forwarded to the
output port instantly; they have to wait until new tokens are
generated. The queue becomes full faster than in the previous
scenarios, resulting in more packet loss.

In our experiments, packet loss during the installation of
flow entries only occurred in the first few milliseconds (< 10
ms for 9 hops). In our experiment, a single QoS flow only
sends 5 MBytes of data. Its lifetime is very short, around
1.5 seconds. Iperf statistics (with a time resolution of 500 ms)
show that high packet loss only occurs in the first 0.5 seconds.

For comparison, we conducted another experiment with a
similar setup: the network is initially 100% loaded by a best-
effort flow from host h1 to host h10. A QoS flow with on-
off pattern (sending 5 MBytes, then off for 7s) is sent from
host h2 to h9 (7 hops). The flow has actual rate of 30 Mbps
and guaranteed rate of 30 Mbps. Different from the previous
experiment, the flow entries are already installed.

The result and comparison with the previous experiment are
shown in Figure 8. Although the bandwidth is fully used by
the best-effort flow, the QoS flow has zero packet loss. There
are no signs of quality degradation caused by the bandwidth
borrowing. We therefore conclude that the traffic shaping by
Linux HTB in OVS is precise and reliable enough to support
our bandwidth guaranteeing framework.

V. CONCLUSION

In this paper, we have demonstrated how to provide band-
width guarantees with OpenFlow. We maximize bandwidth
utilization by allowing idle bandwidth to be used by other
QoS flows and best-effort flows. Although at first glance the
“bandwidth borrowing” mechanism might seem to have an
adverse effect on the QoS flows, our experiments show that the
Linux HTB in OVS is reliable enough to guarantee bandwidth
for QoS flows at zero packet loss.

We have also facilitated the option to prioritize best-
effort traffic over non-conformant QoS traffic. This was made
possible by splitting QoS flows into conformant and non-
conformant traffic using OpenFlow’s meter table.

Compared to Intserv, our model uses less signaling over-
head. And by using aggregation, the switches in the network
do not need to store every single flow state. We believe that
by enabling scalability and efficient utilization, QoS is ready
to be implemented in production networks.
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