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Abstract—Tracking of multiple objects via particle filtering
faces the difficulty of dealing effectively with high dimensional
state spaces. One efficient solution consists of integrating Markov
chain Monte Carlo (MCMC) sampling at the core of the particle
filter. To accomplish such integration, a few different approaches
have been proposed in the literature during the last decade.
In this paper, we introduce the derivation of the acceptance
probability of the interacting population MCMC particle filter
(IP-MCMC-PF), one of the most recent approaches to MCMC-
based particle filtering. Additionally, we show that the previous
expression known in the literature was incomplete.

I. INTRODUCTION

Inference in hidden Markov models described by nonlinear
transition kernels and/or nonlinear observation functions is a
hard problem. In lieu of analytical and efficient solutions, a
common practice is to employ approximate techniques such
as sequential Monte Carlo methods or particle filters [1], [2].
Their attractiveness, reason why their use is widespread, is
twofold: first, they do not impose restrictions on the math-
ematical models; and secondly, they guarantee convergence
provided enough computational resources.

The pioneering particle filter [3], [4] based on sequential
importance sampling and resampling becomes inefficient as
the dimension of the state space increases [5]. Increasing
the dimension of the state space is crucial when aiming at
tracking multiple objects jointly. To circumvent the “curse of
dimensionality”, the integration of Markov chain Monte Carlo
(MCMC) methods? with particle filters has become popular
during the most recent years [7]-[12].

The interacting population MCMC particle filter (IP-
MCMC-PF) [9] is one of the MCMC-based particle filters®
developed recently. The IP-MCMC-PF is a fixed cardinality
filter and it is used as a building block in a multiple cardinality
algorithm which tackles the more general, unknown cardinality
multiple object tracking problem [13].

Although the results of the IP-MCMC-PF seem promising,
we carefully derive in Section III the expression of its accept-
ance probability and show that the expression known so far is
not complete. We also demonstrate through a counterexample
in Section IV-A that the previous sampling scheme does

2Traditionally, MCMC has been employed in batch data processing [6]. We
wish to remark that in this paper we focus on a different use of MCMC in
which it substitutes the importance sampling and resampling stages found in
traditional particle filters.

In this paper, we use the terminology MCMC-based particle filter in-
troduced in [7] to refer to the family of particle filters leveraging MCMC
in substitution of importance sampling and resampling. Other terminology,
namely sequential MCMC, is also common.

not necessarily converge to the correct posterior distribution.
Furthermore, Section IV-B analyses the behaviours of the new
expression, the previous one, and a different MCMC-based
particle filter [8] in a multi-object tracking scenario.

The filter in [8] and the IP-MCMC-PF have both similarities
and differences. On the one hand, they are similar because they
rely neither on importance sampling nor resampling, but only
on MCMC sampling. On the other hand, whereas the proposed
samples in the IP-MCMC-PF are drawn from a subset of the
variables in the complete space, the filter in [8] combines
two proposals: one that draws from the complete state space,
and a second one similar to the IP-MCMC-PF. Therefore we
shall refer to the filer in [8] as the two-step MCMC filter. In
Section IV these two filters will be compared further.

II. BAYESIAN FILTERING

Before presenting the derivation of the acceptance probability,
let us briefly recall the fundamentals of recursive state estim-
ation. Consider a generic nonlinear and non-Gaussian dynam-
ical system described by the time evolution and observation
equations:

sk = f (Sk—1, Vi), (D
zx = g (S, Wi ) - )

Here sy and zx denote respectively the state of the system and
the observations, while vy and wy are respectively the process
and measurement noise. The subindex k is used to denote the
time step.

The process noise v together with the transition function
f specify the transition distribution p (sk|sk—1). Likewise, the
measurement noise w and the function g specify the likelihood
function p (z|sk). Following a Bayesian approach, the filtering
problem consists of finding p (sk|z1.x), which encompasses
the time prediction (3) and measurement update (4) steps as
below:

p (Sk|Z1:k—1) :/P(Sk|sk71) p(sk—1|z1x—1) dski—1 (3)
p (sk|z1x) o< p (2[sk) p(Sk|Z1x—1) )
III. DERIVATION OF THE ACCEPTANCE PROBABILITY

The goal of this section is twofold. First, to recall the proposal
mechanism of the MCMC-PF introduced by [9]. Second, to
introduce the derivation of its corresponding acceptance ratio.

The proposal mechanism in the IP-MCMC-PF is in Al-
gorithm 1. In the algorithm, the particle approximation of the



posterior at the previous time step is written as
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Suppose s;* denotes the current state of the Markov chain,
Np the number of blocks® or partitions which constitute
the complete state vector, and § the Dirac delta function.
Unif {a,...,b} represents the discrete uniform distribution
between a and b. Furthermore, si; is the state where the chain is
proposed to move and sﬂ"“ is the new sample of the posterior
p (sk|z1.x). Note that sy represents the complete state vector,
containing all blocks together. The samples drawn via MCMC
constitute an empirical distribution as in Equation (5) that
approximates p (sk|z1.x).

Input : p(sx—1|z1x—1), Zx, S
Output: s;"**
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6 if u < A(s]",s;) then
7| st =

8 else
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10 end

Algorithm 1: Proposal mechanism and Metropolis-Hastings
sampling in the IP-MCMC-PF [9].

In order to calculate the acceptance ratio A (s{*,s;) in
Algorithm 1, an expression for the proposal distribution q must
be specified. It follows from steps 1 to 3 that

Ny N,
* | m 1 * m 1 * 7

q(sgls{") = Z < L (Sk,\b - Sk,\b) Z ~ P (Sk,b‘sk—l,b) .

o No = Ne

(6)
In Equation (6), 1 denotes the indicator function and \b
denotes all the blocks except for block b. That is,
T

Skbrl - Sk,NbT] . (D

T T
Sk,\b = [Sk,l - Skb-1

Equation (6) assumes that the time evolution of the b™
block is self-contained. In other words, that the prediction
of the variables within block b is independent from the
variables in all other blocks \b. Formally, block-independent
time evolution means that Equation (1) is equivalent to

skb = Jf (Sk—1,6-Vkp),Vb=1,...,Np. ®)

‘In the context of multiple object tracking, a block may be associated
with one of the objects under track. In such a case, the vector sy would
contain, for instance, the variables corresponding to the dynamics (position
and velocity) of a single object.

The single-block transition function f in Equation (8)
models the transition of a single block as described by the
full-state transition f in Equation (1). In Equation (8), it is
assumed that f is the same for every block without loss of
generality.

The first sum in Equation (6) accounts for the selection
of the block to modify in the proposal. See steps 1 to 4
in Algorithm 1. Note that the proposed state s; and the
current state of the Markov chain s} differ in only one block
jlje{l,...,Np}. As a consequence, the sum in Equation (6)
across every block is equal to zero for all terms except for
one term, when b = j. Thus, when it comes to evaluate the
proposal distribution, only the non-zero term is relevant:

1 1 * %
No ; N, P (sijlsi-1,) ©))

Let us now write the expression for the acceptance ratio in
the Metropolis-Hastings algorithm [14],

A (s{,s;) = min {1, P (571;|le1<) 4 <St |S,;]';) } .

P (s'z1x) q(sglsy’)
Recall that our goal is to obtain an expression from (10) that
can be evaluated as required by Algorithm 1. It follows from

Equation (4) that

(10)

p(silzix) _ p(zlsi) p(silzin-1) (11

p(sitlzix) P (zclsy?) p(s{[Z1k—1)
Furthermore, Chapman-Kolmogorov equation (3) together

with (5) give an approximation of the prediction p (sx|z1x—1)
in terms of an equally weighted sum of transition distributions:

Np

1
P (sk|z1k—1) Z Sk|Sk 1) =
= (12)
Z HP Skb|5k 1b
Np b=1

using the assumption of block-independent time evolution. At
this moment, by means of inserting Equation (12) and Equa-
tion (11) into Equation (10), Equation (9) into Equation (10),
and simplifying the constant terms, we obtain:

P (z[si)
p (zlsy")

p(silzia) a(si'lst) _

p(si"lz1:k) q (S?Q\Sf(")

« Z Hb 1p( ) Zli\llp (S]Tj‘sfﬁfl,j) . (3)
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This long expression can be written more succinctly as
plafst) Titiob; (@) By () Eitaaly )
P (ls{") zi“z oy (1) g (1) 32 ag; (6)
where
o (i) =p (SlTj|Sli71,j) (15)



and

Ny
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Remark: at first sight, it might result surprising that the right
hand side in Equation (17) seems to depend on j, whereas this
variable does not appear in the left hand side. However, further
consideration resolves this issue since in fact j is determined
by s{* and s;. By construction in Algorithm 1, sy is different

from s, in only one block, namely block j. Hence, j is known
for a given pair (s, s}).

IV. SIMULATIONS
A. Two states Gaussian distributed with strong correlation

This section illustrates the difference between the particle
approximations of the posteriors obtained via Algorithm 1
using two distinct expressions for the acceptance ratio: one, the
ratio of likelihoods as suggested in [9]; and two, Equation (17)
as derived in Section III. To this end, we present a rather
simple scenario with linear and Gaussian dynamics, Gaussian
likelihood, and Gaussian posterior at k — 1. Consequently, the
updated posterior at time step k can be analytically computed
via the classical prediction and update equations of the Kalman
filter [15]. Hence, it is possible to compare the particle
approximations of the posteriors with the exact closed-form
solution.

The scenario considered has state dimension two (composed
of two one-dimensional blocks). The time evolution of the
system is

sk = F sg_1 + vi—1, (18)

where F = 3 I, and vy_; is zero-mean Gaussian noise
with covariance Q = 0.01 Iy. I,, denotes the identity ma-
trix of dimension n. Regarding the observation model, the
state is directly observable and the noise is also zero-mean
Gaussian with covariance Is. The observation at time k is
7, = [1.5 4.5]". Thus, the likelihood specified as a function of
sy, is & (sk; [1.54.5]", 1, ). & (; 1, %) denotes the probability
density function of a Gaussian distribution with mean vector
and covariance matrix X. Finally, the posterior at the previous
time step is given by

. 1 )
p(Sk—1|Z1:k—1) =¢ (Sk—1§ [(1)2] ’Z {0;8 0198}> . (19)

The complete scenario is illustrated in Figure 1. In addition,
the exact prediction and updated posterior densities are also
plotted.

Figure 2 depicts the results obtained via MCMC sampling
using the proposal mechanism in Algorithm 1 for the two

6 T T

‘
Prev. posterior
55} Prediction .
Likelihood
5H Posterior i
45F 1
4k J
o
< 35} % |
[%2]
3l J
250 1
2, N 4
s / ]
i i i i i
-1 0 1 2 3 4
Sk.1
Figure 1. Scenario described in Section IV-A. Since all the functions

are Gaussian, contour curves at one standard deviation are used for the
representation. Note that the labels along the axes refer to time step k, although
for the previous posterior and the prediction more appropriate labels would
be k — 1 and k — 1|k, respectively.

choices of the acceptance ratio. The true updated posterior
is also included for comparison (leftmost plot). Clearly, the
sampler where the acceptance probability is equal to the ratio
of likelihoods (plot in the middle) does not represent correctly
the covariance of the true updated posterior. The remaining of
this section provides insight into the results.

Let us consider the two samplers at a certain iteration m.
Assume the current sample in both samplers is s = [2 5] T.
We say this sample represents a state of high probability in
the prediction and in the true updated posterior because it is
within one standard deviation in both densities (see Figure 1).
Consider now the following possible outcome from the differ-
ent steps in Algorithm 1: (1) j = 1; (2) S]t|k71 = [14]T
(3) s; = [15]T. At this moment, the MCMC samplers
perform accept/reject tests. Recall that the current sample is
s = [2 5]T and the proposed sample is s; = [1 5]T. The
likelihood is the same for both the current and the proposed
sample, i.e.

o (B3] ) = (Bl i) )

As a consequence, the acceptance probability is equal to one
in the sampler using the ratio of likelihoods. Note, however,
that the proposed sample is not a state of high probability of
the true updated posterior!

Accept/reject tests like the one just illustrated produce pre-
cisely the posterior shown in the middle of Figure 2. In other
words, consider the region of the sy ; X sy o plane delimited
by the boundaries of the Cartesian product [0,3] x [3,6].
The proposal mechanism, due to its block-wise behaviour,
may generate proposals from everywhere within [0, 3] x [3, 6],
including the upper left and lower right quadrants of the
region. Also, the likelihood weighs equally for the points in
the four quadrants that are equally far from the region’s centre.
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Figure 2. Simulation results in Section IV-A. The leftmost plot corresponds to the true posterior obtained via the Kalman filter. The center and right plots
correspond to the distributions obtained via MCMC sampling with acceptance probabilities equal to ratio of likelihoods and the full expression in Equation (17),
respectively. The three distributions are represented with contour lines and the numerical labels are associated with density values. One million samples are
used by each MCMC sampler and the first one thousand samples are discarded, regarded as burn-in. As it can be seen from the figure, using the ratio of
likelihoods as acceptance probability produces a very different posterior than the true one.

However, only the upper right and lower left quadrants are of
high probability in the true updated posterior because only
in those quadrants the prediction is of high probability too.
Since the information of the prediction is disregarded in the
acceptance probability when using the ratio of likelihoods, the
posterior is wrongly estimated.

On the other hand, the sampler that uses acceptance prob-
ability equal to Equation (17) will with high probability reject
the proposed sample. Let us explain further. Note that in
Equation (13), the term >0, [T™", p (stplsi_1p) evaluates
the prediction density at the proposed sample s; = [1 5] T,
which is equal to zero? as illustrated in Figure 1. Thus, making
the acceptance probability zero.

B. Tracking of two targets

Consider a tracking application based on range-bearing meas-
urements, with no clutter and known data association. More
general observation models that do not make these assump-
tions would also be possible, but the following scenario is
simple enough and adequate for our arguments. After introdu-
cing the dynamic and observation models, we will compare in
this section three MCMC-based particle filters: the original
IP-MCMC-PF, the IP-MCMC-PF with the new acceptance
probability derived in Section III, and the two-step MCMC
particle filter introduced by [8].

Simulation of Trajectories: The trajectories of the targets
are simulated using the following equations:

ay ~ N (0,02 14) (20)
1

Xk = Xk—1 + X1 A¢ + 5 & A7 2D

Xg = Xg—1 +ag Ay (22)

dConsider zero just for the sake of simplicity in the discussion. Rather
than exactly zero, the prediction takes a very small value at the since it is
Gaussian. In practice, the value is so small compared to the other terms in
the acceptance probability that it can be regarded as zero.

A; denotes the time differential between consecutive time
steps, x and x are a vectors formed by the concatenation of
the two-dimensional positions and velocities of each target,
respectively, and a represents a random perturbation of the
target velocities.
The state vector of the b'™ target comprises four components:
. LT
Skb= [Tk Ykb  Tkb  Ukb (23)
corresponding to the position and velocity vectors. The com-
plete state vector is the concatenation of the two individual
target states: sy = [si;17 sg 27| T
Motion Model: The motion is specified by a near constant
velocity model with Gaussian noise as in Equation (18). In
this scenario, F = I ® F, where ® denotes the Kronecker
product and

(24)

coc o~

O O = O
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x

The covariance matrix of the process noise is Q = I ® (NQ
where

Q=A% ding ([21 21 1 4]). (25)
Note that the matrix Q does not follow from Equations (20)
to (22); it is our choice of process noise covariance for the
motion model. The complete transition distribution can be
written as

P (sklsk—1) = P (sk1lsk-1.1) P(skzlsk-12)  (26)
where the single-target transition is
P (SkblSk—1,) = & (Sk,b;ﬁ Sk—1,b; 6) : (27)



Observation model: Consider a simplified observation
model with perfect measurement-to-track association where
a radar sensor generates a single range-bearing measurement
per target at each time step. Of course, this approach is
only possible because the scenario is simulated and in real
applications handling data association is a requirement. We
take these simplifying assumptions because they ease the study
of the properties of the MCMC samplers, main goal of this
paper.

Similar to the state vector, the complete observation is the
concatenation of the individual target observations:

(28)
(29)

_I,T T 1T
Zx = [Zk,l Zk,2]
T
Zip = [Fkp Oup)
where 7, and ayp, denote the observed range and bearing
angle. The noise in the observations of each target is additive

and Gaussian distributed with variance o2 for the range and
o2 for the bearing. The complete likelihood function is

p (zk|sk) = p (zx,1]8k,1) P (Zk2/Sk,2) (30)

where the single-target likelihood is given by

P (Zkplskb) = & (Tk; 97 (Skp) s 07) @ (bip; 9 (Skp) ,02) -
(3D
Range and bearing are defined as

9" (skp) =4/ ey + Yib

g% (skp) = arctan (ykb> .

ZTk,b

(32)
(33)

Parameters: Targets are initialised with xo = [2 2] T [km]
and vo = [100 100]T [m s~!]. The simulations start at
time step k = 1 and last for 50 time steps. Time between
consecutive time steps is equal to A; = 1 [s]. The variances
of the noises are 02 = 50 [m? s~%], 02 = 10® [m?], and
02 =107 [rad?].

For the initialisations of the filters, Gaussian densities
centered around the true positions and velocities are specified.
The position and velocity standard deviations are respectively
equal to 500/3 [m] and 1 [m s~!]. Concerning the MCMC-
based filters, the burn-in length is equal to 50.

Results: In spite of the nonlinearity in the measurement
function, the extended Kalman filter (EKF) is able to perform
well in this problem. In fact, we will consider the performance
attained by the EKF as the baseline. Consequently, we are
able to conclude when each of the MCMC-based particle
filters analysed here attains a (close-to) optimal performance.

The performance measure chosen is the average position
error (APE), defined as

1 Nuc 2 2 2
SO () + (i i)
Cn=1b=1
(34)
where Ny denotes the number of Monte Carlo simulations

(100 in our experiments), x;'\, and g, the true target locations,
and 2y, and gy, the estimated locations.
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Figure 3. Simulation results in Section IV-B.

Figure 3 shows the results of the MCMC-PF with the two
choices of acceptance probability, namely ratio of likelihoods
and the full expression in Equation (17), and the two-step
sequential MCMC introduced in [8]. The results are perhaps
surprising at this moment since the ratio of likelihoods MCMC
presents a good performance already with 1000 particles,
whereas the full expression MCMC’s performance is worse
than the former even with 10000 particles. Nevertheless, the
results do agree with the good performance of the ratio of
likelihoods previously reported in the literature. Let us analyse
these results further in the following paragraphs.

Recall the factorisation of the time evolution in Equa-
tion (26) and the likelihood function in Equation (30). Provid-
ing the initial distribution p (s¢) also factorises,

p(so) =p(so,1) p(so0z2), (35)

the prediction p (s|z1.x—1) will also factorise as a result of
the recursive application of the Bayes filter’s prediction and
update equations. That is,

p(sk|zixk—1) =P (Sk1]Z1x-1,1) P (Sk2|Z1:k—1,2).  (36)

The acceptance ratio as written in Equation (13) consists of
three factors: the ratio of likelihoods, the ratio of predictions,
and the inverse ratio of predictions only for the block that
is modified in the proposal. We say inverse ratio to denote
that in the last factor, differently from the former two, the
proposed and current states are in the denominator and numer-
ator, respectively. Providing Equation (36), all the factors in
Equation (13) except for the ratio of likelihoods are cancelled.

The discussion so far concludes why the ratio of likelihoods
sampler produces good results in the scenario analysed in this
section even though it is known from Sections III and IV-A that
the ratio of likelihoods does not correspond with the complete
expression of the acceptance probability. Still, we notice in
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Figure 4. Proportion of acceptance of the MCMC-based particle filters in
the scenario described in Section IV-B. The number of particles used in the
filters is equal to 10000 and the results ae obtained averaging the proportions
of acceptance across 100 Monte Carlo runs. In case of the two-step sampler
[8], the joint draw has lower acceptance than the refinement draw, which is
expected because the joint draw operates in a state space of higher dimension
than the refinement. Compare with Figure 3 to note that the low acceptance in
the full expression corresponds to low performance. Similar reasoning applies
to the good performance of the ratio of likelihoods. In case of the two-step
sampler, the low acceptance of the joint step together with the rather large
acceptance of the refinement results in good performance.

Figure 3 that the full expression needs more particles to attain
less error. That is, it has slow convergence. Figure 4 shows
that the proportion of acceptance® of the full expression is very
low. In other words, the use of the full expression results in
an inefficient sampler in the sense that most of the proposed
samples are rejected (at least when using the prediction as
proposal and in this scenario).

Finally, the third MCMC-based particle filter presented in
[8] is included in this experiment for comparison. The per-
formance of this filter in this scenario is good and we remark
that the derivation of its acceptance probability does not rely
on factorisations of the prediction. In fact, the acceptance
probability in this filter is equal to the ratio of likelihoods in
the joint draw, and the same ratio of likelihoods weighted by
the ratio of the transition distribution in the refinement draw.
This stems from sampling the joint (k and k — 1) filtering
distribution p (s, sk—1|21.x)-

V. CONCLUSION

The main focus of this paper has been to complete the
acceptance probability expression of the IP-MCMC-PF [9].
This is an MCMC-based particle filter whose main appealing

°We define the proportion of acceptance as the number of accepted
proposals divided by the total number of MCMC iterations.

lies in leveraging parallel processing in modern computer
architectures. In order to clarify this contribution, we have
not emphasised the simulation of several Markov chains in
parallel. The use of multiple Markov chains is what gives
the filter in [9] the interacting qualifier (thus IP — interacting
population). Nonetheless, the acceptance probability derived in
Section III is the same independently of the number of chains.
Furthermore, in Section IV-A we have shown the importance
of the new terms in the acceptance probability.

Future work includes the study of the ratio of likelihoods
as a procedure to compute the acceptance probability. This
is correct in the IP-MCMC-PF when the initial distribution,
the transition distribution, and the likelihood function factor-
ise as in Section IV-B. Further exciting analysis comprises
whether less restricting assumptions on the models, or, altern-
atively, modifications in the proposal mechanism outlined in
Algorithm 1, result in the acceptance probability being the
ratio of likelihoods, which produces an efficient sampler as
observed in the experiments.
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