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Abstract—Nowadays GPUs have dominated the market con-
sidering the computing/power metric and numerous research
works have provided Basic Linear Algebra Subprograms im-
plementations accelerated on GPUs. Several software libraries
have been developed for exploiting performance of systems with
accelerators, but the real performance may be far from the
platform peak performance with multiple GPUs. This paper
presents two runtime heuristics to gain in performance when task
based programs are performed on heterogeneous architecture
such as multi-GPU systems. The first is a topology-aware policy
to takes into account the heterogeneity of the high speed links
that interconnect GPUs. The second is an optimistic heuristic
that favor communication between devices. These have been
implemented in the XKBLAS library BLAS-3 library. We made
experiments on a NVIDIA DGX-1 with up to 8 GPUs V100 on a
set of Basic Linear Algebra Subroutines. Experimental results on
kernels showed that XKBlas outperformed most implementations
including the overhead of creation and scheduling of dynamic
tasks.

Index Terms—Multi-GPU architecture, Runtime for task based
programs, Topology-aware, BLAS.

I. INTRODUCTION

Dense linear algebra and operations on matrices are funda-
mental subprograms in scientific applications and deep learn-
ing. The design of BLAS ! library [1] makes the development
of high performance applications easy. BLAS enables the co-
operation of a good numerical method for solving accurately a
domain-specific problem and a highly tuned library implemen-
tation for dense linear algebra operations. Several commercial
(Intel MKL, Intel oneAPI, AMD AOCL, AMD ROCm, IBM
ESSL, NVIDIA cuBLAS, LibSci by Cray/HPE) and open
source (OpenBLAS, ATLAS) implementations propose highly
tuned algorithms. Hence, BLAS ensures performance portabil-
ity of linear algebra routines and it became a standard building
block in HPC despite acceptable criticism about the approach
has been formulated [2], [3].

HPC platforms have changed significantly since the creation
of BLAS in the 70’s. Memory hierarchies in the 80’s were
captured by the definitions of BLAS level 2 and level 3 with
higher arithmetic intensity. Since the arrival of GPUs in HPC
about a decade ago, they have continuously demonstrated its
performance/energy ratio which makes them unavoidable for
extreme scale computing. Nowadays NVIDIA V100 SMX2
has a peak performance of 7.8 TFlops/s in double precision

Basic Linear Algebra Subroutine

floating point number (DP). The new NVIDIA A100 GPU
reaches a peak performance of 9.8 TFlops/s®. In comparison
the high-end Intel Xeon Gold 6238 Cascade Lake peak DP
performance is 2.97 Flops/s. Hence, offloading computation
to single or multi-GPUs has been an active research field [2],
[4]-[14]. To exploit the whole available performance of GPUs,
programmers must deal with challenging problems concerning
the latency of communications between the host and GPU(s),
memory limitation, and load balancing in heterogeneous archi-
tectures. Nevertheless, accelerating BLAS on multi-GPUs in
legacy applications imposes a trade-off between performance
and (heavy) code refactoring, such as changing the matrix data
layout, and the gain of drop-in replacement libraries.

Obtaining performance on matrix multiplication (GEMM)
from a legacy application with LAPACK matrix layout is
easy on large matrices because GEMM kernel achieves good
occupancy on GPUs. However, a BLAS library assumes that
memory used for matrices has been already pinned, and obvi-
ously, accounting the pinning time degrades performance. In
addition, real applications schedule several BLAS kernels with
dependencies. Except XKBlas [15], [16] all experimented li-
braries with LAPACK matrix layout have synchronous seman-
tics with strong guarantees about the CPU memory coherency
after the operations. Data on a GPU may be transferred back
and forth after the end of a BLAS routine if a new BLAS is
scheduled on the GPU, which is a strong limitation. The lack
of support to take into account composition of (BLAS) kernels
may result in a significant performance penalty.

The capacity to separate communication and computation
for better compositions is not enough to reach high per-
formance on multi-GPU systems. All published results with
BLAS-3 subroutines [2], [5], [7]-[14], [17] are based on
the exploitation of several levels of parallelism thanks to the
decomposition of matrix operations into smaller sub-matrix
operations. The resulting computation exhibits a higher degree
of parallelism exploited by a runtime system on the different
CPU or GPU resources thanks to a scheduling algorithm
for heterogeneous processing resources. Overhead due to
communications between resources are either reduced thanks
to a locality aware scheduler or by trying to overlap data
transfers and computations. Except BLASX [14] that organizes
its software cache to favor GPU to GPU data transfers between

2And even more: 19.5 on the new IEEE FP64 Tensor core arithmetic.



GPUs having a direct PCle bus, no libraries address the
complex communication topology of highly integrated multi-
GPU systems such as the NVIDIA DGX systems, e.g. Fig. 1
or the IBM Power9 and NVIDIA V100 nodes of the Summit
or Sierra US supercomputers.

This paper presents two topology-aware heuristics to im-
prove performance on multi-GPUs system through the BLAS-
3 library XKBlas [15], [16]. XKBlas is based on the XKaapi
runtime system [6], [11], [18] for data-flow task programming
and scheduling. The main contributions of the paper

1) A topology-aware device-to-device data transfer. When a
task is waiting for data, the data transfer is initiated from
a copy inside the memory of the GPU with a highest
performance link.

2) Optimistic heuristic for device-to-device data transfer.
To favor device-to-device data transfers, we use the
following heuristic: we wait for the end of the reception
of a copy of the data before forwarding it to the
destination GPU.

3) A performance report of the 6 main BLAS level 3
subroutines with 7 libraries on a system with 8 GPUs.

We compared the gain of our heuristics in XKBlas on
several linear algebra subroutines. Then we compare per-
formances against a wide set of libraries in this domain:
BLASX [14], cuBLAS-XT [19], cuBLAS-MG [20], PaR-
SEC [17], Chameleon [9]/StarPU [5], and Slate [21] over
a multi-GPU system NVIDIA DGX-1 with 8 GPUs inter-
connected through a high speed NVLink network depicted
in Fig. 1. XKBlas consistently outperformed them in all
cases except on SYR2K (symmetric rank-2k update) and
SYRK (symmetric rank-k update) routines when we consider
Chameleon tile algorithms. On double-precision floating-point
GEMM (e.g. DGEMM), XKBlas performs up to 2.84x faster
than current NVIDIA cuBLA-XT, 2.52x faster than PAR-
SEC, 1.13x than preliminary cuBLAS-MG, 3x faster than
Chameleon (Tile matrix layout) and 5x faster than Slate or
Chameleon (with LAPACK matrix layout). The maximum
gain in performance arises for matrices less than 40000,
where the communications are still important compared to the
computations.

Our previous paper on XKBlas [15] focused on the XKBlas
API that made explicit call to make consistent the CPU
memory and the gain in composing of kernels. Because of
important capacity to overlap data transfers and computation,
and the small size of its task based runtime system, we
have decided to port our topology-aware communication and
optimistic heuristic to favor communication between GPUs
having faster NVLink links. This relative small development
efforts give us access to a full set of BLAS routines to made
comparisons against other BLAS libraries. For moderate size
square matrices of dimension about 24 000, we mesure ~54
TFlop/s on DGEMM with 8 NVidia V100 GPU (peak 62.4
TFlop/s), taking into account all the communications between
CPUs an GPUs.

The remainder of the paper is organized as follows. Sec-
tion II analyzes the background and related works. Section III
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Fig. 1. Hybrid cube-mesh network topology between GPUs and CPUs on a
NVIDIA DGX-1 machine.
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Fig. 2. Bandwidth (GB/s) measured between GPUs on a NVIDIA DGX-1
machine.

describes XKBlas library and the topology-aware strategies.
The experimental results of XKBlas against state-of-art imple-
mentations are presented in Section IV. Finally, we conclude
the paper in Section V.

II. BACKGROUND AND RELATED WORKS
A. Multi-GPU BLAS libraries

There are several libraries that provide dense linear algebra
algorithms for BLAS an LAPACK routines. Several works [2],
[71, [9], [21], [22] assume matrix representation with tile data
layout. Tile algorithms create tasks that operate on contiguous
memory tiles in order to reduce cache penalty and to increase
performance. But this representation comes at the price of
rigidity in further decomposition of tiles that could not be
made without copying or using another matrix representation
as in PaRSEC [17]. Furthermore, when porting tile algorithms
on multi-GPU, communications of sub matrices to GPU make
them contiguous on GPU. In this context, tile representation
on the host is less relevant. BLASX [14] and XKBlas [15]
support only LAPACK data layout for matrix representation.

Several libraries [7], [9], [12], [14], [19], [21] offer LA-
PACK subroutines on the (legacy) LAPACK matrix represen-
tation. Few of them are designed to allow drop-in replacement
such as cuBLAS-XT [19] (thanks to the NVBLAS wrapper)
and BLASX [14]. But the latter is a stopped project for which



public source code only containing the general matrix-matrix
multiplication GEMM routine.

NVIDIA announced cuBLAS-MG [20] at the end of 2019 as
a state-of-the-art matrix-matrix multiplication library in which
each matrix can be distributed over multiple devices in a 2D
block cyclic strategy.

B. Overlapping communications and computations

The overlap of communications and computations is a
common strategy in order to reduce the impact of commu-
nication latency between CPU and GPU on slow PCle bus.
For instance, the DGX-1 system has a complex heterogeneous
network between processing units (Fig. 1). GPUs are linked
together at 0 or 1 hops in DGX-1 high speed NVLink network,
with routes at 96GB/s and other at 48GB/s. Moreover, the
CPUs communicate with the GPUs through x16 PCle Gen3
interfaces and each PCle bus is shared by two GPUs.

One way is to exploit multiple CUDA streams with
asynchronous communications with pinned memory as in
StarPU [5] and XKaapi [6], [11], then more recently
BLASX [14] and PaRSEC [17]. StarPU [5], BLASX and
cuBLAS-XT enqueue input operands and kernels into the
same stream. Then overlapping comes from the use of several
streams.

Another strategy initially proposed in XKaapi [11] is to
run each operation type over a separate stream (host-to-device
copy, device-to-host copy or kernel execution) with multiple
streams for kernel operations in order to let the GPU scheduler
execute them concurrently if possible. StarPU, PaRSEC [17],
cuBLAS-XT have adopted a similar strategy.

Slate [21] focuses on “exascale” challenge in linear algebra.
The current version only relies on the block outer-products
implemented on top of batched GEMM [21] as portability
layer for accelerator. The asymptotic performance remains
good [21] but this design decision is unable to fully exploit
all the hardware, especially direct connections between GPUs
thanks to the high speed NVLink network. Moreover, the
limited bandwidth of PCle bus between CPUs and GPUs of
DGX-1 system drastically limits achievable performance as
revealed by the experiments carried out in this paper.

C. Multi-GPU software cache

A distributed caching mechanism is a well-known approach
in order to hold copies of host data into disjoint address
spaces such as GPUs. Several variations of a modified MOSI
protocol have been proposed [5], [11], [14], [17] with impact
on performance not really comparable due to the number of
experimental variables involved (problem size, hardware, GPU
memory size, GPU type and count). The notable protocols
are BLASX that proposes a two-level cache mechanism to
improve locality of data access to favor GPU-to-GPU com-
munication, and XKaapi where the eviction strategy prioritizes
read-only data first.

III. NEW TOPOLOGY-AWARE HEURISTICS FOR XKBLAS

XKBlas [15] library design was based on two important
decisions regarding linear algebra algorithm and matrix layout.

Its algorithms are based on asynchronous tiled algorithms
from Chameleon [9] or PLASMA [22] that allows to describe
computations using a dependent task model supported by
XKaapi [18]. We only keep support for LAPACK matrix
layout in XKBlas that is more robust to dynamic and recursive
sub-partitions, differently from Chameleon or PLASMA. The
XKBlas algorithms come with the tile version of the corre-
sponding algorithms with the following differences:

« Tile representation is replaced by sub-matrix representa-
tion using LAPACK data layout (see below);

o Instructions to copy back a matrix block to the host
have been suppressed because they introduce extra data
transfer between device and host;

o« LAPACK matrix data layout is required by legacy ap-
plications, thus the tile representation API has been
discarded;

o Extended LAPACK API with asynchronous semantics is
the only native XKBlas API for BLAS.

Therefore, the numerical algorithms of XKBlas have the same
behavior of those from PLASMA or Chameleon.

A. Overview of data management

Our extensions in XKBlas only concern the XKaapi runtime
system which is briefly recalled for the sake of clarity.

In XKBlas, the XKaapi runtime maintains information about
the data distribution of matrices. Then the internal scheduling
algorithm uses an owner-computes rule heuristic [11] to map
tasks on resources. It controls the distributed execution of
tasks, the schedule of communication while trying to overlap
latency by kernel execution.

On CPU, each tile is represented as a memory region
starting at address A with its description given by the tuple
(m,n,ld, wordsize). m,n are matrix dimensions, ld is the
leading dimension and wordstze the size in byte of an element
of the matrix. The tuple is called a memory view of the matrix.
The sub-matrices keep the same representation after a matrix
decomposition.

Thanks to the cudaMemcpy2D set of primitives, a
(sub)matrix A in XKBlas can be transferred between GPUs
and CPUs. Once copied (to GPU), the memory view of
(sub)matrix A is (m,n, m, wordsize), i.e. the leading dimen-
sion always becomes the row dimension. The matrix has been
compacted to a dense tile form. Since most computations are
performed by the GPU, the compact tile form is used as
effective parameters for GPU kernels.

All copies of tiles are tracked by the XKaapi software
cache [11], [18]. Locality information was used by the several
XKaapi data aware schedulers [11] in order to map a task on
the GPU close to its data. When a GPU cache becomes full,
the eviction strategy prioritizes read-only data first.

B. Topology-aware strategy on hierarchical memory systems

Figure 1 illustrates the hybrid cube-mesh interconnection
network topology between all the GPUs on a NVIDIA DGX-1.
Each GPU is interconnected by a link ranked in three groups: 2
NVLinks, 1 NVLink, and PCle. The bandwidths between pairs



TABLE I
MAIN CHARACTERISTICS OF DGX-1 MULTI-GPU SYSTEM.

Name CPU GPU
Gemini 2 Xeon(R) E5-2698 v4 8 NVIDIA Tesla V100-SXM2, 32GB
2.2GHz CUDA-10.1

of GPUs are reported in Fig. 2. Some GPUs are connected
together with 2 NVLinks (green background color in Fig. 2).
This interconnects them with up to 100GB/s of bidirectional
bandwidth (measured close to 96GB/s). Two GPUs can also be
connected with each other by 1 NVLink (orange background
color), with up to S0GB/s bidirectional bandwidth. Otherwise,
they are interconnected using PCle buses.

The main question in this topology is how to better exploit
the interconnection network topology between all the GPUs. In
XKBlas the runtime system (XKaapi) initiates data transfers
of the tile from one of the resources handling a valid copy
once the scheduler has decided to map a task. A matrix tile is
frequently replicated over several GPUs at runtime, which is
typically the case for tiles of the input matrix operands.

We modified the XKaapi runtime to better select the source
GPU involved into a data transfer in order to favor a high speed
NVLINK interconnect if available. For all possible GPUs that
handle a valid copy of a tile, we prioritize the selection of a
source following the decreasing order of performance link in
respect to the destination GPU.

This information about performance link is reported by
nvidia-smi tools on Linux by with specific function for
CUDA SDK. So we extend XKBlas to store the perfor-
mance of link during the library initialization by using the
relative value of performance links as returned by a call to
cuDeviceGetP2PAttribute.

Our topology-aware communication heuristic shares the
same goal as the 2-level hierarchical cache mechanism in
BLASX [14] but it is able to consider complex interconnect
topology between GPUs such as in the NVIDIA DGX-1
(Fig 1). We have not evaluated our heuristic on IBM POWER
9 node with NVIDIA V100 GPUs, which is also possible to
returns performance link information of the 5S0GB/s NVLink
links between a CPU and a GPU.

C. Optimistic heuristic for device-to-device data transfers

With topology-aware heuristic, communications may favor
high speed links between GPUs if a copy of the data to transfer
is already present in one or several GPUs. But in most cases
the host main memory is the source of most data transfers.
This is especially true for all input operands of BLAS routines
before the tiles are copied to GPUs. In this scenario and
without a “clairvoyant” algorithm to distribute initial data,
the advantage of having high-speed links between GPUs is
significantly reduced.

Our heuristic opportunistically tries to take advantage of
ongoing copies of tiles to GPUs at runtime instead of a
distribution or a redistribution of tiles before the invocation
of a BLAS routine, It considers that if a valid data is under

transfer to a GPU but not yet fully received, it may be better to
wait the end of this transfer before forwarding the data to the
target GPU. This strategy aims to improve overall performance
by a better usage of the high speed links between GPUs,

We have implemented this optimistic heuristic in XKBlas
by extending the metadata stored by the multi-GPU XKaapi
software cache with a state indicating that a data is under
transfer to a specific GPU. When selecting a source GPU for
making a copy, our implementation first searches if the data is
already valid on a GPUs using the topology-aware heuristic.
Otherwise, it returns the best GPU with data under transfer
instead of falling back to the host as data source.

The gain on NVIDIA DGX-1 is important because perfor-
mance of PCle buses between CPU and GPU are one of the
main limiting factor to reach peak performance. Moreover, the
heuristic avoids duplicate tile transfers from main memory to
GPUs to reduce data traffic on PCle bus. On Summit or Sierra
supercomputer nodes, where GPUs have high speed NVLink
interconnect between CPUs, it would be reasonable to assert
that the gain will not be significant.

IV. EXPERIMENTAL RESULTS

Our experiments target a NVIDIA DGX-1 multi-GPU sys-
tem described in Table I. It has 512GB of main memory and
two Intel Xeon E5-2698 v4 processors with 20 cores each (40
cores total). The interconnect between CPU and GPU is PCle
(Gen3) and GPUs are interconnected together with NVLink-
2. The DGX-1 is running GNU/Linux distribution with kernel
4.19.146.

We used the BLAS libraries: public version of BLASX [14];
StarPU 1.3.5 and Chameleon 1.0.0; cuBLASG-MG [20] ver-
sion number 0.1.0; Slate [21] Git hash version 451f5ff;
cubBLAS-XT from CUDA Toolkit version 10.2; DPLASMA
Git hash version 2cefa568. XKBlas is a non commercial
library available at https://gitlab.inria.fr/xkblas. The git hash of
the library used to conduct these experiments is 27325d238.

A. Methodology

We have make several comparisons in order to analyse
our multi-GPU library compared to state-of-the-art BLAS
implementations. Our experimental results compared perfor-
mance on two scenarios: data-on-host and data-on-device.
The goal of data-on-host set of experiments is to compare
performance in the context where operands and results are
mainly on the host memory. On the other hand, data-on-device
scenario initially distributes matrices using a 2D-block cyclic
distribution. The target applications are those where a drop-in
replacement library for BLAS can accelerate computation on
multi-GPU systems.

In Section IV-D we included the necessary time to transfer
operands as well as the time to get the result back on
the host. Our scenario has the advantage to give an end-
to-end performance for practical use cases. Almost all the
tested libraries have a set of benchmarks or testing codes
to measure performance in terms of GFlop/s with the data-
on-host constraints. The only exception concerns Chameleon
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optimistic heuristic to favor device-to-device transfers neither the topology-aware heuristic. cuBLAS-XT results are kept as reference.

with tile algorithms for which default testing codes report
performance without guarantee that results are on the host
before stopping the time counter’. We added the necessary
synchronization instructions in our experiments to wait valid
result on host before stopping the time counter.

Moreover we have changed the default configuration of
workers on Chameleon/StarPU runtime [5] experiments. We
increased the number of concurrent kernels per GPU* from
1 (default) to 2 since more workers degraded performance.
We selected the DMDAS StarPU scheduling algorithm that
seems to be well suited for linear algebra algorithms according
to StarPU papers [5], [9]. Finally, we have made several
runs before measuring performance in order to let StarPU
build a performance model of each tasks involved during the
computation.

Each measure reported in this Section was a mean of 8
runs with a warm-up run discarded. Except if it is explic-
itly described, we only report results with a tile size that
maximizes performance among the experimented tile sizes
(1024, 2048, 4096) for each matrix dimension and library. We
extended these sizes for cuBLAS-XT and Slate with up to
8192 and 16384 in order to maximize their performance. With
this block size selection we were able to capture the best
performance from the tested BLAS subroutines on all the
range of matrix dimension. Block size tuning is outside of
the scope of this paper.

Nevertheless, the time to page lock the memory was ignored
in all experiments. We assume that applications have the

3A simple Gantt chart from CUDA nvprof tool, with marker added using
nvToolsExt, relevant that D2H data transfers arrive after the end of the
computation event reported by the benchmark.

4By setting the environment variable STARPU_NWORKER_PER_CUDA.

capacity to amortize this cost by using the same memory
multiple times. Thus, all the tested libraries register data
memory to CUDA driver in order to accelerate transfers of
(sub)matrices between CPUs and GPUs before measuring
execution time.

B. Impact of our optimistic device-to-device data transfers

Section III-B and III-C present how XKBlas improves per-
formance to better exploit of the connection topology between
GPUs with two strategies: favoring communication between
GPUs with the highest performance rank; avoiding CPU-to-
GPU communications by optimistically deciding to wait for
the arrival of a data replica on a GPU instead of copying from
CPU.

Figure 3 reports the performance of GEMM, SYR2K and
TRSM (triangular system solving) routines on 8§ GPUs. We
used CUBLAS-XT as a reference library, XKBlas with the
two heuristics enabled and XKBlas with one or two heuristics
disabled. XKBlas stands for the full extended XKBlas library
with the two heuristics presented in previous sections. XKBlas,
no heuristic is the XKBlas where optimistic heuristic to
favor device-to-device communication is disabled. XKBlas, no
heuristic, no topo is the configured as XKBlas, no heuristic
but in addition we disabled the selection of GPUi with
respect to the high performance group first as described in
the topological-aware heuristic section III-B.

Table II resumes the maximum gain or loss in performance
when a feature is disabled. We also added the performance
gain with data-on-device case. On the highly regular GEMM
algorithm, the performance degradation, with the optimistic
heuristic disabled was up to 43% over default XKBlas
baseline. Moreover, GEMM routine was not sensible to the
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TABLE II
MAXIMUM LOSS/GAIN OF PERFORMANCE FOR DIFFERENT XKBLAS
VARIANTS WITH RESPECT TO THE BASELINE XKBLAS ON MATRIX
DIMENSION GREATER THAN OR EQUAL TO 16384.

Kernel data-on-device no heuristic no heuristic, no topo
DGEMM +111.7% —43.5% —43%
DSYR2K +71.1% —-19.4% —53.5%
DTRSM +52.6% —29.6% —29.3%

topology-aware strategy with the highest performance rank.
TRSM had less performance degradation up to 30% with the
two features disabled.

On SYRK?2, performance degraded 20% if the heuristic is
disabled. However, disabling the topology-aware feature de-
creased the performance up to 54% over fully-enabled XKBlas
library. The origin of this issue is due to an imbalance in
the communication between GPUs introduced by the XKBlas
scheduling algorithm. It seems that some GPUs require more
time to send or receive data than the others over an 1 NVLink
path. In that case, if the runtime does not try to systematically
get the peer GPU with high performance rank, then it impacts
performance significantly.

C. Performance with data-on-device

Two dimensional block-cyclic distribution scheme is a
standard data mapping to resources when porting dense
linear algebra routines on distributed memory architec-
ture. This is the data layout in the ScalLAPACK Ili-
brary. Viewing the GPUs as a distributed memory archi-
tecture, we are able to distribute matrices following a
block-cyclic distribution. This is the purpose of the rou-
tine xkblas_distribute_2Dblock_cyclic_async
in XKBlas.

Figure 4 reports performance of DGEMM, DSYR2K and
DTRSM with XKBIlas “data-on-device” (DoD) where the
matrices were initially distributed using a 2D-block cyclic
distribution. All the matrices can be stored on the 8 x 32GB
of the V100 GPU memory on these experiments. We assume
a (4,2)-grid of GPUs and we select the following parameters
to fix the distribution: the tile size used by the algorithms is
[M.(JJVW] to ensure enough parallel slackness, and the block-
cyclic block sizes of the distribution is set to (1,1), i.e. two
adjacent blocks of matrices are mapped to different GPUs.
We keep performance results reported in Figure 5 of XKBlas
and CUBLAS-XT as reference that includes time to transfer
operands and results.

The overall results were consistent with our hypothesis.
When data are on device, all transfers occur between GPUs
at the speed of NVLink interconnect without transfers be-
tween the CPUs. XKBlas attained performance results of
~50TFlops even for square matrices of about 10000. The
gap between data-on-device and data-on-host experiments of
XKBlas decreases when increasing the matrix dimension N.
The arithmetic intensity is in O(N) for the three kernels, so it
implies the ratio communication/computation asymptotically
tends to 0. The arithmetic operations become a bottleneck for
any communication amount from the CPU or from the GPU.

Chameleon Tile outperforms XKBlas DoD on SYR2K, even
if input and output data are stored in the GPU memories.
Despite the gain avoiding data transfer with CPUs, when the
matrix size becomes bigger than 45000 (20,000 in previous
data on host experiments, see Figure 5) Chameleon Tile
SYR2K obtains higher levels of performance. We will investi-
gate furthermore this work imbalance problem in Section IV-E.
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D. Comparison with state-of-the-art multi-GPU libraries ing the matrix dimension over the 8 GPUs of our NVIDIA

DGX-1. Time to transfer inputs to GPUs and the output results

Figure 5 shows performance results in TFlop/s of DGEMM, to the host are included. Chameleon experiments are made
DSYMM, DSYR2K, DSYRK, DTRMM and DTRSM increas-



with two versions of the BLAS subroutines: the “Chameleon
Tile” version allocates matrices using internal tile data layout.
The “Chameleon LAPACK” allocates operands and result
using the LAPACK data layout, then the implementation of
BLAS subroutines automatically converts matrices to/from
tile data layout before and after computing the result. Some
routines have missing points because the tested libraries do not
include all routines: cuBLAS-MG only implements GEMM
in its current version; BLASX public code only contains
GEMM routines even if the authors reported performance with
almost all BLAS L3 kernels [14]; DPLASMA implementation
exploits GPUs with GEMM only.

XKBIlas outperformed all other libraries for almost all
routines with peak performance of 56.9 TFlop/s on FP64 DP
GEMM (= 91.2% from theoretical peak of GPUs, i.e. 8 X 7.8
TFlop/s for SMX2 V100). On GEMM subroutine, with small
matrix dimension of about 10,000, XKBlas was more than
three times faster than the other best libraries (cuBLAS-MG,
DPLASMA or Chameleon Tile). The less performant library
was Chameleon using LAPACK data layout due to the penalty,
on the host, to convert operands and result to/from tile matrix
representation [9].

Slate did not scale on our experiments with 8 GPUs of
DGX-1 system. Its design targets supercomputers and fo-
cuses on distributed memory computers interconnected by
high speed network. Slate organizes portability to accelerators
through the block outer-product pattern common to several
algorithms [21] which can be based on batched GEMM.
However, the implementation of the batched GEMM was
unable to exploit the capability of 8 GPUs to directly exchange
data through the high speed NVLink network. Consequently,
all data transfers between CPUs and GPUs pass through
the 4 PCle 16x Gen3 buses at 16GB/s each, which limits
performance on DGX-1 system.

The low performance of Chameleon LAPACK was due to
the software design for handling matrix stored in LAPACK
layout. With the same layout XKBlas was able to achieve a
much higher level of performance because it does not need
copies between matrix data layout during computation.

Chameleon Tile attained significant performance results on
bigger matrix sizes. The differences between XKBlas versus
Chameleon Tile decreases with the dimension of matrices
because the relative weight of communication reduces with
respect to arithmetics. Because the BLAS algorithms in XK-
Blas and Chameleon are the same, the performance differences
between XKBlas (with our heuristics) and Chameleon (LA-
PACK or Tile) were only due to: unnecessary copies in case of
Chameleon LAPACK; the runtime systems Chameleon/StarPU
or XKBlas/XKaapi; our heuristics.

Furthermore, Chameleon outperformed XKBlas on 2 sub-
routines (SYR2K and SYRK) over the 6 routines when the
matrix dimension were greater than 20 000 (resp. 45 000). One
reason may be that Chameleon/StarPU scheduler DMDAS [5]
is more efficient on these problems SYR2K/SYRK to avoid
communication and load imbalance. The XKBlas scheduler
relies on the XKaapi work stealing, with locality heuristic [11],

that seems to generate work and communication load imbal-
ance.

The performance improvement made by our heuristics pre-
sented in section IV-B demonstrate a significant performance
gain of XKblas against the other libraries, especially for
smaller matrices. This high reactivity comes from the dynamic
nature of the heuristic that reduces communication volume
between the host and the GPUs.

Among all the experimented libraries, the only available
libraries that offers the 9 standard BLAS subroutines® sup-
porting the LAPACK matrix data layout are cuBLAS-XT,
Chameleon LAPACK and XKBlas. Moreover, cubBLAS-XT
with NVBLAS and XKBlas provide dynamic libraries to trap
Fortran and C calls from BLAS subroutines and offload them
to GPUs. Regarding this scenario, as a drop-in replacement
library, XKBlas had up to 300% more performance than
cuBLAS-XT and 500% more performance than Chameleon
LAPACK version.

E. Execution trace analysis

We analysed the execution traces of GEMM and SYR2K
in order to understand performance results obtained. We did
not include Chameleon/LAPACK since its performance was
lower in our performance experiments (Figure 5). Each trace
only included GPU operations and API calls were discarded.
We used the nvprof utility to collect the traces.

Figure 6 shows cumulative execution times (left) and nor-
malized ratio over total execution (right) of GEMM for a ma-
trix dimension of 32768. It clearly demonstrates that XKBlas
was more efficient on data transfers than other libraries with
~2 25.4% of total execution. Other libraries spent more time in
data transfers during execution. Chameleon Tiled had slightly
better efficiency wih ~ 41.2% on data transfers.

Figure 7 illustrates the execution trace of SYR2K for
each GPU with matrix dimension of 49152. It seems that
Chameleon/StarPU scheduler was able to balance workload
over GPUs efficiently. On the other hand, XKBlas showed
load imbalance on either communication and execution over
GPUs. We constate that CUBLAS-XT had a similar behavior
on GEMM than on SYR2K where it spent most of execution
time in data transfers.

F. Composition of BLAS calls

In XKBIlas all kernels are invoked through asynchronous
function calls such as xkblas_dgemm_async. If a thread
executes a sequence of calls to XKBlas subroutines, then each
call inherits from previous data distribution among GPU stored
in the XKaapi cache when work on tiles have been dispatched
among the GPUs. This fact sketches our the simple proposal
for composition of BLAS kernels in XKBlas. Composition is
noted to be one of the key point for reaching high performance
in sparse direct solver [23], [24] such MUMPS [25].

Figure 8 shows performance results of a composition bench-
mark with routines TRSM + GEMM using Chameleon Tile

5The 6 routines of the figure 5 with addition of Hermitian version of
SYMM, SYR2K and SYRK
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System.

and XKBlas libraries. Each routine call was asynchronous over
the input matrices. XKBlas reached significant performance
of 56.6 TFlop/s that was close to the peak performance
of GEMM routine (56.9 TFlop/s). It seems that XKBlas
routines were able to compose both routine calls and did not
add synchronization points between routine calls. Chameleon
attained 36.6 TFlop/s which was under its GEMM peak of
51.3 TFlop/s.

Figure 9 illustrates a Gantt chart of one run of Chameleon
and XKBlas composition benchmark. Clearly, XKBlas was
able to compose both routine calls while Chameleon had
synchronization gaps.

Moreover, if a first task writes a tile while a second task
reads the same tile, they would correctly be dependent as
needed thanks to the asynchronous semantics of the XKaapi
runtime. Thus any sequence of user function calls generating
tasks would allow to define point-to-point synchronization
between tasks among different function calls. The absence
of synchronous semantics that force synchronization between
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Fig. 7. Execution trace of SYR2K FP64 with matrix dimension 49152 by
GPU on DGX-1 System.
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Fig. 8. Chameleon Tile and XKBlas performance of the composition of
TRSM+GEMM FP64 with matrix dimension 32768 and block size 2048 over
8 GPUs. The graphic shows each point as a mean of 8 runs and a LOESS
smoothing line with 95% confidence interval around the smooth.

calls permits to keep busy the GPUs. Other BLAS libraries,
such as Chameleon, MAGMA, DPLASMA expose asyn-
chronous tile API for asynchronous function calls in order
to favor composition but they impose the CPU memory to
be consistent on a synchronization point. cuBLAS-XT has
synchronous invocation of BLAS kernel with data transferred
back and forth after each call to BLAS.

In place of systematic and implicit data transfer associated
with completion of kernel, XKBlas adopts a lazy approach
where the user should describe which matrix or subparts of
matrix has to be made coherent on the CPU. This is the key
point for efficient composition of BLAS subroutines to avoid
unnecessary data transfers.

The  sequence of  one
generates computational tasks,

BLAS kernel, that
followed by a call to
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TRSM+GEMM FP64 with matrix dimension 32768 and block size 2048
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xkblas_memory_coherent_async is a  typical
composition that allows to mix together computation
with data transfers back to the CPU. At runtime, a task
making CPU memory coherent is executed as soon as
tile results are computed because of the dependency. In
Chameleon/StarPU, to initiate as soon as possible such
transfer, each tiled algorithm unrolls a data-flow graph with
annotations to flush back when a computed tile is done.
Nevertheless, the user in XKBlas has an explicit control over
the usage of communication links between CPU and the
GPUs which are a shared and limited resources.

V. CONCLUSION

In this paper we presented two heuristics to increase per-
formance of the XKBlas library. The heuristics make use
of the topological information of the high speed NVLink
interconnect with the dynamic information of the location
of data replicas. They were added inside XKBlas and only
impact the data management part of the underlaying XKaapi
library. Experimental results have demonstrated significant
performance gains for XKBlas.

The main contributions are a topology-aware strategy to
transfer data from the GPU with the most performant link, and
an optimistic heuristic that gives priority to device-to-device
instead of host-to-device transfers. In addition, we present a
complete comparison of several software stacks that target
BLAS routines. Our experimental results showed that XKBlas
scales on multi-GPU systems and outperformed other libraries
in all the cases except for the SYRK and SYR2K computations

where Chameleon was able to outperform XKBlas if the
dimension of matrices becomes larger. The problem was due
to the XKaapi scheduling algorithm that introduced work
imbalance in the computation and communication between
GPUs on these algorithms.

Our heuristics make no assumption about the scheduling
algorithm. They are interfaced between the scheduler that takes
decision to execute a task on a resource and the runtime part
in charge of data input transfers. We believe that our heuristics
are not specific to XKBlas and would be portable across other
libraries based on dependent task execution.

The portability of our performance results on other archi-
tectures is the next step. We were very interested in validating
the performance results on other highly integrated multi-GPU
systems such as the IBM Power9 with NVIDIA V100.

XKBIlas has the potential to be widely used by the scientific
community on legacy applications relying on dense linear
algebra operations. It supports natively LAPACK matrix layout
without sacrifice on performances and it is able to obtain high
performances even on small problem instances. For this two
properties XKBlas is one of the supported multi-GPU libraries
in the MUMPS [25], [26] software, a sparse linear solver.
Preliminary experimental results confirm the performance of
XKBlas presented in this article.
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