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Department of Automatic Control and Systems Engineering, University of Sheffield, S1 3JD, UK

{cliu47, amkiring1, n.salman, l.s.mihaylova, esnaola}@sheffield.ac.uk

Abstract—Received signal strength (RSS) based location finger-
printing is a powerful wireless positioning technique. It estimates
the target location by consulting a preliminary database and
searching for the best matched RSS fingerprints. The construc-
tion and maintenance of a sufficient fingerprint database could be
laborious and problematic. This paper proposes a new approach
that utilizes the Kriging spatial interpolation algorithm to build
complete fingerprint databases from sparsely collected measure-
ments. The interpolation performance is analyzed over various
extents of sparsity and number of measurements. The constructed
fingerprint databases are utilized to locate a static target and
the localization performances are analyzed. It is shown that the
Kriging algorithm can be used to build RSS fingerprint databases
of good accuracy based on sparsely collected measurements.

Index Terms—Localization, received signal strength, finger-
printing, spatial interpolation, variogram, Kriging.

I. INTRODUCTION

With prevalence of personal and industrial wireless devices,

wireless positioning techniques have become an increasingly

popular research topic in recent years. The global positioning

system (GPS) is the most widely used technique in outdoor

environments and its accuracy meets the requirement of most

outdoor applications. However, the GPS performs poorly under

non-line-of-sight conditions, such as in dense forests, high

building area or indoor environments [1].

Wireless indoor positioning techniques have been re-

searched in the past ten years and different algorithms have

been proposed. One main type of positioning technique is

based on computing geometric information between beacons

and targets and utilizes classical geometric principles, e.g.

triangulation and trilateration, to estimate locations. The trian-

gulation algorithm requires measurement of the angle of arrival

(AOA), while the trilateration algorithm requires measurement

such as time of arrival (TOA) or received signal strength (RSS)

with a known path loss model. Comprehensive surveys can

be found in [2], [3]. In indoor environments, the reliability

of these measurements suffers from the complex propagation

conditions, such as none-line-of-sight, multipath and unknown

power decay profile [1].

An alternative option is the fingerprinting technique. In-

stead of computing geometric information, the fingerprinting

technique estimates the target location by consulting a pre-

constructed database (e.g., a radio map). Each entry in the

database consists of location information and a fingerprint of

corresponding measurement pattern (e.g., RSS). The target

location estimate is given by the best matching entry or

merging several best matching entries.

However, offline construction of fingerprint databases is a

laborious task. Intuitively, databases of more densely collected

measurements could have more accuracy in positioning but the

offline workload significantly increases. Moreover, in many

cases there are locations that are restricted or inaccessible

for data collection, such as office rooms and apartments.

In addition, existing databases need maintenance since part

of the data might get faulted or need to be updated to

keep completeness and integrity. Thus, spatial interpolation

algorithms can be utilized to build the fingerprint database.

Several interpolation approaches have been proposed for

fingerprint database construction. In [4] and [5], measurements

at unknown locations are interpolated using specific path loss

models. The path loss models are calculated based on actual

measurements at limited number of known locations and the

floor layouts (e.g., wall configuration). It is necessary to

emphasize that knowledge of beacon locations is a prerequi-

site for these approaches. In [6], high-resolution fingerprint

databases are produced from low-resolution databases by

merging the measurements from two adjacent reference points

(RPs) and assigning the merging result to a new RP placed in

the middle.

A recent paper [7] investigates spatial interpolation

and extrapolation algorithms for construction of fingerprint

databases. Lacking knowledge about the beacon locations,

measurement at an unknown point is interpolated based on

actual measurements in the surrounding. There are several

interpolation algorithms considered in [7], these include linear

interpolation based on Delaunay triangulation, the nearest

neighbour (NN) and the inverse distance weighting (IDW) to

name a couple. The results show that location accuracy is

enhanced by utilizing constructed databases comparing to the

incomplete database. In [8], an adaptive smoothing algorithm

is employed with regard to the discontinuity of RSS as a result

of walls. The complete fingerprint database is produced using

IDW interpolation algorithm.

This paper proposes using the Kriging algorithm to

build fingerprint databases with sparsely collected measure-

ments.The Kriging algorithm has been widely used in geo-

statistics principle for spatial interpolation, but is not broadly

used in wireless network area. First, a complete fingerprint

database is simulated with an indoor log-distance path loss

model [9]. Then, parts of fingerprints are removed randomly

according to a sparsity parameter. Afterwards, the database

is reconstructed utilizing the interpolation algorithms and

compared to the original database. The interpolation results are



studied. At last, localization of a static target is tested using

the reconstructed databases and the accuracy is investigated.

The paper is organized as follows. Section II introduces the

proposed location fingerprinting technique. Section III presents

details on the geostatistics tools and the Kriging algorithm

considered in this paper. The simulation results are illustrated

in section IV. Finally, the conclusions and future directions are

drawn in section V.

II. RSS FINGERPRINTING POSITIONING

The fingerprinting technique comprises two phases. In the

first phase, a fingerprint database is built offline. In [1], [7], the

RSS measurements are collected at pre-determined RPs over

multiple times. The mean of RSS value received from the jth

beacon at ith RP, denoted by z̄
j
i , are stored in the form of a

pattern. Thus, the entry of the ith RP and corresponding RSS

fingerprint is denoted as

{

xi, z̄i
}

where xi = [xi, yi]
T is a location vector of ith RP in two

dimension, z̄i = [z̄1i , z̄
2
i , · · · , z̄

n
i ]

T is a vector of mean RSS

values from different beacons, n is the number of beacons.

Given a complete database of the area, the fingerprint-

ing technique estimates the target location by searching for

the best matching fingerprints in the database. There are

different frameworks of matching the target measurements

zt , [z1t , z
2
t , ..., z

n
t ]

T with the measurement fingerprint z̄i

based on different norms, such as ℓ1 norm, also known as

Manhattan distance, the infinity-norm and Mahalanobis-norm

[1]. The one used in this paper is the ℓ2 norm, also known as

Euclidean distance, that is,

d(zt, z̄i) = ‖zt − z̄i‖ =

√

√

√

√

n
∑

j=1

(

z
j
t − z̄

j
i

)2
. (1)

By matching the target measurement to the fingerprints, the

target location can be estimated as a weighted sum of location

of K best matching RPs, that is,

x
∗

t =

K
∑

i=1

wixi, (2)

where x
∗

t is the target location estimate, wi are weights of the

RPs, which can be simply calculated as

wi =

1
d(zt,z̄i)

K
∑

i=1

1
d(zt,z̄i)

. (3)

III. VARIOGRAM AND ORDINARY KRIGING

In the scenario where the beacon locations are unknown,

distances between the beacons and a target location cannot

be computed. As a consequence, specific path loss model is

difficult to derive and the measurements at unknown locations

cannot be predicted using the path loss model. Instead, the

geostatistics approach of modelling the spatial correlation as

variogram is an alternative solution.

A. Variogram

The idea of modelling the spatial correlation as a variogram

is initiated by Matheron in [10]. Given an area of interest

G ⊂ Rn, the mean of RSS value at a location xi is considered

as a random variable (RV) Z̄i. Then, the mean of RSS values

over the area can be represented by a random field (RF), which

is a collection of spatial RVs, {Z̄i|xi ∈ G}. However, for each

RV Z̄i, there is only one observation, which is the sample

mean value of RSS measurement, z̄i. To characterize the RF,

the assumption of stationarity, i.e., intrinsic stationarity, is

required.

By constructing a new variable, which is the difference

between two neighbour points δi,j = Z̄i − Z̄j , the intrinsic

stationarity implies that the mean of δi,j is zero in the local

neighbourhood and the variance of δi,j depends only on the

separation distance ‖xi − xj‖, that is,

E[δi,j ] = 0,

Var(δi,j) = 2γ(‖xi − xj‖) = 2γ(h), (4)

where E[·] is the mathematical expectation, Var(·) is the

variance, γ(·) is the variogram function and h = ‖xi − xj‖,

is the lag which represents the separation distance between xi

and xj .

As shown in the equation (4), the variogram γ(h) equals to

the semi-variance of the difference δi,j , that is,

γ(h) =
1

2
Var(δi,j) =

1

2
E[Z̄i − Z̄j ]

2. (5)

To obtain a variogram, the empirical variogram, γ̂(h), is

calculated first as follows,

γ̂(h) =
1

2
×

1

N(h)

N(h)
∑

i=1

(

z̄i − z̄i+h

)2
, (6)

where N(h) is the number of pairs of observations separated

by lag h, z̄i+h is the observation at a distance h from xi.

The empirical variogram contains values at a limited number

of h. To estimate the measurements at unknown locations,

access to the value of h between the scattered points in the

empirical variogram is required. Hence, a mathematical model

is selected to be fitted in the empirical variogram. This model

is frequently chosen from spherical model , exponential model

, Gaussian model , power model and linear model [11].

B. Ordinary Kriging

Once the variogram is obtained, values at unknown locations

can be estimated based on known data points. Mathematically,

this problem can be regarded as a spatial interpolation problem

[12].

Kriging refers to a group of least-squared based interpo-

lation algorithms. It is named after Danie G. Krige, who

developed empirical statistical algorithms to predict ore grades

from spatial correlated sample data in the gold mines of South

Africa [13].

Kriging estimates the value at an unknown location xu as

a weighted sum of k known neighbour data points, that is,

z̄∗u =

k
∑

i=1

λiz̄i, u = 1, ..., U (7)



where z̄i is the neighbour data point, λi is the neighbour

weight, called Kriging weight, U is the number of unknown

locations. The Kriging weights are derived through minimising

the estimator error variance, that is,

min
λi∈R

Var(z̄∗u − z̄u), (8)

under the unbiasedness constraint, given by,

E[z̄∗u − z̄u] = 0. (9)

The Kriging algorithm used in this paper is the ordi-

nary Kriging. Assuming the intrinsic stationarity and utilizing

Lagrange multiplier optimization algorithm to minimize the

estimator error variance (8) under the unbiasedness constraint

(9), the Kriging weights λi in (7) can be calculated as:











λ1

...

λk

L











=











γ1,1 . . . γ1,k 1
...

. . .
...

...

γk,1 . . . γk,k 1
1 . . . 1 0











−1 









γ1,u
...

γk,u
1











. (10)

where L is the introduced Lagrange multiplier, γi,j is the

variogram value between the ith and jth neighbour data points,

γi,u is the variogram value between the ith neighbour data

point and the interpolation point. The derivation of the Kriging

weights is given in the Appendix.

Kriging has certain advantages over some other spatial

interpolation algorithms. First, Kriging gives the best unbi-

ased estimate with minimized variance. Second, the distance

between neighbour points are considered in the calculation

of Kriging weights. It results in less weights for the points

within a data cluster than isolated data points. Therefore, the

effects of redundant information contained in a data cluster

are weakened [14], [15].

Referring to the construction of fingerprint databases, the

unknown values in RSS measurement fingerprints can be

interpolated based on sparsely-collected data and variogram

models. Therefore, the offline workload of constructing a

fingerprint databases can be reduced significantly.

IV. SIMULATION EVALUATION

This section demonstrates the simulation results of the

construction of fingerprint databases and localization of a

target using constructed databases. First, the signal propagation

is simulated over an area of 150m × 150m from five beacons

utilizing the log-distance path-loss model in [9]:

z
j
i = Zt − L0 − 10β log10‖xi − x

j‖+ χσ (in dB) (11)

where z
j
i is the RSS value received from the jth beacon at

the ith RP, Zt is transmitted signal powers, L0 represents the

path loss at a relatively short distance away from the beacon,

β is the path loss exponent, x
j is the location of the jth

beacon, ‖xi − x
j‖ is the distance between the ith RP and

the jth beacon, χσ representing the shadowing noise, which

is modelled as a zero-mean Gaussian RV with the variance

σ2 = 5.

In practice the RSS is measured sufficiently over multiple

times at a location and the values in RSS fingerprints are
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Fig. 1. The original RSS fingerprint map. The RSS values are the sum of
values in RSS fingerprints.
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Fig. 2. The the original RSS fingerprint contour map. The RSS values are
the sum of values in RSS fingerprints.

computed as the means in order to eliminate the noise effect.

In the experiment, the values in the fingerprint are computed

as the averages of 1000 RSS measurements for each RP.

The area is divided into 30 × 30 grids. The complete RSS

fingerprint database (i.e., RSS map) consists of the coordinates

of all 900 grid center points and corresponding RSS pattern of

five beacons. The original RSS map and the beacon locations

is shown in Fig. 1 and Fig. 2.

Next, part of the fingerprint database is removed according

to a sparsity parameter ρ. The removal process is a Bernoulli

process with the probability that a fingerprint would be re-

moved is 1 − ρ, the probability that a fingerprint would be

retained is equal to ρ. Fig. 3 illustrates a sparsely-collected

fingerprints map with ρ = 0.15.

Fig. 4 presents the empirical variogram and fitting result of

a beacon. The fitted curve demonstrates the spatial correlation

model of RSS and is used to estimate the RSS at an unknown

location. As shown, the value of empirical variogram, which

is the scatter plot in Fig. 4, increases with h. According to
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Fig. 3. RSS map of sparsely-collected measurements. ρ = 0.15 .
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[11], it infers that there is an obvious trend (general spatial

variation of the mean value) of RSS distribution in the area.

Compared with more widely used fitting functions, e.g. the

spherical and exponential function, it is suggested to select a

power model, that is,

γ(h) =

{

0 , h = 0

α · hβ , h ≥ 0
(12)

where α and β are the fitting parameters with a strict constraint

that 0 < β < 2. As indicated in the figures, the power function

is well fitted.

Based on the sparse-collected measurements as shown

in Fig. 2, a Kriging constructed database is produced and

demonstrated in Fig. 5 and Fig. 6. As evident, the Kriging

algorithm retrieved the missing RSS fingerprints accurately

with acceptable interpolation errors.

Fig. 7 demonstrates interpolation error statistics of the NN,

IDW based on 5 nearest neighbours and Kriging algorithms

with respect to the sparsity. There are 5 beacons and cor-
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Fig. 5. Kriging interpolated RSS map with measurement sparsity ρ = 0.15.
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Fig. 6. Kriging interpolated RSS contour map with measurement sparsity
ρ = 0.15.

respondingly 5 entries in the RSS fingerprint of a RP. The

interpolation error for each unknown RP is computed as the

root-mean-square error (RMSE) of the RSS fingerprint by

comparing the interpolated fingerprint to the original one. The

interpolation error for each sparsity is computed as the mean

of RMSE for all unknown RPs, that is,

ǫ =

∑U

u ‖z̄
∗

u − z̄u‖

U
(13)

where the z̄
∗

u is the interpolated RSS fingerprint, z̄u is the

original RSS fingerprint, ‖·‖ is the Euclidean distance operator

in equation (1) which can be used to compute the RMSE.

As shown in the figure, the NN interpolation error is the

highest one for all sparsity values and remains at the same

level. The IDW interpolation error decrease slightly and has

the lowest values when the sparsity of the measurement is be-

tween 0.05 to 0.06. The Kriging interpolation error decreases

dramatically between this sparsity range and is higher than

the IDW algorithm. The reason is that the extremely sparse

measurements are not sufficient for building a good variogram

model, which can lead to significant interpolation error at some
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locations. Later when ρ increases and the measurements are

sufficient, the Kriging interpolation error is lower than the

other two methods.

Fig. 8 shows the interpolation error against the number

of offline measurements. The offline fingerprint values are

averaged over the number of measurement collection. As

shown, the interpolation error decrease more obviously when

the number of collection increases from 1 to 50. When the

number of measurement collection is more than 50 times,

the interpolation error remains flat, which indicates that the

measurement noise effect is almost eliminated.

Fig. 9 shows the mean error of locating static target at

[50, 50] utilizing the RSS fingerprint databases constructed by

the NN, IDW based on 5 nearest neighbours and Kriging

algorithms with different measurement sparsity. The target

RSS are simulated using the log-distance path-loss model (11)

with the same shadowing variance σ2 = 5. As shown in Fig.

9, the error of locating the target based on the NN, IDW and
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Fig. 9. Comparison of localization error of the NN, IDW and Kriging
algorithms with respect to sparsity .

Kriging constructed databases decreases with the increase of

ρ. The localization error based on the Kriging constructed

databases remained the lowest one even though the sparsity is

extremely low between 0.05 and 0.06. Although it is seen in

Fig. 7 that for ρ < 0.07 the Kriging interpolation error is worse

than the IDW due to the inadequate variogram modelling.

However, location performance in Fig. 9 shows that Kriging

performs better than IDW at all ρ values. The reason is that

even though the measurements are extremely sparse, it does

not lead to significant interpolation error for all locations. The

Kriging algorithm weights the neighbour data points based on

the variogram models, while the IDW weights the neighbour

points only according to the Euclidean distance.

V. CONCLUSIONS AND FUTURE WORK

In this paper, the Kriging algorithm, which is a statistics-

based spatial interpolation algorithm, is proposed to construct

RSS fingerprint database with sparsely collected measure-

ments. The simulation results demonstrate that the Kriging

algorithm interpolates the RSS fingerprint at unknown lo-

cation without the knowledge of the beacon locations. The

performance is compared to the NN and IDW algorithms

over different levels of sparsity. The results show that the

Kriging algorithm generates more accurate RSS fingerprints

than the NN and IDW algorithms. Employing the constructed

databases, the accuracy of localization of a static target is

studied with respect to data sparsity. The results illustrate that

the Kriging algorithm performs better than the NN and IDW

algorithms.

It has been validated that the Kriging algorithm is a powerful

tool for spatial analysis. As a future work, the proposed

method will be applied to real data and the performance shall

be investigated. The Kriging algorithm can be also applied

in other wireless applications, such as pollution mapping and

precision agriculture in wireless sensor networks (WSNs).
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APPENDIX

Under the intrinsic stationarity assumption, a sufficient

condition for unbiasedness can be given as,

k
∑

i=1

λi − 1 = 0. (14)

Taking advantage of unbiasedness, the kriging estimator

error variance can be derived as

Var(z̄∗u − z̄u)

=E[z̄∗u − z̄u]
2

=E

[ k
∑

i=1

λi

(

z̄i − z̄u
)

]2

=
k

∑

i=1

k
∑

j=1

λiλj ·
1

2
E
[

z̄i − z̄u
]2

+

k
∑

i=1

k
∑

j=1

λiλj ·
1

2
E
[

z̄j − z̄u
]2

−
k

∑

i=1

k
∑

j=1

λiλj ·
1

2
E
[

z̄i − z̄j
]2

=2

k
∑

i=1

λiγi,u −
k

∑

i=1

k
∑

j=1

λiλjγi,j . (15)

To minimize the expression (14) under the unbiasedness

(13) by introducing a Lagrange multiplier L, the aim now is,

min
λk∈R

2

k
∑

i=1

λiγi,u −

k
∑

i=1

k
∑

j=1

λiλjγi,j + 2L ·

(

1−

k
∑

i=1

λi

)

.

(16)

Differentiate expression (15) with respect to a weight λi

and let it equal to 0, that is,

k
∑

j=1

λjγi,j + L = γi,u. (17)

So the Kriging weights that minimize the error variance can

be obtained by solving the equation set:


























k
∑

j=1

λjγi,j + L = γi,u, i = 1...k

k
∑

i=1

λi = 1.

(18)

Expressing the equation set (17) as matrices, that is,










γ1,1 . . . γ1,k 1
...

. . .
...

...

γk,1 . . . γk,k 1
1 . . . 1 0





















λ1

...

λk

L











=











γ1,u
...

γk,u
1











. (19)

Thus, the Kriging weights can be calculated as,











λ1

...

λK

L











=











γ1,1 . . . γ1,k 1
...

. . .
...

...

γk,1 . . . γk,k 1
1 . . . 1 0











−1 









γ1,u
...

γk,u
1











. (20)


